Mean field theories of quantum spin glasses

Similar documents
The underdoped cuprates as fractionalized Fermi liquids (FL*)

Spin liquids on the triangular lattice

Exotic phases of the Kondo lattice, and holography

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Small and large Fermi surfaces in metals with local moments

The Superfluid-Insulator transition

Talk online at

Quantum phase transitions in Mott insulators and d-wave superconductors

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

Quantum criticality of Fermi surfaces

Valence Bonds in Random Quantum Magnets

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Magnetic Moment Collapse drives Mott transition in MnO

arxiv:cond-mat/ v1 4 Aug 2003

Quantum transitions of d-wave superconductors in a magnetic field

Topological Kondo Insulators!

Quantum phase transitions and the Luttinger theorem.

Quantum magnetism and the theory of strongly correlated electrons

Spin Superfluidity and Graphene in a Strong Magnetic Field

Photoemission Studies of Strongly Correlated Systems

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain

Electronic correlations in models and materials. Jan Kuneš

Topological order in the pseudogap metal

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

The bosonic Kondo effect:

Heavy Fermion systems

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

The Hubbard model in cold atoms and in the high-tc cuprates

Can superconductivity emerge out of a non Fermi liquid.

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Local criticality and marginal Fermi liquid in a solvable model Erez Berg

Spin liquids in frustrated magnets

Universal theory of complex SYK models and extremal charged black holes

2. Spin liquids and valence bond solids

Quantum Phase Transitions

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum spin systems - models and computational methods

Order and quantum phase transitions in the cuprate superconductors

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Deconfined Quantum Critical Points

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS

Landau-Fermi liquid theory

Intermediate valence in Yb Intermetallic compounds

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

Universal Post-quench Dynamics at a Quantum Critical Point

Neutron scattering from quantum materials

Luigi Paolasini

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care)

Intertwined Orders in High Temperature Superconductors

O. Parcollet CEA-Saclay FRANCE

Lecture 11: Long-wavelength expansion in the Neel state Energetic terms

3. Quantum matter without quasiparticles

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Transport in non-fermi liquids

Theory of the Nernst effect near the superfluid-insulator transition

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Spin liquids on ladders and in 2d

A quantum dimer model for the pseudogap metal

arxiv: v4 [cond-mat.str-el] 26 Oct 2011

The Superfluid Phase s of Helium 3

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

Landau s Fermi Liquid Theory

AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS

Landau-Fermi liquid theory

Strange metal from local quantum chaos

AdS/CFT and condensed matter

Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field

Metals without quasiparticles

Magnetism in correlated-electron materials

Resonating Valence Bond point of view in Graphene

Numerical diagonalization studies of quantum spin chains

Understanding correlated electron systems by a classification of Mott insulators

Emergent gauge fields and the high temperature superconductors

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phase transitions of insulators, superconductors and metals in two dimensions

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

Topological order in quantum matter

Persistent spin current in a spin ring

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Minimal Update of Solid State Physics

Dual vortex theory of doped antiferromagnets

Subir Sachdev Harvard University

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

The Nernst effect in high-temperature superconductors

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Vortices in the cuprate superconductors

Quantum Cluster Methods (CPT/CDMFT)

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Billiard ball model for structure factor in 1-D Heisenberg anti-ferromagnets

Transcription:

Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev

Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a Gaussian random variable with zero mean S : a unit length n component vector i

A. Quantum rotor model Action = Two routes to quantization 1 dτ 2g n=1: Ising model is a transverse field g Spectrum at J ij =0 n=3: randomly coupled spin dimers Spectrum at J ij =0 g i ds i dτ = = 1 1 2 2 2 + H ( ) j j j ( + ) j j j 1, ( + ), 2 g 1 j j j j ( ) 2 j j

B. Heisenberg spins Action = Two routes to quantization τ ( ) j j d isa S H j ds i dτ First term is kinematic Berry phase which ensures 2 Sj, S α kβ = iδ jkεαβγsjγ and Sj = S( S+ 1) + Spectrum at J ij =0, (2S+1)-fold degeneracy j j Generalize model to SU(N) spins and explore phase diagram in N, S plane

Outline A. Insulating quantum rotors. B. Insulating Heisenberg spins C. DMFT of a random t-j model D. Metallic spin glasses: DMFT of a random Kondo lattice

A. Insulating quantum rotors

A. Quantum rotor model Action = 2 1 ds i dτ + J S S 2g i dτ i j ij i j J ij : a Gaussian random variable with zero mean

T=0 phases Local dynamic spin susceptibility χ ω = τ τ 1/ T ( ) ( ) i ( ) i n d S S 0 e ω τ n 0 j j ( + )( + )( + ) Spin glass χ ''( ω) ~ q ( ) EA ωδ ω + ω Specific heat C ~ T (?) Paramagnet χ'' ω gapped ( ) χ ''( ω) ~ ω g D.A. Huse and J. Miller, Phys. Rev. Lett. 70, 3147 (1993). J. Ye, S. Sachdev, and N. Read, Phys. Rev. Lett. 70, 4011 (1993). N. Read, S. Sachdev, and J. Ye, Phys. Rev. B 52, 384 (1995). A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).

