Solenoid valve Types CSV 2 - CSV 22 (NC) and solenoid coil

Similar documents
Solenoid valves Type EVUL

Solenoid valves Type EVR 2 g 40 NC/ NO New EVR 6 with Steel cover design

Solenoid valve Types EVR 2 - EVR 40

Direct-operated 2/2-way compact solenoid valves Type EV210A

Solenoid valves 2/2-way direct-operated type EV210A

4 Way Reversing Valve

Direct-operated 2/2-way solenoid valves Type EV210B

/2 way valves (solenoid actuated diaphragm with forced lifting) 1/4... 2

Thermostatic expansion valves TUA/TUAE

AIR CONDITIONER (SPLIT TYPE) SERVICE MANUAL

AIR CONDITIONING COMMERCIAL REFRIGERATION HEAT PUMP STANDARD PRODUCT CATALOGUE

High pressure sight glass (PS = 52 bar) Types SGP N, SGP I and SGP X

Installation guide 862 MIT / MIR

Pressure transmitters for industrial applications MBS 32 and MBS 33

Thermal-Magnetic Circuit Breaker 2210-S2...

Thermal-Magnetic Circuit Breaker 2210-S2...

MAKING MODERN LIVING POSSIBLE. Thermostatic expansion valve Type TUB/TUBE and TUC/TUCE REFRIGERATION AND AIR CONDITIONING.

Thermostatic expansion valves TUB/TUBE and TUC/TUCE

Thermal-Magnetic Circuit Breaker 2210-T2...

AIR CONDITIONING STANDARD COMMERCIAL REFRIGERATION HEAT PUMP PRODUCT CATALOGUE

Refrigeration. 05/04/2011 T.Al-Shemmeri 1

Thermal-Magnetic Circuit Breaker 2210-S2..

Thermal-Magnetic Circuit Breaker 2210-S2..

5SJ4...-.HG Circuit Breakers to IEC and UL 489

Thermal-Magnetic Circuit Breaker 2210-S2..

VD1 CLC. Small Valves DIN-range with a higher k v -value

2.12. Ex-Linear light fittings for fluorescent lamps - max. ambient temperature + 60 C - nllk W - 58 W for Zone 2 and 22

4/4-way servo solenoid directional control valves, directly operated, with electrical position feedback and on-board electronics (OBE)

Film Capacitors. EMI suppression capacitors. Date: June 2018

Pressure Measurement. Transmitters for basic requirements SITRANS P MPS (submersible sensor) Transmitter for hydrostatic level 2/27

Lamp and Control Panel (Lamp Panel)

PHOENIX CONTACT - 04/2016. Features

Eliminator Liquid line filter driers, Type DCL and DML

DATA SHEET POSITIVE TEMPERATURE COEFFICIENT AC/DC POWER SUPPLY SMD0603 series

DMP 331P. Industrial Pressure Transmitter. Process Connections With Flush Welded Stainless Steel Diaphragm

compact ejector, Series ECS with release valve with silencer with non-return valve, With filter vacuum switch: electronic 1x PNP and 1x analog

4.2. Ex-Ceiling light fittings AB 80 / AB 05 LED / AB 05 / AB 12 NAV 70. (Zone 1, 2, 21, 22)

MCB NB1-63H Miniature Circuit Breaker

Operating instructions Pressure sensor PN / / 2007

Non-Contact Safety Systems CMS

EX-EMERGENCY LIGHT FITTINGS

EX-CONTROL AND DISTRIBUTION SYSTEMS

METALLIZED POLYPROPYLENE AC FILTERING CAPACITORS

Safety Precautions WARNING If critical situations that could lead to user s death or serious injury is assumed by mishandling of the product.

THE ENERGY 68,SAVING TDVI. exible Combine Modular 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 HP 60, 62, 64, 66 HP

DMP 331Pi. Precision Pressure Transmitter. pressure ports and process connections with flush welded stainless steel diaphragm

v = m / s Thermal Flow Sensors TA with thin-film sensor element Probes Probe Guides Measuring Tubes

8 Installation Equipment

DMP 331. Industrial Pressure Transmitter for Low Pressure. Stainless Steel Sensor

Transmitters for basic requirements SITRANS P MPS (submersible sensor) Transmitter for hydrostatic level

M2 SERIES THERMOSTATS 0 F to 240 F, Narrow Differential, Hermetically Sealed ½

Check-Q-meter. Table of contents. Features. Functions. RE 27551/ /10 Replaces: Type FD

Operating instructions Magnetic-inductive flow meter SM6x04 SM7x04 SM8x04

DMP 331Pi. Precision Pressure Transmitter. pressure ports and process connections with flush welded stainless steel diaphragm

Varius SUMMARY OF MODELS OF HRC FUSE-LINKS

FLT5A FLT5A. abc. abc. Thermometer User Guide. Thermometer User Guide. Internet:

4.13. Ex-Floodlights of the series FMV LED / NSSFMV. (Zone 2, 22) service life and a high level of efficiency. NFMV floodlights for highpressure

