Inverse theorem for the iterates of modified Bernstein type polynomials

Similar documents
q-durrmeyer operators based on Pólya distribution

Direct Estimates for Lupaş-Durrmeyer Operators

(p, q)-baskakov-kantorovich Operators

Miskolc Mathematical Notes HU e-issn Uniform approximation by means of some piecewise linear functions. Zoltán Finta

(p, q)-type BETA FUNCTIONS OF SECOND KIND

Gamma Distribution and Gamma Approximation

Local Approximation Properties for certain King type Operators

On general Gamma-Taylor operators on weighted spaces

ON BLEIMANN, BUTZER AND HAHN TYPE GENERALIZATION OF BALÁZS OPERATORS

UPPER ESTIMATE FOR GENERAL COMPLEX BASKAKOV SZÁSZ OPERATOR. 1. Introduction

On a class of convergent sequences defined by integrals 1

APPROXIMATION PROPERTIES OF STANCU TYPE MEYER- KÖNIG AND ZELLER OPERATORS

Self-normalized deviation inequalities with application to t-statistic

Marcinkiwiecz-Zygmund Type Inequalities for all Arcs of the Circle

On Summability Factors for N, p n k

INVERSE THEOREMS OF APPROXIMATION THEORY IN L p,α (R + )

The log-behavior of n p(n) and n p(n)/n

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Xhevat Z. Krasniqi and Naim L. Braha

Subject: Differential Equations & Mathematical Modeling-III

Sequences of Definite Integrals, Factorials and Double Factorials

ON SOME PROPERTIES OF THE PICARD OPERATORS. Lucyna Rempulska and Karolina Tomczak

Some Tauberian theorems for weighted means of bounded double sequences

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Subject: Differential Equations & Mathematical Modeling -III. Lesson: Power series solutions of Differential Equations. about ordinary points

BIRKHOFF ERGODIC THEOREM

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng

THE REPRESENTATION OF THE REMAINDER IN CLASSICAL BERNSTEIN APPROXIMATION FORMULA

A note on the p-adic gamma function and q-changhee polynomials

Sequences and Series of Functions

Chapter 8. Euler s Gamma function

Bangi 43600, Selangor Darul Ehsan, Malaysia (Received 12 February 2010, accepted 21 April 2010)

SOME TRIBONACCI IDENTITIES

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

International Journal of Mathematical Archive-3(4), 2012, Page: Available online through ISSN

Bijective Proofs of Gould s and Rothe s Identities

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

arxiv: v1 [math.fa] 3 Apr 2016

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS

MDIV. Multiple divisor functions

1. Introduction. g(x) = a 2 + a k cos kx (1.1) g(x) = lim. S n (x).

MAT1026 Calculus II Basic Convergence Tests for Series

Asymptotic distribution of products of sums of independent random variables

An Interpolation Process on Laguerre Polynomial

Chapter 8. Uniform Convergence and Differentiation.

Chapter 8. Euler s Gamma function

Weighted Approximation by Videnskii and Lupas Operators

Some vector-valued statistical convergent sequence spaces

ON POINTWISE BINOMIAL APPROXIMATION

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

1 Convergence in Probability and the Weak Law of Large Numbers

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion

MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES

Optimally Sparse SVMs

Analytic Continuation

An almost sure invariance principle for trimmed sums of random vectors

THE TRANSFORMATION MATRIX OF CHEBYSHEV IV BERNSTEIN POLYNOMIAL BASES

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

Riesz-Fischer Sequences and Lower Frame Bounds

Korovkin type approximation theorems for weighted αβ-statistical convergence

Fall 2013 MTH431/531 Real analysis Section Notes

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

Numerical integration of analytic functions

THE STRONG LAW OF LARGE NUMBERS FOR STATIONARY SEQUENCES

Convergence of random variables. (telegram style notes) P.J.C. Spreij

SPECTRUM OF THE DIRECT SUM OF OPERATORS

Hoggatt and King [lo] defined a complete sequence of natural numbers

Chapter 6 Infinite Series

MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1.

Basics of Probability Theory (for Theory of Computation courses)

wavelet collocation method for solving integro-differential equation.

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

AN EXTENSION OF SIMONS INEQUALITY AND APPLICATIONS. Robert DEVILLE and Catherine FINET

TRIGONOMETRIC POLYNOMIALS WITH MANY REAL ZEROS AND A LITTLEWOOD-TYPE PROBLEM. Peter Borwein and Tamás Erdélyi. 1. Introduction

ON SOME INEQUALITIES IN NORMED LINEAR SPACES

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

New estimates in Voronovskaja s theorem. Gancho Tachev. Numerical Algorithms ISSN Numer Algor DOI / s

Tauberian theorems for the product of Borel and Hölder summability methods

Orthogonal Dirichlet Polynomials with Arctangent Density

Iterative Method For Approximating a Common Fixed Point of Infinite Family of Strictly Pseudo Contractive Mappings in Real Hilbert Spaces

The Gamma function Michael Taylor. Abstract. This material is excerpted from 18 and Appendix J of [T].

