Naka-Gun, Ibaraki, , Japan

Size: px
Start display at page:

Download "Naka-Gun, Ibaraki, , Japan"

Transcription

1 Examination of Atmospheric Dispersion Model s Performance - Comparison with the Monitoring Data under the Normal Operation of the Tokai Reprocessing Plant - M. Takeyasu 1, M. Nakano 1, N. Miyagawa 1, M. Takeishi 1 1 Tokai Works, Japan Nuclear Cycle Development Institute, 4-33, Muramatsu, Tokai-Mura, Naka-Gun, Ibaraki, , Japan take@tokai.jnc.go.jp Abstract. The computer system named SIERRA-II (Simulation Code (II) for Emergency Dose by Released Radioactive Substances) is that for nuclear operators to calculate a maximum environmental dose when nuclear accident happens. This system is based on the computer codes named EXPRESS (Exact Preparedness Supporting System) which solves numerically the advection and diffusion processes of particles which represented released radioactivity. One of the main modification points of SIERRA-II from EXPRESS is that the vertical diffusion coefficient is derived from Pasquill-Gifford chart in accordance with downwind distance. In this report, the examination of SIERRA-II was performed by using the monitoring data of ambient -ray dose rate around the Tokai Reprocessing Plant under its normal operation. The observed fluctuation of dose rate was simulated well. From the results of statistical measures of the performance examination, the calculation by SIERRA-II was somewhat under-estimation, and agreements within a factor of 2 and 5 were 30% and 51%, respectively. 1. Introduction After the JCO criticality accident happened in Japan in September 30 in 1999, the detail information of the accident of nuclear facility became more important than before which nuclear operators have to report to the central and local governments for deciding an effective emergency response plan[1]. As one of the information, there are predicted environmental doses including a maximum dose. For predicting a maximum environmental dose, it is important to obtain the spatially detailed distribution of dose around the facility site boundary, because a maximum dose point due to -cloud normally appears less than a few kilometers of the facility. In and around the site boundary, ambient -ray dose rate is measured at monitoring-stations(st) or monitoring-posts(p)[2]. Because of the limitation of the number of ST and P, monitoring data should be interpolated and accumulated for obtaining a maximum dose. Furthermore, a prediction of environmental dose may

2 be needed, although the effluent monitoring data is not yet obtained before the release from the dtack. In Tokai Works of Japan Nuclear Cycle Development Institute (JNC Tokai Works), The computer system named SMAP(Simulation and Mapping System for Emergency Environmental Effects) was developed in 1997 for calculating environmental dose in an emergency[3]. By SMAP, we can calculate air concentration of released radioactivity, based on a puff model. This system has been used for calculating the atmosphere dispersion of radioactive noble gas released when JCO criticality accident happened in 1999, and was useful for explaining the temporal variation of ambient -ray dose rate observed at ST and P of JNC Tokai Works. Besides SMAP, the new calculation system named SIERRA-II (Simulation code (II) for Emergency dose by Released Radioactive substances) was developed which solves numerically the advection and diffusion processes of particles which represented radioactivity released to the atmosphere[4,5]. By this system, we can calculate dispersion of radioactivity on the complicated topography more in detail than SMAP. We have established SIERRA-II for the facilities of JNC. In this report, the outline of SIERRA-II for JNC Tokai works was described, then the examination of SIERRA-II was performed by using the monitoring data of ambient -ray dose rate around the Tokai Reprocessing Plant(TRP) under its normal operation. 2. Outline of SIERRA-II 2.1. Functions In SIERRA-II, the maximum environmental dose is calculated when an accident happens on the facility in JNC Tokai Works. For this function, SIERRA-II acquires on-line meteorological and effluent monitoring data, then calculates and outputs a real-time environmental dose distribution with simple and rapid computer operation. Main functions of SIERRA-II are as follows: (1) Objective facilities are the nuclear fuel cycle facilities inside JNC Tokai Works. For the main facilities such as TRP, their stack data such as its hight were set beforehand. (2) The objective area is that of 40km in horizontal direction and 400m in vertical direction around JNC Tokai Works, the Oarai Engineering Center (JNC OEC) located about 20 km south of the Tokai works is included. The grid resolution is 1.25km in horizontal direction and 20m in vertical direction. For the area of 4km in horizontal direction around Tokai Works where a maximum dose point may appear, the grid resolution in horizontal direction is 50m by the