FL ballasts Electronic fixed output. PC TC PRO sr 1/2x11 42 W PC PRO compact

AIR COOLED CONDENSING UNIT

BETA Protecting Miniature Circuit Breakers

ASPT Series. Multi-Position, Internal TXV. Air Handler 1½ to 5 Tons

Accumulators Virginia KMP Suction Line Accumulators

Low Drop Voltage Regulator TLE 4296

Pressure Measurement Single-range transmitters for general applications

Low Drop Voltage Regulator TLE

Brushless DC Variable Speed Compressor Technical Data Sheet

Table of Contents Pin-Configuration Selection Guide for HDE, HDS, & EFP

2-way proportional throttle valve for block installation

KM-70 Panel-mounting Thermostat

VRF Technical Data Book

PTF30 Series. Features. Ordering information. G 6 N N F8 (0 to 5 kgf/cm 2 ) PTF30

Installation Operation Commissioning Maintenance

Surface-mounting Thermostats ATH Type Series

4/3-way servo solenoid directional control valves with electrical position feedback (Lvdt DC/DC) (ruggedized design)

Brushless DC Variable Speed Compressor Technical Data Sheet

Sales: Malux Finland Oy, P.O.Box 69, FI Porvoo, Phone , Fax ,

Cooling Water Flow Regulator

Level Sensor PanCake PR 6251 and Mounting Kit PR 6051

Multifunctional Thermostatic Circulation Valve MTCV

BETA Protecting. Low-Voltage Fuse Systems. LV HRC fuse links. 3/36 Siemens ET B1 2008

v = 00,20 m/s Thermal Flow Sensors TA with thin-film sensor element Probes Probe guides Measuring tubes

Safety valve with unit approval type MV..X.., SV..X..

Method of Measuring Machinery Sound Within an Equipment Space

Low Drop Voltage Regulator TLE 4295

Ex-Floodlights of the series FMV LED / NFMV / NSSFMV. Stainless steel NSSFMV floodlights for particularly. in harsh environments

Turbine Meter TRZ 03 PRODUCT INFORMATION. Reliable Measurement of Gas

Single Phase Motors Technical Datasheets

Small Signal Fast Switching Diode

SINEAX VK 636 Programmable Temperature Transmitter with PROFIBUS-PA protocol

5 V/10 V Low Drop Voltage Regulator TLE 4266

TYPE EMC. Thermostatic Expansion Valve

HEAT CONTENT DECREASES U D R HEAT CONTENT INCREASESO. Btu/lb

Drive electronics pq12

AC axial compact fan

Data Sheet, Rev. 1.1, February 2008 TLE4294GV50. Low Drop Out Voltage Regulator. Automotive Power

Overload Relays. SIRIUS 3RU1 Thermal Overload Relays. 3RU11 for standard applications. 5/46 Siemens LV 1 AO 2011

SECTION 1 - WHAT IS A BTU METER? BTU's = Flow x ΔT Any ISTEC BTU Meter System consists of the following main components:

Air Cooler Industry AC-LN 1-7 / ACA-LN 2-7 / ACAF-LN 2-7

SINEAX VK 626 Programmable Temperature Transmitter for RTD and TC inputs, with HART protocol

4HP13 PRODUCT SPECIFICATIONS 13 SEER SPLIT SYSTEM HEAT PUMP WARRANTY

Transcription:

Data sheet Solenoid valve s CSV 2 - CSV 22 (NC) and solenoid coil CSV is a direct or servo-operated solenoid valve for liquid, suction, and hot gas lines with fluorinated refrigerants. CSV valves are for refrigeration, freezing, and air conditioning plants. Features y Designed for media temperatures up to 05 C / 22 F y Supplied as normally closed (NC) with de-energized coil y Compact construction with small dimensions, low weight for both valve and coil. y Simple and fast mounting of coil - clip-on / OFF DKRCC.PD.BB2.A3.02