APPROXIMATION BY BERNSTEIN-CHLODOWSKY POLYNOMIALS

Section 11.8: Power Series

Topics. Homework Problems. MATH 301 Introduction to Analysis Chapter Four Sequences. 1. Definition of convergence of sequences.

Sh. Al-sharif - R. Khalil

Math 2784 (or 2794W) University of Connecticut

The Arakawa-Kaneko Zeta Function

Council for Innovative Research

Abstract. 1. Introduction This note is a supplement to part I ([4]). Let. F x (1.1) x n (1.2) Then the moments L x are the Catalan numbers

Advanced Analysis. Min Yan Department of Mathematics Hong Kong University of Science and Technology

Lecture 27: Optimal Estimators and Functional Delta Method

An Introduction to Randomized Algorithms

Transcription:

Stud. Uiv. Babeş-Bolyai Math. 5924, No. 3, 33 35 Iverse theorem for the iterates of modified Berstei type polyomials T.A.K. Siha, P.N. Agrawal ad K.K. Sigh Abstract. Gupta ad Maheshwari [2] itroduced a ew sequece of Durrmeyer type liear positive operators P to approimate p th Lebesgue itegrable fuctios o [, ]. It is observed that these operators are saturated with O. I order to improve this slow rate of covergece, followig Agrawal et al [2], we [3] applied the techique of a iterative combiatio to the above operators P ad estimated the error i the L p approimatio i terms of the higher order itegral modulus of smoothess usig some properties of the Steklov mea. The preset paper is i cotiuatio of this work. Here we have discussed the correspodig iverse result for the above iterative combiatio T,k of the operators P. Mathematics Subject Classificatio 2: 4A25, 4A27, 4A36. Keywords: Liear positive operators, iterative combiatio, itegral modulus of smoothess, Steklov mea, iverse theorem.. Itroductio Motivated by the defiitio of Phillips operators cf. [] ad [5], Gupta ad Maheshwari [2] proposed modified Berstei type polyomials P to approimate fuctios i L p [, ] as follows: For f L p [, ], p <, where W, t = P f; = W, tft dt, [, ], p,ν p,ν t + δt, p,ν t = t ν t ν, t, ν

332 T.A.K. Siha, P.N. Agrawal ad K.K. Sigh ad δt beig the Dirac-delta fuctio, is the kerel of the operators P. Sice the order of approimatio by the operators P is, at best, O, however smooth the fuctio may be, followig [3], the iterative combiatio T,k : L p [, ] C [, ] of these operators is defied as T,k f; = I I P k k k f; = m+ P m f;, k N, m where P I ad P m P P m for m N. I order to improve the rate of covergece, Micchelli [6] itroduced a iterative combiatio for Berstei polyomials ad obtaied some direct ad saturatio results. Goska ad Zhou [] showed that the iterative combiatios ca be regarded as iterated Boolea sums ad obtaied global direct ad iverse results i the suporm. The iterated Boolea sums have also bee studied by several other authors e.g. [4],[8],[7],[8] ad [2] wherei they have obtaied direct ad saturatio results. Dig ad Cao [7] discussed direct ad iverse theorems i the sup- orm for iterated Boolea sums of the multivariate Berstei polyomials usig the techique of K-fuctioals. Siha et al [9] proved a iverse theorem i the L p orm for the Micchelli combiatio of Berstei-Durrmeyer polyomials. Goska ad Zhou [] obtaied the results i the sup- orm usig the Ditzia Totik modulus of smoothess ad K fuctioal. Dig ad Cao [7] also obtaied the results i sup- orm usig K fuctioal. Sevy [7] ad [8] cosidered the limits of the liear combiatios of iterates of Berstei ad Durrmeyer polyomials i the sup- orm by keepig the degree of the approimats as a costat while the order of iteratio becomes ifiite ad showed that they coverge to the Lagrage iterpolatio polyomial ad the least square approimatig polyomial o [, ] respectively. The more geeral results have bee obtaied i [2]. Motivated by the work of Siha et al [9], Agrawal et al [3] cosidered the Micchelli combiatios for the operator proposed by Gupta ad Maheshwari [2] ad obtaied some direct results i L p orm. I the preset paper, we cotiue the work doe i [9] by provig a correspodig local iverse theorem i the L p orm. The iterates are defied as P m+ f; = m= W, tp m f; t dt, [, ]. At every stage it uses the etire previous operator value. The aalysis i L p case, therefore, differs from the study of operators i [] ad liear combiatios of operators i [8]. The proof of the theorem is carried out by usig the properties of Steklov meas. Due to the presece of the Dirac- delta term i the kerel of these operators, the aalysis of the proof is quite differet. It uses the multiomial theorem, Hölder s iequality ad the Fubii s theorem repeatedly. Throughout the preset paper, we assume that I = [, ], I j = [a j, b j ], j =, 2, where < a < a 2 < b 2 < b < ad by C we mea a positive costat ot ecessarily the same at each occurrece. I [3], we obtaied the followig direct theorem:

