Lecture 20 Cosmology, Inflation, dark matter

Similar documents
MIT Exploring Black Holes

The Expanding Universe

Lecture 37 Cosmology [not on exam] January 16b, 2014

3. It is expanding: the galaxies are moving apart, accelerating slightly The mystery of Dark Energy

The Cosmological Principle

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift =

Testing the Big Bang Idea

INFLATIONARY COSMOLOGY. and the ACCELERATING UNIVERSE. Alan Guth, MIT

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW:

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging

CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?)

4.3 The accelerating universe and the distant future

Chapter 17 Cosmology

Homework 6 Name: Due Date: June 9, 2008

Inflation; the Concordance Model

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

OUSSEP Final Week. If we run out of time you can look at uploaded slides Pearson Education, Inc.

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe.

Inflationary Universe and. Quick survey about iclickers Review of Big Bang model of universe Review of Evidence for Big Bang Examining Inflation

Survey questions. Inflationary Universe and. Survey Questions. Survey questions. Survey questions

The Standard Big Bang What it is: Theory that the universe as we know it began billion years ago. (Latest estimate: 13:82 ± 0:05 billion years!)

Cosmology. Big Bang and Inflation

Chapter 18. Cosmology in the 21 st Century

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law

Astronomy 113. Dr. Joseph E. Pesce, Ph.D Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. The Big Bang & Matter. Olber s Paradox. Cosmology. Olber s Paradox. Assumptions 4/20/18

Final Exam Study Guide

Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3.

i>clicker Quiz #14 Which of the following statements is TRUE?

Lecture #24: Plan. Cosmology. Expansion of the Universe Olber s Paradox Birth of our Universe

Planetarium/Observing: the clock is ticking! Don t forget to fill out your Planetarium/ Observing impression online.

Astro-2: History of the Universe

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox

A100H Exploring the Universe: Big Bang Theory. Martin D. Weinberg UMass Astronomy

Lecture #25: Plan. Cosmology. The early Universe (cont d) The fate of our Universe The Great Unanswered Questions

The first 400,000 years

Galaxy A has a redshift of 0.3. Galaxy B has a redshift of 0.6. From this information and the existence of the Hubble Law you can conclude that

Origin of the Universe

The Conventional Big Bang Theory What it is: The theory that the universe as we know it began billion years ago. (Latest estimate: 13:8±0:05 bil

The Big Bang The Beginning of Time

Cosmology. Chapter 18. Cosmology. Observations of the Universe. Observations of the Universe. Motion of Galaxies. Cosmology

Astronomy 210 Final. Astronomy: The Big Picture. Outline

Assignments. Read all (secs ) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty

ASTR 101 General Astronomy: Stars & Galaxies

Modern Physics notes Spring 2005 Paul Fendley Lecture 38

Cosmology. An Analogy 11/28/2010. Cosmology Study of the origin, evolution and future of the Universe

Galaxies 626. Lecture 3: From the CMBR to the first star

Formation of the Universe. What evidence supports current scientific theory?

What is the evidence that Big Bang really occurred

The Cosmic Microwave Background

Energy Source for Active Galactic Nuclei

The Big Bang Theory PRESS Chung Wai Man Camus, Wong Lai Yin Rita, Kum Kit Ying Cathy, Yeung Shuet Wah Sarah, Yu Wai Sze Alice

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc.

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data.

A100 Exploring the Universe Big Bang Theory and the Early Universe. Martin D. Weinberg UMass Astronomy

The Concept of Inflation

The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments

5% of reality is all we have ever seen

The Standard Big Bang What it is: Theory that the universe as we know it began billion years ago. (Latest estimate: 13:82 ± 0:05 billion years!)

Cosmology: Building the Universe.

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

Expanding Universe. 1) Hubble s Law 2) Expanding Universe 3) Fate of the Universe. Final Exam will be held in Ruby Diamond Auditorium

Cosmology. Thornton and Rex, Ch. 16

Chapter 18. Cosmology. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Hubble s Law. Our goals for learning. What is Hubble s Law? How do distance measurements tell us the age of the universe?

Large Scale Structure in the Universe

Astronomy 122 Outline

Astronomy 150: Killer Skies Lecture 35, April 23

Astronomy 114. Lecture35:TheBigBang. Martin D. Weinberg. UMass/Astronomy Department

ASTR 101 General Astronomy: Stars & Galaxies

Cosmology: The History of the Universe

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model)

Modeling the Universe A Summary

Doppler Effect. Sound moving TOWARDS. Sound moving AWAY 9/22/2017. Occurs when the source of sound waves moves towards or away

FXA ρ 0 = 3(H 0 ) 2. UNIT G485 Module Universe Evolution. Candidates should be able to : age of the universe 1/H 0

Beginning of Universe

Chapter 22 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Birth of the Universe Pearson Education, Inc.