Approvals y RoHS y Pressure Equipment Directive 97/23/EC (types CSV 2 ) Technical data Refrigerant R22, R34a, R404A, R507, R407C, and R290. For other refrigerants, contact Danfoss. Temperature of medium: -40 05 C / -40 22 F Maximum 30 C / 265 F during defrosting Note: CSV is not suitable for oil application. For detailed informations please contact Danfoss Special note for R290: the CSV 2/3/6 ignition risk is evaluated in accordance to ISO 549 and IEC 60335. See safety note on the bottom. Maximum working pressure 35 bar / 508 psig Rated capacity [KW] R22/R407C R34a R404A/R507 R290 Liquid CSV 2.92.86.36 2.24 5.76 5.58 4.09 6.72 0.36 0.05 7.35 2.09 CSV 0 28.78 27.9 20.43 CSV 5 49.88 48.38 35.4 CSV 20 95.92 93.04 68.0 CSV 22 5.0.64 8.72 Suction vapour CSV 2 0.2 0.6 0.9 0.27 0.62 0.49 0.58 0.82. 0.87.05.47 CSV 0 3.09 2.43 2.9 CSV 5 5.35 4.2 5.04 CSV 20 0.29 8.09 9.69 CSV 22 2.34 9.7.63 Hot gas CSV 2 0.94 0.69 0.74.05 2.82 2.08 2.22 3.4 5.08 3.75 3.99 5.66 CSV 0 4.2 0.4.09 CSV 5 24.47 8.05 9.22 CSV 20 47.06 34.7 36.96 CSV 22 56.46 4.64 3.05 Rated liquid and suction vapour capacity is based on: - evaporating temperature t e = -0 C - liquid temperature ahead of valve t l = 25 C - pressure drop in valve p = 0.5 bar Rated hot gas capacity is based on: - condensing temperature t c = 40 C - pressure drop across valve p = 0.8 bar - hot gas temperature t h = 65 C - subcooling of refrigerant t sub = 4 K The CSV2/3/6 can be applied on system with R290 as the working fluid. For countries where safety standards are not an indispensable part of the safety system, Danfoss recommends the installer gets a third party approval of any system containing flammable refrigerant. Note: Please follow specific selection criteria stated in the data sheet for this particular refrigerants. DKRCC.PD.BB2.A3.02 2

Ordering - ODF Connections (ODF) [in.] Min. Opening differential pressure with standard coil Δp Max. (=MOPD liquid ) K v m 3 / min Code no. CSV 2 4 0 26 0. 032B2040 6 0 26 0. 032B2000 Danfoss 32B0-CN-CSV 4 0.05 26 0.3 032B204 6 0.05 26 0.3 032B200 3 8 0.05 26 0.3 032B2042 0 0.05 26 0.3 032B2002 3 8 0.05 26 0.54 032B2043 0 0.05 26 0.54 032B2003 2 0.05 26 0.54 032B2044 Danfoss 32B04-CN-CSV CSV 0 CSV 5 2 0.05 26 0.54 032B2004 2 0.05 26.5 032B2045 2 0.05 26.5 032B2005 5 8 6 0.05 26.5 032B2006 5 8 6 0.05 26 2.6 032B2007 7 8 22 0.05 26 2.6 032B2008 CSV 20 CSV 22 7 8 22 0.05 26 5.0 032B2009 8 0.05 26 5.0 032B2050 28 0.05 26 5.0 032B200 8 0.05 26 6.0 032B205 28 0.05 26 6.0 032B20 3 8 35 0.05 26 6.0 032B202 ) For detailed MOPD, for media in gas form, please contact Danfoss. Ordering - flare Danfoss 32B0.02-CN-CSV Connections (flare) [in.] Min. Opening differential pressure with standard coil Δp Max. (=MOPD liquid ) K v m 3 /min Code no. CSV 2 4 0 26 0. 032B2030 4 0.05 26 0.3 032B203 3 8 0.05 26 0.3 032B2032 3 8 0.05 26 0.54 032B2033 2 0.05 26 0.54 032B2034 ) For detailed MOPD, for media in gas form, please contact Danfoss. DKRCC.PD.BB2.A3.02 3

Ordering Solenoid coil with DIN Terminal box IP65 Special note for R290 The 034Z204 is validated in accordance to ISO 549, IEC 60335 (ref. IEC/EN 60079-5). Ignition risk is evaluated in accordance to ISO 549 and IEC 60335 ( ref. IEC/EN 60079-5. See safety note on the bottom. Please make sure that there is no spark, arc on the spade connection during the application. If coils are below IPx5, they must be protected against ultraviolet, moisture and major impact, especially the connection of coils. Always install a fuse ahead of the coil to avoid short circuit. The coil should be used in area of not more than pollution degree 2. Use of socket cable with suitable mechanical lock function to connect with coils. Follow the installation guide to mount the coil correctly. DIN plug Power consumption [W] Frequency [Hz] Voltage [V AC] Code no. CSV 2 CSV 22 6 50 220 034Z204 ) ) The 034Z204 is exclusively for China market. The coil selection for other regions, please contact Danfoss. Danfoss 042N9040.0 Technical data Ambient temperature -20 55 C / -4 3 F The 034Z204 can be applied on system with R290 as the working fluid. For countries where safety standards are not an indispensable part of the safety system, Danfoss recommends the installer to get a third party approval of the system containing flammable refrigerant. Note that the 034Z204 has NOT been verified ATEX or IECEx or IEC 60079 series zone 2 compliant. This product is only validated for system in compliance with ISO549, IEC 60335 (ref. IEC/EN 60079-5). It is responsability of the user to verify such compliance. Improper use can cause explosion, fire, leakage potentially causing death, personal injury, or damage to property. Note: Please follow specific selection criteria stated in the data sheet for this particular refrigerants. DKRCC.PD.BB2.A3.02 4