Iterates of modified Berstei type polyomials 333 Theorem.. Let f L p I, p. The, for sufficietly large values of there holds T,k f; f LpI 2 C ω 2k f,, p, I + k f LpI, where C is a costat idepedet of f ad. Remark.2. From the above theorem, it follows that if ω 2k f, τ, p, I = Oτ α, as τ the T,k f; f LpI 2 = O α/2, as, where < α < 2k. The aim of this paper is to characterize the class of fuctios for which T,k f; f LpI 2 = O α/2, as, where < α < 2k. Thus, we prove the followig theorem iverse theorem: Theorem.3. Let f L p I, p. Let < α < 2k ad T,k f; f LpI = O α/2, as. The, ω 2k f, τ, p, I 2 = Oτ α, as τ. Remark.4. We observe that without ay loss of geerality we may assume that f =. To prove it, let f t = ft f. By defiitio, k k T,k f ; = m+ P m f ;. m Further, usig liearity, m= P m f ; = P m f; fp m ; = P m f; f. This implies that T,k f ; = T,k f; f. This etails that where f =. T,k f ; f = T,k f; f, Sice f = i view of the above remark, it follows that P f =. Cosequetly, P m f =, m N. 2. Prelimiaries I this sectio, we metio some defiitios ad prove auiliary results which we eed i establishig our mai theorem. Lemma 2.. Let r > ad ν be a iteger such that ν. The for every ν there holds p,ν t ν t r dt = O, as. r 2 +

334 T.A.K. Siha, P.N. Agrawal ad K.K. Sigh Proof. Let i be a iteger such that 2i > r. A applicatio of Hölder s iequality i itegral gives p,ν t ν t r dt It follows that t j p,ν t dt = Hece, by biomial epasio Now, p,ν t ν t 2i dt r p,ν t ν 2i t 2i dt p,ν t dt r 2i. 2. ν + ν + 2...ν + j Bν + j +, ν + = ν + + 2... + j +. 2i 2i = j ν 2i j ν + ν + 2...ν + j j + + 2... + j + j= { 2i = + 2i ν 2i ν 2i ν + + 2i 2 ν 2i 2 ν + ν + 2 +... + ν + ν + 2...ν + 2i s=2 + 2 2.2 + 2 + 3 2i+ s=2 + s. j+ + s p j = + + p 2j 2 + p 3j 3 +..., 2.3 where p j is a secod degree polyomial i j, p 2 j is a fourth degree polyomial i j ad so o. Similarly, ν + ν + 2...ν + j = ν j + q jν j + q 2 jν j 2 +... + j!, 2.4 where q j is a secod degree polyomial i j, q 2 j is a fourth degree polyomial i j ad so o. Thus from 2.2-2.4, we have

Iterates of modified Berstei type polyomials 335 p,ν t ν t 2i dt = { 2i + 2i j= + p j + p 2j = + 2i + p j = O i+ { 2i j= 2i j ν 2i j ν j + q jν j + q 2 jν j 2 +... j 2 +... 2i j j ν 2i + q jν 2i + q 2 jν 2i 2 +... + p 2j 2 +..., as. 2.5 This holds for every ν, where ν ad i view of the followig idetity: 2i j= { 2i j j m, m =,,..., 2i = j 2i!, m = 2i. Now, o combiig 2., 2.5 ad i view of p,ν t ν t r dt C i+ For m N, the m th order momet for P is defied as p,ν tdt = +, we obtai r 2i r 2i = O + r 2 +. µ,m = P t m ;. Lemma 2.2. [2]The elemetary momets are µ, =, µ, = m there holds the recurrece relatio + ad for +m+µ,m+ = { µ,m + 2m µ,m +m 2 µ,m. Cosequetly, i µ,m is a polyomial i of degree m; ii µ,m = O [m+/2], as, uiformly i I, where [β] is the iteger part of β. Corollary 2.3. There holds for r > P t r ; = O r/2, as, uiformly i I.