3 nesting function[6], in order to calculating a spatially detailed dose distribution. (3) The objective period is from a past arbitrary time to the time of 48 h from the present. Time resolution is 10 min in the past and 1 h in the future. (4) Input data are on-line local meteorological observation data based on the guideline of Japan Nuclear Safety Commission[7] and on-line effluent monitor data, both of which are processed every 10 min by the telemetering systems in JNC Tokai Works and JNC OEC. For predicting dose, it can be used a local meteorological data of every 1 h which is predicted by the atmospheric dynamic model of Japan Weather Association[8]. (5) Output data are vector plots of wind field, contour maps and external and internal accumulated doses. The objectives of contour map are air concentration, external and internal dose rates and so on. (6) There are three calculation modes, that is, real-time calculation every 10 min, re-calculation every 10 min for a past arbitrary period by using on-line observed data, and prediction calculation every 1 h for up to 48 h from the present by using the predicted data. (7) We operate SIERRA-II on a Windows PC. Introduction of GUI(graphical user interface) makes it simple and easy that operations of the system such as the calculation condition setting, the calculation execution and the output condition setting. The data such as topographic data is set beforehand as a database Models for wind field, atmospheric dispersion and dose calculation The models of SIERRA-II for wind field, atmospheric dispersion and dose calculation were based on the computer codes, EXPRESS (Exact Preparedness Supporting System)[9]. In EXPRESS, it is calculated that 3-dimensional mass-consistent wind field and the atmospheric dispersion of radioactivity based on a random-walk method. In SIERRA-II, the same calculation procedure is performed with on-line local meteorological observation data, local meteorological prediction data, on-line effluent monitor data and topographic data, as shown in Fig.1. The main modification points of SIERRA-II from EXPRESS are the followings: (1) In EXPRESS, the horizontal and vertical diffusion coefficients of particles are derived from Pasquill-Gifford chart[10]. The longer the downwind distance is, the larger the vertical diffusion coefficient is. The vertical diffusion coefficient saturates at about 2 km downwind in the neutral and stable meteorological conditions. In EXPRESS, the saturated values are employed in spite of downwind distance, because this employment makes it possible that three thermally stratified vertical layers can be considered. But the input data in SIERRA-II is only for one thermally stratified vertical layer above the ground. And the saturated values employed

4 On-line local meteorological observation data Local meteorological prediction data Calculation of three-dimensional local meteorological field with the nested grid system Topographic data Three-dimensional local meteorological data in the nested grid system On-line effluent monitor data Calculation of atmospheric dispersion of radionuclides in the nested grid system Air concentration, radiological doses FIG.1. Calculation procedure of SIERRA-II. in EXPRESS are too large for SIERRA-II, because the main objective domain of SIERRA-II is around the site boundary which is several hundred meters of a facility. In SIERRA-II, the coefficient was derived from Pasquill-Gifford chart in accordance with downwind distance. A particle at the position of (x t, y t, z t ) at the time t moves to the position of (x t+ t, y t+ t, z t+ t ) when the time t passes, according to the following equations: [ 0.5,0.5] [ 0.5,0.5] 1/ 2 xt + t = xt + u t + (24K t) (1) 1/ 2 yt + t = yt + v t + (24K t) (2) 1/ 2 Zt+ t = Zt + w t ± ( 2K t) (3) where (u, v, w) wind velocity at the particle position (m/s); K diffusion coefficient of the particle (m 2 /s); [-0.5, 0.5] uniform random number from -0.5 to 0.5. The value of K is obtained from the following equation: 2 1 dσ K = (4) 2 dt