Liquid capacity Liquid capacity Q e [kw] at pressure drop across valve p 0. 0.2 0.3 0.4 0.5 R22/R407C CSV 2.57 2.22 2.7 3.3 3.50 4.70 6.65 8.4 9.40 0.5 8.46.96 4.65 6.92 8.9 CSV 0 23.50 33.23 40.70 46.99 52.54 CSV 5 40.73 57.60 70.54 8.46 9.07 CSV 20 78.32 0.77 35.66 56.65 75.4 CSV 22 93.98 32.9 62.78 87.98 20.6 R34a CSV 2.52 2.5 2.63 3.04 3.40 4.56 6.45 7.89 9.2 0.9 8.20.60 4.2 6.4 8.35 CSV 0 22.79 32.23 39.47 45.58 50.96 CSV 5 39.50 55.87 68.42 79.0 88.33 CSV 20 75.97 07.44 3.58 5.94 69.87 CSV 22 9.6 28.92 57.89 82.32 203.84 Capacities are based on: liquid temperature t l = 25 C ahead of valve evaporating temperature t e = -0 C, superheat 0 K When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve / evaporator. When the corrected capacity is known, the selection can be made from the table. based on liquid temperature t l t l [ C] -0 0 0 5 20 25 30 35 40 45 50 R22/R407C.3.22.3.09.04.00 0.96 0.9 0.86 0.82 0.77 R34a.37.27.6..05.00 0.95 0.89 0.84 0.78 0.73 DKRCC.PD.BB2.A3.02 5

Liquid capacity Liquid capacity Q e [kw] at pressure drop across valve p 0. 0.2 0.3 0.4 0.5 R404a/R507 CSV 2..57.93 2.22 2.49 3.34 4.72 5.78 6.67 7.46 6.0 8.49 0.40 2.0 3.43 CSV 0 6.68 23.59 28.89 33.36 37.30 CSV 5 28.9 40.89 50.08 57.83 64.65 CSV 20 55.60 78.64 96.3.2 24.33 CSV 22 66.72 94.36 5.57 33.44 49.20 R290 CSV 2.83 2.59 3.7 3.66 4.09 5.49 7.76 9.5 0.97 2.27 9.87 3.96 7. 9.75 22.08 Capacities are based on: liquid temperature t l = 25 C ahead of valve evaporating temperature t e = -0 C, superheat 0 K When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve / evaporator. When the corrected capacity is known, the selection can be made from the table. based on liquid temperature t l t l [ C] -0 0 0 5 20 25 30 35 40 45 50 R404a/R507.50.36.22.4.07.00 0.93 0.85 0.78 0.70 0.62 R290.36.26.6..05 0.95 0.89 0.84 0.78 0.73 DKRCC.PD.BB2.A3.02 6

Capacity Suction p Suction vapour capacity Q e [kw] at evaporating temperature t e [ C] -40-30 -20-0 0 0 5 R22/R407C 0.0 0.08 0.0 0.3 0.7 0.2 0.25 0.28 CSV 2 0.5 0.09 0.2 0.6 0.2 0.26 0.3 0.34 0.20 0.0 0.4 0.9 0.24 0.29 0.36 0.39 0.0 0.23 0.3 0.40 0.5 0.63 0.76 0.84 0.5 0.28 0.37 0.49 0.62 0.77 0.93.02 0.20 0.3 0.42 0.56 0.7 0.88.07.8 0.0 0.42 0.56 0.73 0.92.3.38.5 0.5 0.50 0.67 0.88..38.68.84 0.20 0.55 0.76.00.27.58.93 2.2 0.0.7.56 2.02 2.54 3.4 3.82 4.20 CSV 0 0.5.38.87 2.44 3.09 3.83 4.67 5.2 0.20.54 2. 2.78 3.53 4.39 5.36 5.89 0.0 2.02 2.70 3.49 4.4 5.45 6.63 7.28 CSV 5 0.5 2.39 3.24 4.22 5.35 6.63 8.09 8.88 0.20 2.66 3.66 4.8 6.2 7.62 9.30 0.22 0.0 3.89 5.20 6.72 8.48 0.48 2.75 3.99 CSV 20 0.5 4.60 6.23 8.2 0.29 2.76 5.55 7.08 0.20 5.2 7.05 9.26.78 4.64 7.88 9.65 0.0 4.66 6.24 8.06 0.7 2.57 5.30 6.79 CSV 22 0.5 5.5 7.48 9.74 2.35 5.30 8.66 20.49 0.20 6.4 8.45.0 4.3 7.57 2.45 23.58 Capacities are based on: - liquid temperature t l = 25 C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop p across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. When sizing valves. the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve. When the corrected capacity is known, the selection can be made from the table. for evaporating temperature t e t l [ C] -40-30 -20-0 0 0 5 R22/R407C 0.52 0.66 0.82.00.20.43.56 DKRCC.PD.BB2.A3.02 7