336 T.A.K. Siha, P.N. Agrawal ad K.K. Sigh Proof. Let s be a eve iteger > r. A applicatio of Hölder s iequality i itegral ad Lemma 2.2 i the et step gives P t r ; = s W, t t s dt r Lemma 2.4. [3]There holds for l N l l D l p,ν = W, t t r dt W, t dt 2i+jl i,j r s C s/2 r/s = C r/2. i ν j q i,j,l p,ν, where D d d ad q i,j,l are certai polyomials i idepedet of ad ν. Lemma 2.5. [3] There holds for k, l N T,k t l ; = O k, as, uiformly i I. Lemma 2.6. Let r > ad V, t =: uiformly for all t i [, ]. Proof. Let J =: p,ν p,ν t, the V, t t r d = O r/2, as, V, t t r d ad s be a eve iteger > r. The, proceedig alog the lies of the proof of the Corollary 2.3 ad i view of we have We may write J V, t t s d = s. p,ν d = + V, t t s d s i= r s + s t s i i i r s. p,ν t p,ν i d.

Iterates of modified Berstei type polyomials 337 Sice it follows that V, t t s d = s. s i= p,ν i d = ν +...ν + i +... + i +, s t s i i ν + 2...ν + i + p,ν t i +... + i +. 2.6 ν= Now, ν + 2...ν + i + = ν i + p iν i + p 2 iν i 2 +..., where p j i is a polyomial i i of degree 2j. Moreover, ν i = q iν i + q iν i + q 2 iν i 2 +... + q i iν, 2.7 where q i = q i i =, ν j = νν ν 2...ν j +, j =,, 2..., i ad q j i is a polyomial i i of degree 2j. Utilizig 2.7 i 2.6 ad usig the properties of biomial coefficiets, we get the required order. Defiitio 2.7. Let f L p I, p. The for sufficietly small η >, the Steklov mea f η,m of m th order is defied as follows: f η,m t = η m η/2 η/2 η/2 η/2 ft + m m mi= tift dt...dt m, where t I ad m h is mth order forward differece operator of step legth h. Lemma 2.8. The fuctio f η,m satisfies the followig properties a f η,m has derivatives up to order m over I, f η,m m a.e. ad belogs to L p I ; b f η,m r LpI 2 C r η r ω r f, η, p, I, r =, 2,..., m; c f f η,m LpI 2 C m+ ω m f, η, p, I ; d f η,m LpI 2 C m+2 f LpI ; e f η,m m LpI 2 C m+3 η m f LpI, ACI ad f m η,m where C i s are certai costats that deped o i but are idepedet of f ad η. The proof follows from Theorem 8.7 [3] ad [2], Eercise 3.2, pp.65-66. Lemma 2.9. Let f L p I, p ad r, m N. The there holds Proof. Usig Remark.4 P m ftt r ; = P m ftt r ; LpI C r/2 f LpI.... eists V, t V t, t 2...V t m, t m t m r ft m dt m...dt.

338 T.A.K. Siha, P.N. Agrawal ad K.K. Sigh A repeated use of Hölder s iequality ad i view of P m ftt r ; p... V, tdt = O makes V, t V t, t 2...V t m, t m t m rp ft m p dt m...dt. We ow cosider itegratio o both sides. O the right side by virtue of Fubii s theorem, the itegratio is doe with respect to followed by t, t 2,..., t m respectively. Thus P m ftt r ; p d... V, t t m rp d 2.8 V t, t 2...V t m, t m ft m p dt...dt m. Let s > rp be a iteger. The, usig Hölder s iequality ad i view of we have V, t t m rp d By multiomial epasio p,ν d = + rp s rp V, t t m s d s. 2.9 + t m s t m t m + t m t m 2 +... + t s s t m t m rm... t r. 2. r, r 2,.., r m r +r 2 +...+rm=s, r k, km Now, we combie 2.8-2., resort Lemma 2.6 m times ad Hölder s iequality m times to reach P m ftt r ; p d C r +r 2 +...+rm=s, r k, km C rp 2 m rp f p L pi, s r, r 2,.., r m r +r 2 +...+rm 2 rp s ft m p dt m usig boud of multiomial coefficiets. Takig p th root o both sides we complete the proof of lemma.