5 where standard deviation of the plume distribution. The value of is derived from Pasquill-Gifford chart. (2) To calculate with high resolution in space around the facility and to shorten calculation time, the nesting function was employed. By this function, the site boundary lies in the small-scale domain with the finer grid which is nested in the larger domain with larger grid. 3. Performance examination of SIERRA-II 3.1. Measurement of ambient -ray dose rate around the TRP Around the TRP, there are two monitoring stations(st-1 and ST-2) located at the distance of about 0.45 km, and eight monitoring posts(from P-1 to P-8) located at the distance of 0.3 to 1 km of the stack of the TRP (about 100m high above the sea level), shown in Fig.2. At ST and P, ambient -ray dose rate are continuously measured by 2 2 energy compensated NaI(Tl) scintillation detector (BG level is from 30 to 40 ngy/h). In 2003, the TRP was operated from September 17 to December 3. Figure 3 shows an example of temporal increase of dose rate, which was observed in October 2 in Figure 3 also shows the discharge rate of 85 Kr and wind direction. In Fig.3, 85 Kr was discharged at the rate of more than 1 P-1 P-2 ST-1 P-3 P-5 stack P-7 ST-2 P-4 P-8 P-6 FIG.2. Locations of monitoring stations and monitoring posts inside the Tokai works (ST : monitoring station, P : monitoring post).

6 80 70 W NW NNW NW 5.E+04 4.E+04 Dose rate (ngy/h) P-8 P-4 3.E+04 2.E+04 Discharge rate of 85 Kr(GBq/h) 1.E E+00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 hour 2003/10/2 FIG.3. An example of temporal increase of dose rate GBq/h from 15:30 to 16:30 when wind blew from northwest to north-northwest, and the increases were observed at P-8 and P-4 which were located on the downwind direction of the stack Comparison between calculation and observation The dose rate calculated by SIERRA-II was compared with the observed one. An example of these results is shown in Fig.4, where the observed dose rate is an additional dose rate due to the discharge of 85 Kr. In Fig.4, relatively large increase of dose rate was observed at ST-1 from 10:00 to 11:00 in November 5 in The observed fluctuation of dose rate was simulated well by SIERRA-II with a factor of 2. In Fig.4, the calculation result was also shown when the saturated value of the vertical diffusion coefficient which was derived from the Pasquill-Gifford chart was employed in spite of downwind distance, as the same manner as EXPRESS. The result was smaller Dose rate (ngy/h) Observation Calculation(a) Calculation(b) 0 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14: /11/5 FIG.4. Comparison between calculated and observed dose rates; calculation(a) is the result of SIERRA-II, calculation(b) is that at the case of using the vertical diffusion coefficient derived by the same manner as EXPRESS. hour

7 100 R=5 R=2 R=1/2 R=1/5 Calculated dose rate (ngy/h) Observed dose rate (ngy/h) FIG.5. Scatter plot of calculated and observed dose rate. than that of SIERRA-II, because the atmospheric dispersion was larger than that in SIERRA-II due to the difference of the vertical diffusion coefficient. Figure 5 shows the scatter plot of calculated and observed dose rates. In Fig.5, the point indicated the calculated dose rate when the increase of dose rate was observed meaningfully, or the observed dose rate when the increase of dose rate more than 0.1 ngy/h was calculated. The observed to calculated ratios are shown by lines indicated letter R. The points on each axis indicate the calculated or the observed values less than 0.1 ngy/h. We examined the performance of SIERRA-II by using statistical measures. As statistical measures, we employed mean fraction bias, FA2 and FA5[11]. The value of mean fraction bias ranges from -2.0 (extreme over-estimation) and +2.0 (extreme under-estimation). FA2 and FA5 mean the factor of agreement of 2 and 5, respectively. Mean fraction bias is defined by the following equation: Mean fraction C o C C bias = (5) 0.5( C o + C C ) where C mean value of observed dose rate (ngy/h); o C mean value of calculated dose rate (ngy/h). c