Capacity Suction p Suction vapour capacity Q e [kw] at evaporating temperature t e [ C] -40-30 -20-0 0 0 5 R34a 0.0 0.06 0.08 0. 0.4 0.7 0.2 0.23 CSV 2 0.5 0.06 0.09 0.3 0.6 0.2 0.26 0.28 0.20 0.07 0.0 0.4 0.9 0.24 0.29 0.33 0.0 0.7 0.24 0.32 0.4 0.5 0.63 0.70 0.5 0.9 0.28 0.38 0.49 0.62 0.77 0.85 0.20 0.2 0.3 0.43 0.56 0.7 0.88 0.98 0.0 0.3 0.43 0.57 0.73 0.92.4.26 0.5 0.35 0.50 0.68 0.88.2.38.53 0.20 0.37 0.56 0.77.00.28.59.76 0.0 0.85.9.58 2.04 2.56 3.6 3.49 CSV 0 0.5 0.97.40.89 2.46 3.0 3.84 4.25 0.20.04.55 2.3 2.79 3.55 4.4 4.88 0.0.48 2.06 2.74 3.53 4.44 5.48 6.05 CSV 5 0.5.68 2.42 3.28 4.26 5.38 6.66 7.37 0.20.80 2.68 3.69 4.84 6.5 7.64 8.45 0.0 2.84 3.97 5.27 6.79 8.54 0.54.64 CSV 20 0.5 3.24 4.66 6.30 8.9 0.35 2.8 4.7 0.20 3.46 5.6 7.09 9.30.82 4.68 6.26 0.0 3.4 4.76 6.33 8.5 0.25 2.65 3.97 CSV 22 0.5 3.88 5.60 7.56 9.82 2.42 5.40 7.00 0.20 4.5 6.9 8.5.6 4.9 7.62 9.50 Capacities are based on - liquid temperature t l = 25 C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop p across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. When sizing valves. the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve. When the corrected capacity is known, the selection can be made from the table. for evaporating temperature t e t l [ C] -40-30 -20-0 0 0 5 R34a 0.45 0.6 0.79.00.25.53.69 DKRCC.PD.BB2.A3.02 8

Capacity Suction CSV 2 CSV 0 CSV 5 CSV 20 CSV 22 p Capacities are based on - liquid temperature t l = 25 C ahead of evaporator. Suction vapour capacity Q e [kw] at evaporating temperature t e [ C] -40-30 -20-0 0 0 5 R404a/R507 0.0 0.08 0.0 0.3 0.6 0.20 0.24 0.27 0.5 0.09 0.2 0.6 0.20 0.24 0.30 0.33 0.20 0.0 0.4 0.8 0.23 0.28 0.34 0.37 0.0 0.23 0.30 0.39 0.49 0.60 0.73 0.80 0.5 0.27 0.37 0.47 0.59 0.73 0.89 0.98 0.20 0.3 0.42 0.54 0.68 0.84.02.2 0.0 0.4 0.55 0.70 0.88.08.3.44 0.5 0.49 0.66 0.85.07.32.60.76 0.20 0.56 0.75 0.97.22.5.84 2.02 0.0.5.5.94 2.43 3.00 3.64 3.99 0.5.37.83 2.35 2.96 3.65 4.44 4.88 0.20.55 2.08 2.69 3.39 4.20 5. 5.6 0.0.99 2.63 3.36 4.22 5.20 6.3 6.92 0.5 2.38 3.7 4.08 5.3 6.33 7.70 8.45 0.20 2.68 3.60 4.66 5.88 7.28 8.86 9.73 0.0 3.83 5.05 6.47 8. 9.99 2.4 3.3 0.5 4.58 6.09 7.84 9.87 2.8 4.8 6.25 0.20 5.6 6.92 8.96.3 3.99 7.04 8.7 0.0 4.60 6.06 7.76 9.74.99 4.56 5.97 0.5 5.49 7.30 9.4.84 4.6 7.78 9.5 0.20 6.9 8.3 0.76 6.79 6.79 20.45 22.46 The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop p across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. When sizing valves. the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve. When the corrected capacity is known, the selection can be made from the table. for evaporating temperature t e t l [ C] -40-30 -20-0 0 0 5 R404a/R507 0.48 0.63 0.80.00.23.49.63 DKRCC.PD.BB2.A3.02 9

Capacity Suction p Suction vapour capacity Q e [kw] at evaporating temperature t e [ C] -40-30 -20-0 0 0 5 R290 0.0 0. 0.4 0.8 0.22 0.27 0.33 0.36 CSV 2 0.5 0.3 0.7 0.22 0.27 0.33 0.4 0.43 0.20 0.5 0.2 0.25 0.3 0.38 0.46 0.5 0.0 0.34 0.43 0.55 0.67 0.82 0.98.07 0.5 0.4 0.52 0.66 0.82 0.99.9.3 0.20 0.45 0.59 0.75 0.94.4.37.5 0.0 0.6 0.78 0.98.2.47.76.92 0.5 0.72 0.94.9.47.79 2.5 2.34 0.20 0.8.06.36.68 2.05 2.47 2.69 Capacities are based on: - liquid temperature t l = 25 C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop p across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. When sizing valves. the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve. When the corrected capacity is known, the selection can be made from the table. for evaporating temperature t e t l [ C] -40-30 -20-0 0 0 5 R290 0.5 0.65 0.82.00.2.44.57 DKRCC.PD.BB2.A3.02 0