Iterates of modified Berstei type polyomials 339 Lemma 2.. Let m, s N ad f L p I, p have a compact support i [a, b],. The there holds d 2s d 2s P m f; C s f Lp[a,b]. Lp[a,b] Proof. A applicatio of Lemma 2.4 eables us to epress d 2s d 2s P m f; = d2s d 2s = W, vp m f; v dv p,ν 2i+j2s i,j p,ν vp m f; v dv. i ν j q i,j,s 2s 2. Whe p >, applyig Hölder s iequality twice, first for summatio ad the for itegratio, we obtai p ν j p,ν p,ν vp m f; v dv ν jp p,ν p,ν v P m f; v p dv. 2.2 The above iequality is true for p =, as well. Now, we itegrate both sides of 2.2 with respect to ad take help of Lemma 2. i et step to obtai b p ν j p,ν p,ν vp m f; v dv d a b p,ν ν jp d p,ν v P m f; v p dv Let C 2 =: a C jp/2. p,ν v P m f; v p dv C jp/2 P m f;. p L pi. 2.3 sup [a,b] sup 2i+j2s i,j q i,j,s 2s.

34 T.A.K. Siha, P.N. Agrawal ad K.K. Sigh We ow combie 2. ad 2.3 ad coclude that d 2s d 2s P m f; Lp[a,b] C /p C 2 2i+j2s i,j i j/2 P m f;. LpI C s f LpI = C s f Lp[a,b]. Hece, the required result follows. Lemma 2.. Let m, s N ad f L p [, ], p have a compact support i [a, b],. Moreover, let f 2s AC[a, b] ad f 2s L p [a, b], the d2s d 2s P m f; C f 2s Lp[a,b]. Lp[a,b] Proof. Sice P m 2.4 we have maps polyomials ito polyomials of the same degree, usig Lemma d 2s d 2s P m f; = = 2s! d 2s... d 2s W, t W t, t 2... t m W t m, t m t m w 2s f 2s w dw dt m...dt 2s! p,ν 2i+j2s i,j... i ν j q i,j,s 2s p,ν t W t, t 2...W t m, t m t m t m w 2s f 2s w dw dt m...dt. Let us defie W, t =, t / [, ]. Now, we break the iterval of itegratio i t m i the followig way: There eists for each a iteger r such that r ma{ a, b r +.

Let C = sup [a,b] Iterates of modified Berstei type polyomials 34 sup 2i+j2s i,j d 2s d 2s P m f; C... q i,j,s. The 2s 2i+j2s i,j { i ν j p,ν 2.4 p,ν t W t, t 2...W t m 2, t m t m W t m, t m t m 2s f 2s w dw dt m dt m...dt. The epressio iside the curly bracket i 2.4, however is bouded by r { l= + l+ + l W t m, t m t m 2s + l+ f 2s w dw dt m + l l+ W t m, t m t m r { 2 l= + 2 l 4 + l 4 l + l+ 2s f l+ + l W t m, t m t m 2s+3 l+ W t m, t m t m + W t m, t m t m 2s Usig 2.5 i 2.4 d 2s d 2s P m f; C... 2s+3 2i+j2s i,j 2s w dw dt m + l+ f l+ + f 2s w dw dt m 2.5 2s w dw dt m f 2s w dw dt m. i ν j p,ν p,ν t W t, t 2...W t m 2, t m

342 T.A.K. Siha, P.N. Agrawal ad K.K. Sigh { r 2 l= + 2 l 4 l 4 + l+ + l W t m, t m t m 2s+3 l l+ W t m, t m t m 2s+3 + l+ f l+ f 2s w dw dt m 2s w dw dt m + + W t m, t m t m 2s + f 2s w dw dt m dt m...dt, = J + J 2 + J 3, say. I order to estimate J, J 2 ad J 3, we use multiomial epasio 2s + 3 t m 2s+3 r, r 2,.., r m Thus J C 2i+j2s i,j i r +r 2 +...+rm=2s+3, r i, im r l= 2 l 4 2s + 3 r +r 2 +...+rm=2s+3, r k, km t m t m rm t m t m 2 rm... t r. + l+ r, r 2,.., r m f 2s w dw ν j p,ν... p,ν t W t, t 2...W t m, t m t m t m rm t m t m 2 rm... t r dt m dt m...dt. A repeated applicatio of Corollary 2.3 makes J C + r i 2 l+ l 4 f 2s w dw 2.6 2i+j2s i,j l= { ν j p,ν r +r 2 +...+rm=2s+3, r k, km p,ν t t r dt. 2s + 3 r, r 2,.., r m rm+...+r2/2