8 Table 1 shows the results of statistical measures of the performance examination. From Table 1, the calculation by SIERRA-II was somewhat under-estimation, and the agreements within factor of 2 and 5 occurred in 30% and 51% of all observation data, respectively. Table I. Results of the performance examination of SIERRA-II. Mean fraction bias FA2 FA Conclusion The computer system named SIERRA-II was developed for nuclear operators to calculate a maximum environmental dose when nuclear accident happens. The examination of SIERRA-II was performed by using the monitoring data of ambient -ray dose rate around the Tokai Reprocessing Plant under its normal operation. The observed fluctuation of dose rate was simulated well. From the results of statistical measures of the performance examination, the calculation by SIERRA-II was somewhat under-estimation, and the agreements within factor of 2 and 5 occurred in 30% and 51% of all observation data, respectively. 5. Acknowledgment We thank Dr. Takao Iida of Nagoya University for his very useful comments, and Mr. Asao Yamamoto and Mr. Yoichi Yatake of Hitachi Engineering Co. Ltd. for developing SIERRA-II. REFERENCES 1. Japan nuclear safety commission, Nuclear emergency preparedness in the vicinity of nuclear facilities, (in Japanese), partly revised on November 2002, (1980). 2. Japan nuclear safety commission, Guideline of environmental radiation monitoring, (in Japanese), partly revised on March 2001, (1989). 3. Takeyasu, M., Shimizu, T., Suto, T., Katagiri, H., Evaluation of Time Variation of Radionuclides Released in JCO Criticality Accident, 2000 Annual Meeting of the At. Energy Soc. Jpn., (in Japanese), A16, Matsuyama, Japan, March, (2000). 4. Takeyasu, M., Takeishi, M., Real-time Simulation of Environmental Dose in the Normal Operation of Tokai Reprocessing Plant by Dose Evaluation Computer Code (SIERRA-II), AOCRP-1, OP 6C-3, Seoul, Korea, Oct., (2002). 5. Miyauchi, K., et al., Development of atmospheric dispersion prediction system for emergency

9 environmental monitoring, (in Japanese), JNC TJ , March, (2000). 6. Yamada, T., Bunker, S., Development of nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation, J. Applied Meteorology, 27, , (1988). 7. Japan Nuclear Safety Commission, Meteorological Guideline for the Safety Assessment of Nuclear Power Reactor, (in Japanese), partly revised in March 2001, (1982). 8. Nakanishi, M., Large-eddy simulation of radiation fog, Boundary-Layer Meteorology, 94, , (2000). 9. Chino, M., Manual of a Suite of Computer Codes, EXPRESS, JAERI-M , (1992). 10. Pasquill, F., Atmospheric Diffusion, Ellis Horwood, (1977). 11. Cooper, J. R., Randle, K., Sokhi, R. S., Radioactive Releases in the Environment: Impact and Assessment, John Willy and Sons, LTD., (2003).

Analysis on the formation process of high dose rate zone in the northwest direction of the Fukushima Daiichi nuclear power plant

Analysis on the formation process of high dose rate zone in the northwest direction of the Fukushima Daiichi nuclear power plant Analysis on the formation process of high dose rate zone in the northwest direction of the Fukushima Daiichi nuclear power plant Jun. 13, 2011 Research group of Japan Atomic Energy Agency (JAEA) has analyzed

More information

A Study of Released Radionuclide in the Coastal Area from a Discharge Pipe of Nuclear Fuel Reprocessing Plant in Rokkasho, Aomori, Japan

A Study of Released Radionuclide in the Coastal Area from a Discharge Pipe of Nuclear Fuel Reprocessing Plant in Rokkasho, Aomori, Japan Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.682-687 (2011) ARTICLE A Study of Released Radionuclide in the Coastal Area from a Discharge Pipe of Nuclear Fuel Reprocessing Plant in Rokkasho,

More information

2. REGIONAL DISPERSION

2. REGIONAL DISPERSION Real-time Transport and Dispersion from Illinois Nuclear Power Plants Thomas E. Bellinger, CCM Illinois Emergency Management Agency Springfield, Illinois 1. INTRODUCTION Meteorological data routinely used

More information

IMPACT OF WEATHER CHANGES ON TVA NUCLEAR PLANT CHI/Q (χ/q) Kenneth G. Wastrack Doyle E. Pittman Jennifer M. Call Tennessee Valley Authority

IMPACT OF WEATHER CHANGES ON TVA NUCLEAR PLANT CHI/Q (χ/q) Kenneth G. Wastrack Doyle E. Pittman Jennifer M. Call Tennessee Valley Authority IMPACT OF WEATHER CHANGES ON TVA NUCLEAR PLANT CHI/Q (χ/q) Kenneth G. Wastrack Doyle E. Pittman Jennifer M. Call Tennessee Valley Authority The TVA nuclear plants, like most others in the United States,

More information

5S: Atmospheric Diffusion Model

5S: Atmospheric Diffusion Model 1. Physical model experiment (wind tunnel experiment case) Wind tunnel experiment is one of the proven methods for the estimation of atmospheric diffusion. The topography/ buildings models are set up into

More information

Modeling the Physical Processes that Impact the Fate and Fallout of Radioactive Materials