Capacity Suction Hot gas defrosting With hot gas defrosting it is not normally possible to select a valve from condensing temperature t c and evaporating temperature t e. This is because the pressure in the evaporator as a rule quickly rises to a value near that of the condensing pressure. It remains at this value until the defrosting is finished. In most cases therefore, the valve will be selected from condensing temperature t c and pressure drop p across the valve. as shown in the example for heat recovery. Heat recovery The following is given: y Refrigerant = R22/R407C y Evaporating temperature t e = -30 C y Condensing temperature t c = 40 C y Hot gas temperature ahead of valve t h = 85 C y Heat recovery condenser yield Q h = 8 kw The capacity table for R22/R407C with t c = 40 C gives the capacity for an CSV 5 as.96 kw, when pressure drop p is 0.2 bar. The required capacity is calculated as : Qtable x fevaporator x fhot_temperature = Qh The correction factor for t e = -30 C is given in the table as 0.95. The correction for hot gas temperature t h = 85 C has been calculated as 4% which corresponds to a factor of.04. Qh must be corrected with factors found: With p = 0.2 bar is Qh =.96 x 0.95 x.04 =.82 kw. With p = 0. bar. Qh becomes 8.49 x 0.95 x.04 = 8.4 kw. A CSV 0 would also be able to give the required capacity, but with p at approx. 0.3 bar. The CSV 0 is therefore too small. The CSV 5 is big enough to provide sufficient capactiy at p of approx. 0. bar could be obtained. Result: An CSV 5 is the correct valve for the given conditions. DKRCC.PD.BB2.A3.02

Capacity Hot gas across valve p Hot gas capacity Qh [kw] Evaporating temp. t e = -0 C. Hot gas temp. t h = t c 25 C. Subcooling t sub = 4 K Condensing temperature t c [ C] 20 30 40 50 60 R34a 0. 0.23 0.25 0.26 0.26 0.26 0.2 0.32 0.34 0.36 0.37 0.37 CSV 2 0.3 0.39 0.42 0.44 0.45 0.45 0.4 0.45 0.48 0.50 0.52 0.5 0.8 0.60 0.66 0.69 0.72 0.72.6 0.77 0.87 0.93 0.97 0.99 0. 0.69 0.74 0.77 0.78 0.78 0.2 0.97.03.08.0.0 0.3.8.26.3.34.34 0.4.34.44.5.55.54 0.8.8.97 2.08 2.5 2.5.6 2.32 2.60 2.80 2.92 2.96 0..25.33.38.4.40 0.2.75.86.94.99.98 0.3 2.2 2.26 2.37 2.42 2.4 0.4 2.42 2.59 2.72 2.78 2.78 0.8 3.26 3.54 3.75 3.86 3.87.6 4.8 4.67 5.04 5.26 5.32 0. 3.47 3.69 3.84 3.92 3.90 0.2 4.85 5.7 5.40 5.5 5.49 CSV 0 0.3 5.88 6.28 6.57 6.72 6.70 0.4 6.7 7.20 7.55 7.73 7.7 0.8 9.06 9.85 0.4 0.73 0.75.6.60 2.98 3.99 4.6 4.78 An increase in hot gas temperature t h of 0 K, based on t h = t c 25 C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. for evaporating temperature t e t e [ C] -40-30 -20-0 0 0 5 R34a 0.88 0.92 0.96.00.04.08.09 DKRCC.PD.BB2.A3.02 2

Capacity Hot gas across valve p Hot gas capacity Qh [kw] Evaporating temp. t e = -0 C. Hot gas temp. t h = t c 25 C. Subcooling t sub =4 K Condensing temperature t c [ C] 20 30 40 50 60 R34a 0. 6.0 6.39 6.66 6.79 6.75 0.2 8.4 8.97 9.36 9.56 9.52 CSV 5 0.3 0.9 0.89.40.65.62 0.4.63 2.48 3.08 3.40 3.37 0.8 5.7 7.07 8.05 8.60 8.64.6 20. 22.50 24.26 25.33 25.62 0..57 2.29 2.80 3.06 2.99 0.2 6.8 7.24 8.00 8.38 8.30 CSV 20 0.3 9.59 20.95 2.9 22.4 22.34 0.4 22.37 23.99 25.5 25.76 25.70 0.8 30.2 32.82 34.7 35.77 35.85.6 38.68 43.27 46.64 48.70 49.27 0. 3.88 4.75 5.37 5.67 5.58 0.2 9.4 20.69 2.6 22.06 2.96 CSV 22 0.3 23.5 25.4 26.30 26.90 26.80 0.4 26.85 28.79 30.8 30.92 30.84 0.8 36.26 39.39 4.65 42.92 43.0.6 46.4 5.93 55.97 58.45 59.2 An increase in hot gas temperature t h of 0 K, based on t h = t c 25 C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. for evaporating temperature t e t e [ C] -40-30 -20-0 0 0 5 R34a 0.88 0.92 0.96.00.04.08.09 DKRCC.PD.BB2.A3.02 3