Astronomy 422. Lecture 20: Cosmic Microwave Background

The Beginning of the Universe 8/11/09. Astronomy 101

The Big Bang Theory was first proposed in the late 1920 s. This singularity was incredibly dense and hot.

Lecture 05. Cosmology. Part I

Astro-2: History of the Universe

The Search for the Complete History of the Cosmos. Neil Turok

Distances to Quasars. Quasars. The Luminosity Puzzle. Seyfert Galaxies. Seyfert galaxies have

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Dark Energy and the Accelerating Universe

Connecting Quarks to the Cosmos

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site.

Chapter 22 Back to the Beginning of Time

The Big Bang. Olber s Paradox. Hubble s Law. Why is the night sky dark? The Universe is expanding and We cannot see an infinite Universe

PHYSICS 107. Lecture 27 What s Next?

Cosmology. Jörn Wilms Department of Physics University of Warwick.

ASTR 1120 General Astronomy: Stars & Galaxies. OUR Universe: Accelerating Universe

COSMOLOGY The Universe what is its age and origin?

Introduction. How did the universe evolve to what it is today?

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Transcription:

The Nature of the Physical World November 19th, 2008 Lecture 20 Cosmology, Inflation, dark matter Arán García-Bellido 1

News Exam 2: good job! Ready for pick up after class or in my office Average: 74/100 (improved from 67/100 last time!) Everyone above 50/100 Read chapters in Hobson! No recitations next week Presentations Dec. Dec. Dec. Dec. 1: Free 3: Music 8: Quantum Computing, Great phys. 10: Fusion 1st come 1st served If you haven't done so, come talk to me before Thanksgiving I want to discuss outline, format, etc... 2

Light from distant sources emitted long ago: look back in time 3

4

Cosmology We assume the following: Homogeneity: matter and energy are evenly distributed on the largest scales Isotropy: the universe looks the same in all directions Universality: the physical laws that govern the universe are the same everywhere (and everywhen) Cosmological Principle: An observer anywhere in the universe sees approximately the same thing No place is special, no edge or center Big Bang theory Hubble: the universe is expanding Observation: all galaxies are receding from us due to this expansion (their recession is NOT due to their own motion) If the universe expanding now, it's logical to assume it was smaller before... all galaxies and stars come from a hot, highdensity plasma (soup of fundamental particles+energy) 5

Galaxies are being carried away Doppler effect Measure distance from Earth to galaxy by measuring how bright the galaxy is: supernova explosions have known brightness Measure the recession velocity by redshift of atomic spectral lines The same pattern of lines appears moved towards red part of the spectrum: the larger the shift, the higher the velocity It's not that the galaxies fly apart on their own: the Universe is expanding 6

Big Bang Big Bang is probably a very bad name: there is NO explosion into space It is space itself who is expanding! IMPORTANT! We cannot know what it is expanding into: all our measurements and what we know of the world is limited to THIS space! Observational tests: Galaxies receding Detect cosmic microwave background Pervasive radiation: the same in all directions in sky When the universe became transparent Perfect blackbody radiation at T=2.7 K Amount of light nuclei in intergalactic space Observations match expectations from Big Bang nucleosynthesis (t~3 min) Distribution, form, evolution of stars/galaxies Young stars less rich in heavy metals 7

Geometry of space Universe has no boundary or edge Infinite 1D object 1D object curved through a second dimension to meet itself OPEN: Total energy is positive Space is not curved into itself Sum of angles in triangle < 180 Universe will expand forever size Either it is infinite or curved through a 4th (or 5th) dimension time FLAT: Total energy is exactly zero Space is flat Sum of angles in triangle = 180 Universe will just barely expand to a stop: very special case! CLOSED: Total energy is negative Space is curved back into itself Sum of angles in triangle > 180 Universe will stop expanding and collapse into itself: Big Crunch 8

How big things look Flat Open: Looks Smaller Closed: Looks Bigger 9

Problems with the Big Bang Singularity problem All of the Universe at a point? yikes! Horizon problem Why is universe (CMB in particular) so smooth and isotropic on large scales? At t=400,000 years, only parts of the universe as large as 400,000 ly (around 1 in today's sky) could be causally connected, yet all have very similar Temperature: 2.7K? A million causally disconnected regions (no info/light can reach the others): how come they all agreed to have the same Temperature (to 1 part in 100,000)? Flatness problem Universe appears to be very close to flat now~1 0.01 1sec=1 10-16 inflation=1 10-60 Requires fine tuning of basic model Large scale structure problem How do galactic structures form in a perfectly homogeneous universe? 10