Iterates of modified Berstei type polyomials 343 I order to obtai a boud for J i 2.6 we require a estimate of p,ν t t r dt. This is accomplished with the help of Lemma 2. ad momets of Berstei polyomials [4], Theorem.5.. p,ν t t r dt p,ν t t ν + ν r dt = Therefore, J C r r i = 2i+j2s i,j i ν i C r l= r r i = 2 l 4 i { r ν j p,ν Cm 2s+3 s 2s+3/2 i = r l= i p,ν t t ν r i/2 ν i. + l+ 2 l 4 r i f 2s w dw r +r 2 +...+rm=2s+3, r k, km i i/2 ν + l+ r i dt 2s + 3 r, r 2,.., r m 2s+3/2 f 2s w dw. 2.7 We ow take p orm i i above. Let p, q be the cojugate epoets such that p + q = ad ψ l,. deote the characteristic fuctio of the iterval [, + l+ ]. By usig Hölder s iequality ad Fubii s theorem

344 T.A.K. Siha, P.N. Agrawal ad K.K. Sigh b a + l+ f 2s w dw p d = = = p/q b l + a p/q b l + l + p/q + l+ a b p/q l + l + l + p f 2s p L p[,]. a f 2s w p dw d ψ l, w f 2s w p dw d ψ l, w d f 2s w p dw f 2s w p dw Hece, + l+ f 2s w dw Lp[a,b] l + f 2s LpI. This implies by 2.7, that J Lp[a,b] Cm 2s+3 f 2s LpI = Cm 2s+3 f 2s Lp[a,b]. I order to fid estimates J 2 ad J 3 we proceed i a similar maer ad obtai the required order. Combiig the estimates of J, J 2 ad J 3, we complete the proof. 3. Proof of Iverse Theorem Proof. We choose umbers i ad y i, i =, 2, 3 that satisfy < a < < 2 < 3 < a 2 < b 2 < y 3 < y 2 < y < b <. We choose a fuctio g C 2k such that supp g 2, y 2 with g = o [ 3, y 3 ] ad f = fg. Now, for all values of γ τ we have 2k γ f Lp[ 2,y 2] 2k γ f T,k f; + Lp[ 2k 2,y 2] γ T,k f; Lp[ 2,y 2] = Σ + Σ 2, say. 3. Let f η,2k deote the Steklov mea for the fuctio f. The, Lemmas 2. ad 2. etail

Iterates of modified Berstei type polyomials 345 Σ 2 = 2k γ T,k f; Lp[ { 2,y 2] T γ 2k 2k,k f f η,2k ; + T 2k,k f η,2k ; Lp[,y ] Lp[,y ] { Cγ 2k k f f 2k η,2k Lp[ 2,y 2] + f η,2k L p[ 2,y 2] Cγ 2k k + η 2k ω 2k f, η, p, [ 2, y 2 ], 3.2 for sufficietly small values of γ ad η. It follows from the hypothesis that a compoet of Σ is bouded as f T,k f; Lp[ 2,y 2] gf T,k f; + T Lp[ 2,y 2],kftgt g; Lp[ 2,y 2] C + T,kftgt g;. 3.3 α/2 Lp[ 2,y 2] We ow establish that T,k ftgt g; Lp[ 2,y 2] = O α/2. 3.4 This is a major poit i the proof of our theorem. Assumig 3.4to be true, it follows from 3.-3.4 that 2k f { γ C Lp[ + γ2k k + 2,y 2] α/2 η 2k ω 2k f, η, p, [ 2, y 2 ]. 3.5 We choose η = /2 ad take sup γτ i 3.5 to obtai { 2k ω 2k f, τ τ, p, [ 2, y 2 ] C η α + ω 2k η f, η, p, [ 2, y 2 ]. Now, makig use of the Lemma [6], p.696, we get ad therefore ω 2k f, τ, p, [ 2, y 2 ] C τ α ω 2k f, τ, p, I 2 = Oτ α, as τ. The proof of 3.4 is accomplished by iductio o α. Whe α, by mea value theorem ad Lemma 2.9 T,k ftgt g; = T Lp[ 2,y 2],kftt g ξ; Lp[ 2,y 2] C f /2 L pi, where ξ lies betwee t ad. This proves 3.4 whe α. We et assume that 3.4 is true whe α lies i [r, r ad prove that it is true for α [r, r +. Let f η,2k t deote the Steklov mea. We epress