Capacity Hot gas across valve p Hot gas capacity Qh [kw] Evaporating temp. t e = -0 C. Hot gas temp. t h = t c 25 C. Subcooling t sub =4 K Condensing temperature t c [ C] 20 30 40 50 60 R404a/R507 0. 0.26 0.27 0.27 0.26 0.23 0.2 0.37 0.38 0.38 0.36 0.32 CSV 2 0.3 0.45 0.46 0.46 0.44 0.40 0.4 0.52 0.53 0.53 0.5 0.46 0.8 0.72 0.74 0.74 0.7 0.64.6 0.97.0.02 0.99 0.89 0. 0.79 0.8 0.80 0.77 0.69 0.2..4.3.08 0.97 0.3.36.39.38.32.9 0.4.56.59.59.52.37 0.8 2.5 2.22 2.22 2.3.93.6 2.9 3.03 3.06 2.96 2.68 0..42.45.44.38.24 0.2 2.00 2.05 2.03.95.75 0.3 2.44 2.50 2.48 2.38 2.4 0.4 2.80 2.87 2.86 2.74 2.47 0.8 3.88 3.99 3.99 3.84 3.47.6 5.24 5.46 5.50 5.33 4.83 0. 3.96 4.04 4.0 3.83 3.45 0.2 5.56 5.68 5.65 5.4 4.87 CSV 0 0.3 6.78 6.93 6.90 6.6 5.95 0.4 7.78 7.97 7.94 7.6 6.86 0.8 0.77.09.09 0.66 9.63.6 4.55 5.6 5.29 4.79 3.42 An increase in hot gas temperature t h of 0 K, based on t h = t c 25 C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. for evaporating temperature t e t e [ C] -40-30 -20-0 0 0 5 R404A/R507 0.86 0.9 0.96.00.04.08.0 DKRCC.PD.BB2.A3.02 4

Capacity Hot gas across valve p Hot gas capacity Qh [kw] Evaporating temp. t e = -0 C. Hot gas temp. t h = t c 25 C. Subcooling t sub =4 K Condensing temperature t c [ C] 20 30 40 50 60 R404a/R507 0. 6.86 7.00 6.95 6.64 5.98 0.2 9.65 9.85 9.79 9.37 8.44 CSV 5 0.3.75 2.02.96.45 0.3 0.4 3.49 3.82 3.76 3.9.89 0.8 8.66 9.23 9.22 8.48 6.69.6 25.2 26.28 26.50 25.64 23.27 0. 3.9 3.45 3.36 2.78.49 0.2 8.55 8.95 8.83 8.03 6.22 CSV 20 0.3 22.59 23. 22.99 22.03 9.83 0.4 25.95 26.58 26.47 25.37 22.86 0.8 35.89 36.97 36.96 35.55 32.0.6 48.49 50.55 50.96 49.3 44.74 0. 5.82 6.4 6.03 5.33 3.79 0.2 22.26 22.74 22.59 2.63 9.46 CSV 22 0.3 27. 27.73 27.59 26.43 23.80 0.4 3.4 3.89 3.75 30.45 27.43 0.8 43.07 44.36 44.35 42.65 38.52.6 58.8 60.65 6.6 59.8 53.69 An increase in hot gas temperature t h of 0 K, based on t h = t c 25 C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. for evaporating temperature t e t e [ C] -40-30 -20-0 0 0 5 R404A/R507 0.86 0.9 0.96.00.04.08.0 DKRCC.PD.BB2.A3.02 5

Capacity Hot gas across valve p Hot gas capacity Qh [kw] Evaporating temp. t e = -0 C. Hot gas temp. t h = t c 25 C. Subcooling t sub = 4 K Condensing temperature t c [ C] 20 30 40 50 60 R22/R407C 0. 0.3 0.33 0.34 0.34 0.34 0.2 0.44 0.46 0.48 0.48 0.48 CSV 2 0.3 0.54 0.57 0.59 0.59 0.58 0.4 0.62 0.65 0.67 0.68 0.67 0.8 0.85 0.9 0.94 0.96 0.94.6.5.24.30.33.3 0. 0.94 0.99.02.03.0 0.2.32.39.44.45.43 0.3.6.70.76.78.75 0.4.85.95 2.02 2.05 2.02 0.8 2.56 2.72 2.82 2.87 2.83.6 3.45 3.7 3.89 3.98 3.94 0..69.78.84.86.82 0.2 2.38 2.5 2.59 2.62 2.57 0.3 2.90 3.06 3.6 3.20 3.5 0.4 3.33 3.52 3.64 3.69 3.63 0.8 4.60 4.89 5.08 5.6 5.09.6 6.20 6.68 7.00 7.6 7.0 0. 4.70 4.94 5.0 5.6 5.07 0.2 6.6 6.96 7.20 7.27 7.5 CSV 0 0.3 8.05 8.49 8.78 8.89 8.74 0.4 9.25 9.77 0. 0.24 0.08 0.8 2.78 3.58 4.2 4.34 4.5.6 7.23 8.54 9.45 9.89 9.7 An increase in hot gas temperature t h of 0 K, based on t h = t c 25 C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. for evaporating temperature t e t e [ C] -40-30 -20-0 0 0 5 R22/R407C 0.92 0.95 0.98.00.02.04.05 DKRCC.PD.BB2.A3.02 6