Solution: Cosmic Inflation (1979) Andrei Linde (Stanford) Alan Guth (MIT) Andy Albrecht (UC Davis) Paul Steinhardt (Princeton) Very-rapid, exponential expansion of the universe Occurs during interval t=10-37-10-32 s Universe expanded by a factor of 1040-10100 during this time! 11

Radius of universe as function of time Arny, Explorations, McGrawHill Does this rapid expansion imply a violation of relativity (speed greater than c)? NO! It is space itself that is expanding, rather than material particles moving apart at high speed in a fixed stationary space 12

Inflation in one minute Universe starts very small... perhaps as a tiny fluctuation in a spacetime foam: a billion times smaller than a single proton! An unstable field or particle (inflaton) fills the space of the fluctuation It is a very particular field: it consists of gravitational repulsion! This repulsion was the driving force behind the Big Bang: drove it into exponential expansion, doubling in size every 10 37 second or so! This field was unstable and it decayed (like a radioactive substance), ending inflation after about 10 35 second The decay released energy which produced ordinary particles, forming a hot, dense primordial soup At the end of inflation, the region destined to become the presently observed universe was about the size of a marble The primordial soup matches the assumed starting point of the standard Big Bang the standard Big Bang description takes over The universe continues to expand and cool to the present day 13

14

Inflation to the rescue Inflation solves the major problems with Big Bang cosmology Singularity problem Quantum fluctuation possibly in endless fractal-like stream of universes Horizon problem Universe starts out very small and causally connected: that's how it ends up with similar Temperature Flatness problem No matter how curved is space originally, blow it up large enough and it will look flat Inflation predicts a universe that is indistinguishable from flat Large scale structure problem The initial inhomogeneities are due to quantum fluctuations during the inflationary epoch: virtual particle pairs that formed would be separated by inflationary expansion before they could annihilate, creating uneven densities c Inhomogeneities were continually created, and then stretched to much larger scales: largest present-day structures (superclusters, voids, filaments) are the result of quantum fluctuations that occurred on submicroscopic scales! 15

Quantum physics on a cosmic scale! 16

Incredible new data in last 10 years Fluctuations in Temperature/color of the CMB (1 part in 100,000) COBE (1989-1993) Angular resolution: 7 Temperature sensitivity: 10-5 J.Matter & G. Smoot: Nobel prize 2006 WMAP (2001-present) Angular resolution: 15' COBE Temperature sensitivity: 3x10-6 Observations of supernovae in distant galaxies WMAP Supernova Cosmology Project High-z Universe is flat Expansion of the universe is accelerating 17

CMB anisotropies CMB: A picture of the universe when it was 400,000 years old The CMB spectrum is uniform at 2.7K, wherever you look in the sky If you look with more sensitive devices, you begin to see tiny differences of the order of 1 part in 100,000 in the Temperature/color They are the fluctuations that would give rise to the large scale structure we see today, as predicted by inflation! 18

Size of fluctuations geometry Size of fluctuations/structure in CMB is sensitive to the geometry of the universe Light comes to us from distance ~13.3 billion years, but the path of light depends on how spacetime is curved Look at angular size of fluctuations c f o Measure: f if space is flat o if space is open c if space is closed 19

Angular scale Power spectrum (size) of Temperature fluctuations is sensitive to different matter/energy components We can tell the density and rate of expansion in the early universe The exact mixture of material in the early Universe (baryons, neutrinos, dark matter), cosmological parameters (H0, vacuum energy) and initial perturbation spectrum, control the position and amplitude of these peaks and troughs 20

Standard model of particle physics Inflationary Big Bang model Much of the puzzle is in place... still some missing pieces 21

Dark matter Relate velocity in radial direction and force in orbits of stars around galaxies: 2 mv F= R 2 GMm mv GMm ; F= = 2 2 R R R Find that outer stars rotate too quickly for observed central mass Same finding in galactic clusters: galaxies are attracted to others far more than accounted for by the visible matter in the galaxies Require stronger gravitational force? Evidence for a new form of matter in the universe that interacts gravitationally but not via the other forces Does not emit or absorb light, for example! 22

More evidence for dark matter Gravitational lensing Visible matter is not enough Collisions of clusters Visible matter slows down because it interacts with visible matter (red) Dark matter sails through (blue) We just don't know what it is! May make up up to 80% of the mass of the Universe! 23

The cosmic pie Us: ~5% Dark matter ~25% Dark energy ~70% 95% of the universe is unknown! 24

Extras 25

26

27

How to measure distance to objects 28

Even if the Universe is infinite, the Observable Universe is finite Size=14 billion pc = 46 billion ly Horizon t h g i e L c. n x a Ma l Di st ve a r T You are here The Observable Universe 29

30