T > 0 phase diagram ω Quantum critical χ'' ( ω) ~ ωφ 1/2 T /ln ( 1/ T) g g c J. Ye, S. Sachdev, and N. Read, Phys. Rev. Lett. 70, 4011 (1993). N. Read, S. Sachdev, and J. Ye, Phys. Rev. B 52, 384 (1995).

B. Insulating Heisenberg spins

B. Heisenberg spin glass Action = ds dτ isa( S ) i + J S S j j ij i j j dτ i j J ij : a Gaussian random variable with zero mean 2 S j : a SU( N) spin with N 1 components and "length" S S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

T=0 phase diagram S Spin glass order ( ) q ( ) χ '' ω ~ EA ωδ ω + ω Specific heat C ~ T (C ~ T 2?) Quantum critical "spin slush" phase with "marginal Fermi liquid" spectrum: ( ω) χ'' ~ sgn ( ω) J N S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993). A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. Lett. 85, 840 (2000). A. Camjayi and M. J. Rozenberg, Phys. Rev. Lett. 90, 217202 (2003).

Quantum critical phase is described by fractionalized S=1/2 neutral spinon excitations S ~ f f σ α αβ β Spinon spectral density 1 Ψ ω ω kt B ω S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

T > 0 phase diagram ω χ'' ( ω) ~ sgn ( ω) Φ kt B S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993). A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. Lett. 85, 840 (2000). A. Camjayi and M. J. Rozenberg, Phys. Rev. Lett. 90, 217202 (2003).

C. Doping the quantum critical spin liquid

C. DMFT of a random t-j model Hamiltonian = tpc ij iαcjα P+ JS ij i Sj ij ij 1 S c c 2 σ i iα αβ iβ J ij : a Gaussian random variable with zero mean O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999).

= carrier density Quantum critical "incoherent" physics with universal ω/ ktscaling above * * a coherence scale ε F ~ kt B ~ ( δt) 2 O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999). J B

Physical consequences of quantum criticality 1. Electron spectral function (photoemission) 1 ω Momentum integrated electron spectral density at T = 0 : ρ( ω) = φ * t ε F 1 1 φϖ ( ) as ϖ 0 and φϖ ( ) as ϖ π ϖ Momentum resolved spectral density 2 δ Quasiparticle peak with residue Z ~ * δ 1 ω O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999).

Physical consequences of quantum criticality 2. d.c Resistivity h T ρdc ( T ) = ψ 2 * e ε F T ε! * F T ε * F 2 O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999).

Physical consequences of quantum criticality 3. NMR 1/T relaxation rate 1 1 1 T * T1 J ψ = ε F constant (MFL) Korringa T ε * F O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999).

Physical consequences of quantum criticality 4. Optical conductivity * * ε F ω In quantum critical regime, with εf < T < J, Re σ ( ω) = ϑ ω kt B ( ) with Re σ ω * ε F ω for T = * ε F for ω < T < ω < J T O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999).

Phenomenological phase diagram for cuprates O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999).

D. Metallic spin glasses

C. DMFT of a random Kondo lattice model Hamiltonian = ij tc c + JS S ij iα jα ij i j ij J K + S c c 2 i σ i iα αβ iβ J ij : a Gaussian random variable with zero mean S. Sachdev, N. Read, and R. Oppermann, Phys. Rev. B 52, 10286 (1995). A. M. Sengupta and A. Georges, Phys. Rev. B 52, 10295 (1995).

( ) ~ sgn ( ) Quantum critical χ'' ω ω ω 1/2 ω Φ 3/2 T ( ) ~ q ( ) + sgn ( ) χ ' ω ωδ ω ω ω EA 1/2 J K S. Sachdev, N. Read, and R. Oppermann, Phys. Rev. B 52, 10286 (1995). A. M. Sengupta and A. Georges, Phys. Rev. B 52, 10295 (1995).

Outlook Spin glass order is an attractive candidate for a quantum critical point in the cuprates, on both theoretical and experimental grounds. (Impurities break the translational symmetry associated with chargeordered states, and the Imry-Ma argument then prohibits a quantum critical point associated with charge order in the presence of randomness in two dimensions) A simple mean-field theory of a doped Heisenberg spin glass naturally reproduces all the marginal phenomenology. Needed: better theory of fluctuations in low dimensions