Capacity Hot gas across valve p Hot gas capacity Qh [kw] Evaporating temp. t e = -0 C. Hot gas temp. t h = t c 25 C. Subcooling t sub = 4 K Condensing temperature t c [ C] 20 30 40 50 60 R22/R407C 0. 8.5 8.57 8.85 8.94 8.78 0.2.46 2.07 2.47 2.6 2.40 CSV 5 0.3 3.96 4.72 5.23 5.4 5.6 0.4 6.03 6.93 7.53 7.75 7.47 0.8 22.5 23.53 24.47 24.86 24.52.6 29.87 32.4 33.72 34.47 34.7 0. 5.67 6.48 7.0 7.9 6.89 0.2 22.04 23.2 23.98 24.25 23.84 CSV 20 0.3 26.84 28.3 29.28 29.63 29.5 0.4 30.82 32.55 33.7 34.3 33.59 0.8 42.60 45.26 47.06 47.80 47.6.6 57.44 6.8 64.84 66.29 65.70 0. 8.8 9.77 20.42 20.62 20.27 0.2 26.45 27.85 28.78 29.0 28.6 CSV 22 0.3 32.2 33.97 35.4 35.55 34.98 0.4 36.98 39.06 40.44 40.95 40.3 0.8 5.2 54.3 56.48 57.36 56.59.6 68.93 74.7 77.8 79.54 78.84 An increase in hot gas temperature t h of 0 K, based on t h = t c 25 C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. for evaporating temperature t e t e [ C] -40-30 -20-0 0 0 5 R22/R407C 0.92 0.95 0.98.00.02.04.05 DKRCC.PD.BB2.A3.02 7

Capacity Hot gas across valve p Hot gas capacity Qh [kw] Evaporating temp. t e = -0 C. Hot gas temp. t h = t c 25 C. Subcooling t sub = 4 K Condensing temperature t c [ C] 20 30 40 50 60 R290 0. 0.35 0.36 0.37 0.36 0.35 0.2 0.49 0.5 0.5 0.5 0.49 CSV 2 0.3 0.6 0.62 0.63 0.62 0.6 0.4 0.69 0.7 0.72 0.72 0.69 0.8 0.94 0.98 0.96.6.26.33.37.37.33 0..05.08..08.04 0.2.48.52.54.53.47 0.3.8.86.88.86.79 0.4 2.06 2.3 2.6 2.5 2.07 0.8 2.83 2.95 3.0 2.99 2.89.6 3.77 3.99 4. 4.2 4 0..89.95.97.95.87 0.2 2.66 2.74 2.78 2.75 2.64 0.3 3.24 3.34 3.39 3.36 3.23 0.4 3.7 3.84 3.9 3.86 3.72 0.8 5. 5.3 5.42 5.39 5.2.6 6.78 7.7 7.4 7.42 7.2 An increase in hot gas temperature t h of 0 K, based on t h = t c 25 C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. for evaporating temperature t e t e [ C] -40-30 -20-0 0 0 5 R290 0.88 0.92 0.96.00.04.07.09 DKRCC.PD.BB2.A3.02 8

Dimensions and weights [kg] 45 L L2 H B L CSV 2 CSV 0 CSV 22 Connection (ODF) [in] B H L L L2 Weight [Kg] CSV 2 4 6 9 56 82 34 0. 4 6 9 65 92 34 0. 3 8 0 9 65 96 34 0. CSV 0 CSV 5 3 8 0 9 65 96 34 0. 2 2 9 65 2 34 0. 2 2 46 73 42 50 34 0.2 5 8 6 46 73 42 50 34 0.2 5 8 6 46 74 67 62 34 0.4 7 8 22 46 76 67 62 34 0.4 CSV 20 7 8 22 53 82 77 64 34 0.6 8 28 53 84 96 74 34 0.6 CSV 22 8 28 62 87 240 9 34 0.9 3 8 35 62 89 240 9 34 0.9 Coil 0. DKRCC.PD.BB2.A3.02 9

Dimensions and weights [kg] Danfoss 32B0005 H2 H H3 L Ø5.2 C ØB Connection (flare) [in] B H L C H H2 H3 Weight [Kg] CSV 2 4 6 9 63 58 3 49 2 7.5 0.085 4 6 9 69 58 3 55 2 7.5 0.096 3 8 0 9 69 76 5 54 3 8.5 0.28 3 8 0 9 70 76 5 55 3 8.5 0.28 2 2 9 70 76 5 55 3 8.5 0.37 DKRCC.PD.BB2.A3.02 20