346 T.A.K. Siha, P.N. Agrawal ad K.K. Sigh ftgt g = {ft f η,2k t + f η,2k t f η,2k + f η,2k gt g = ft f η,2k tgt g + f η,2k t f η,2k gt g + f η,2k gt g = Σ 3 + Σ 4 + Σ 5, say. 3.6 Let ψt deote the characteristic fuctio of [ 2 δ, y 2 + δ ]. This etails that P m ft f η,2k tgt g; Lp[ 2,y 2] Therefore, P m ft f η,2k tt g ξψt; Lp[ 2,y 2] + P m ft f η,2k tt g ξ ψt; Lp[ 2,y 2] g CI P m ft f η,2k t t ψt; Lp[ 2,y 2] + g CI δ 2k P m ft f η,2k t t 2k ψt; Lp[ 2,y 2] C /2 f f η,2k ψt Lp[ 2,y 2] + C k f f η,2k LpI C /2 ω 2k f, η, f, p, [, y ] + C k f LpI i view of Lemmas 2.9 ad 2.8. 3.7 T,k Σ 3 ; = k m= k m+ P m Σ 3 ; m C /2 ω 2k f, η, f, p, [, y ] + C k f LpI. 3.8 To obtai a estimate of Σ 5, we ote that gt is a very smooth fuctio ad hece T,k gt g; = where ξ lies betwee t ad. 2k j= g j T,k t j ; j! + 2k! T,kg 2k ξt 2k ;, 3.9 Now, applyig Lemmas 2.5 ad 2.9 o the right had side of 3.9 respectively, we have T,k Σ 5 ; Lp[ 2,y 2] C k f η,2k Lp[ 2,y 2] C k f LpI. 3.

Iterates of modified Berstei type polyomials 347 Sice, by virtue of Lemma 2.8, f η,2k is 2k times differetiable, there follows 2k t i Σ 4 = f i η,2k i! + t t w 2k f 2k η,2k 2k! wdw i= 2k 2 t j g j t 2k + g 2k ξ j! 2k! = j= 2k i= 2k 2 j= + g2k ξ 2k! + 2k! { 2k 2 j= t i+j i!j! 2k i= t f i η,2k gj t 2k+i i! f i η,2k t w 2k f 2k η,2k wdw t j g j + j! t 2k g 2k ξ 2k! = Σ 6 + Σ 7 + Σ 8, say, 3. where ξ lies betwee t ad. By Lemma 2.5 ad Theorem 3. [9], p.5 Similarly, T,k Σ 7 ; Lp[ 2,y 2] 2k T,k Σ 6 ; Lp[ 2,y 2] C k i= f i η,2k L p[ 2,y 2] C k f η,2k Lp[ 2,y 2] + f 2k η,2k Lp[ 2,y 2]. 3.2 C k f η,2k Lp[ 2,y 2] + f 2k η,2k Lp[ 2,y 2] We ow eamie a typical term of T,k Σ 8 ; epressed as t P m t i t w 2k f 2k η,2k wdw; = P m + P m t t i t w 2k f 2k η,2k wψwdw; t i t t w 2k f 2k η,2k w ψwdw;. 3.3 = Σ 9 + Σ, say. 3.4

348 T.A.K. Siha, P.N. Agrawal ad K.K. Sigh We may write Σ 9 t m... f 2k W, t W t, t 2...W t m, t m t m 2k+i 3.5 η,2k w ψwdw dt mdt m...dt 2 dt. Now, proceedig alog the lies of the proof of Lemma 2., we obtai C 2k Σ 9 Lp[ 2,y 2] f 2k+i/2 η,2k L p[ 2 δ,y 2 δ]. 3.6 The presece of ψw i Σ implies that w > δ. Therefore Σ... t m 2k+i +2k W, t W t, t 2...W t m, t m 3.7 δ 2k t m f 2k η,2k w ψwdw dt mdt m...dt 2 dt. Proceedig alog the lies of the proof of Lemma 2. agai yields C 2k Σ Lp[ 2,y 2] f 4k+i/2 η,2k L pi. 3.8 Combiig 3.4, 3.6 ad 3.8, we get T,k Σ 8 ; Lp[ { 2,y 2] 2k C f 2k+i/2 η,2k 2k L p[ 2 δ,y 2+δ ] + f 4k+i/2 η,2k L pi. 3.9 Utilizig 3.6-3.9, we are led to T,k ftgt g; Lp[ { 2,y 2] C ω 2kf, η, p, [ /2, y ] + k f L pi + k + f 2k η,2k Lp[ 2,y 2] + η,2k L p[ 2 δ,y 2 δ ] + 2k f 2k+/2 f η,2k Lp[ 2,y 2] 2k f 4k+/2 η,2k L pi This is further simplified by Lemma 2.8 by takig η = /2 for large values of as T,k ftgt g; Lp[ { 2,y 2] C ω 2kf, /2, p, [ /2, y ] + k f L pi + ω 2k f, /2, p, [ /2, y ]. 3.2 The iductio hypothesis implies that for [c, d] a, b ω 2k f, /2, p, [c, d] = O α/2,. 3.2.

Iterates of modified Berstei type polyomials 349 This iduces, by Theorem 6..2, [2], ω 2k f, /2, p, [c, d] = O α/2,. 3.22 Icorporatig 3.2 ad 3.22 i 3.2, we obtai T,k ftgt g; Lp[ 2,y 2] = O α+/2,. This proves 3.4 ad hece the proof of the theorem follows. Ackowledgemets. The last author is thakful to the Coucill of Scietific ad Idustrial research, New Delhi, Idia for providig fiacial support to carry out the above work. The authors are etremely thakful to the referee for a very careful readig of the mauscript ad makig valuable commets. Refereces [] Agrawal, P.N., Gupta, V., O the iterative combiatio of Phillips operators, Bull. Ist. Math. Acad. Siica, 899, o. 4, 36-368. [2] Agrawal, P.N., Gupta V., Gairola, A.R., O iterative combiatio of modified Bersteitype polyomials, Georgia Math. J., 528, o. 4, 59-6. [3] Agrawal, P.N., Sigh, K.K., Gairola, A.R., L p-approimatio by iterates of Berstei- Durrmeyer type polyomials, It. J. Math. Aal., Ruse, 42, o. 9-2, 469-479. [4] Agrawal, P.N., Kasaa, H.S., O the iterative combiatios of Berstei polyomials, Demostratio Math., 7984, o. 3, 777-783. [5] Becker, M., Nessel, R.J., A elemetary approach to iverse approimatio theorems, J. Appro. Theory, 23978, o. 2, 99-3. [6] Beres, H., Loretz, G.G., Iverse theorems for Berstei polyomials, Idiaa Uiv. Math. J., 297/72, 693 78. [7] Dig, C., Cao, F., K-fuctioals ad multivariate Berstei polyomials, J. Appro. Theory, 5528, o. 2, 25-35. [8] Gawroski, W., Stadtmüller, U., Liear combiatios of iterated geeralized Berstei fuctios with a applicatio to desity estimatio, Acta Sci. Math., Szeged, 47984, o. -2, 25-22. [9] Goldberg, S., Meir, A., Miimum moduli of ordiary differetial operators, Proc. Lodo Math. Soc., 397, o. 23, - 5. [] Goska, H.H., Zhou, X.L., A global iverse theorem o simultaeous approimatio by Berstei-Durrmeyer operators, J. Appro. Theory, 6799, o. 3, 284-32. [] Goska, H.H., Zhou, X.L., Approimatio theorems for the iterated Boolea sums of Berstei operators, J. Comput. Appl. Math., 53994, o., 2-3. [2] Gupta, V., Maheshwari, P., Bezier variat of a ew Durrmeyer type operators, Riv. Mat. Uiv. Parma, 7, 223, 9-2. [3] Hewitt, E., Stromberg, K., Real ad Abstract Aalysis, Narosa Publishig House, New Delhi, Idia, 978. [4] Loretz, G.G., Berstei Polyomials, Uiversity of Toroto Press, Toroto, 953. [5] May, C.P., O Phillips operator, J. Approimatio Theory, 2977, o. 4, 35-332. [6] Micchelli, C.A., The saturatio class ad iterates of the Berstei polyomials, J. Approimatio Theory, 8973, -8.

35 T.A.K. Siha, P.N. Agrawal ad K.K. Sigh [7] Sevy, J.C., Covergece of iterated Boolea sums of simultaeous approimats, Calcolo 3993, o., 4-68. [8] Sevy, J.C., Lagrage ad least-squares polyomials as limits of liear combiatios of iterates of Berstei ad Durrmeyer polyomials, J. Appro. Theory, 8995, o. 2, 267-27. [9] Siha, T.A.K. et al., Iverse theorem for a iterative combiatio of Berstei- Durrmeyer polyomials, Stud. Uiv. Babeş-Bolyai Math., 5429, o. 4, 53-65. [2] Tima, A.F., Theory of Approimatio of Fuctios of a Real Variable Eglish Traslatio, Dover Publicatios Ic., New York, 994. [2] Wez, H.J., O the limits of liear combiatios of iterates of liear operators, J. Appro. Theory, 89997, o. 2, 29 237. T.A.K. Siha S. M. D. College, Departmet of Mathematics Poopoo, Pata-8323 Bihar, Idia e-mail: thakurashok22@gmail.com P.N. Agrawal Idia Istitute of Techology Roorkee Departmet of Mathematics Roorkee-247667 Uttarakhad, Idia e-mail: pa iitr@yahoo.co.i K.K. Sigh I.C.F.A.I. Uiversity, Faculty of Sciece & Techology Dehradu-24897 Uttarakhad, Idia e-mail: kksiitr.sigh@gmail.com