Modeling the Physical Processes that Impact the Fate and Fallout of Radioactive Materials Modeling the Physical Processes that Impact the Fate and Fallout of Radioactive Materials J.V. Ramsdell, Jr. Radiological Science and Engineering Group Pacific Northwest National Laboratory Richland, Washington

More information

Radioactive effluent releases from Rokkasho Reprocessing Plant (1) - Gaseous effluent -

Radioactive effluent releases from Rokkasho Reprocessing Plant (1) - Gaseous effluent - Radioactive effluent releases from Rokkasho Reprocessing Plant (1) - Gaseous effluent - K.Anzai, S.Keta, M.Kano *, N.Ishihara, T.Moriyama, Y.Okamura K.Ogaki, K.Noda a a Reprocessing Business Division,

More information

Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3

Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3 Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3 Yoshitaka Yoshida, Itsuro Kimura Institute of Nuclear Technology, Institute

More information

Estimation of accidental environmental release based on containment measurements

Estimation of accidental environmental release based on containment measurements Estimation of accidental environmental release based on containment measurements Péter Szántó, Sándor Deme, Edit Láng, Istvan Németh, Tamás Pázmándi Hungarian Academy of Sciences Centre for Energy Research,

More information

New Technical Functions for WSPEEDI: Worldwide Version of System for Prediction of Environmental Emergency Dose Information

New Technical Functions for WSPEEDI: Worldwide Version of System for Prediction of Environmental Emergency Dose Information New Technical Functions for WSPEEDI: Worldwide Version of System for Prediction of Environmental Emergency Dose Information M. Chino, H Nagai, A Furuno, H. Kitabata, H. Yamazawa Japan Atomic Energy Research

More information

Dr. Ryohji Ohba (Nuclear Safety Research Association )

Dr. Ryohji Ohba (Nuclear Safety Research Association ) Survey of estimation method for amount of radioactive materials emitted from nuclear power station during severe accident Dr. Ryohji Ohba (Nuclear Safety Research Association ) Funded by Ministry of Education

More information

Air Pollution Meteorology

Air Pollution Meteorology Air Pollution Meteorology Government Pilots Utilities Public Farmers Severe Weather Storm / Hurricane Frost / Freeze Significant Weather Fog / Haze / Cloud Precipitation High Resolution Weather & Dispersion

More information

Numerical Simulation System for Environmental Studies: SPEEDI-MP

Numerical Simulation System for Environmental Studies: SPEEDI-MP System for Prediction of Environmental Emergency Dose Information Multi-model Package 1/18 Numerical Simulation System for Environmental Studies: SPEEDI-MP Research Group for Environmental Science, Japan

More information

Department of Meteorology University of Nairobi. Laboratory Manual. Micrometeorology and Air pollution SMR 407. Prof. Nzioka John Muthama

Department of Meteorology University of Nairobi. Laboratory Manual. Micrometeorology and Air pollution SMR 407. Prof. Nzioka John Muthama Department of Meteorology University of Nairobi Laboratory Manual Micrometeorology and Air pollution SMR 407 Prof. Nioka John Muthama Signature Date December 04 Version Lab : Introduction to the operations

More information

Information (17:30), January 11, 2019

Information (17:30), January 11, 2019 Information (17:30), January 11, 2019 To All Missions (Embassies, Consular posts and International Organizations in Japan) Report on the discharge record and the seawater monitoring results at Fukushima

More information

17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016, Budapest, Hungary

17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016, Budapest, Hungary 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016, Budapest, Hungary USING METEOROLOGICAL ENSEMBLES FOR ATMOSPHERIC DISPERSION

More information

OFF-SITE AIR SAMPLING ANALYSIS AND NORTH KOREAN NUCLEAR TEST

OFF-SITE AIR SAMPLING ANALYSIS AND NORTH KOREAN NUCLEAR TEST OFF-SITE AIR SAMPLING ANALYSIS AND NORTH KOREAN NUCLEAR TEST Hui Zhang Kennedy School of Government Harvard University 79 John F. Kennedy Street Cambridge, MA 02138 ABSTRACT While some people in the international

More information

Results of the (i) Fifth Airborne Monitoring Survey and (ii) Airborne Monitoring Survey Outside 80km from the Fukushima Dai-ichi NPP

Results of the (i) Fifth Airborne Monitoring Survey and (ii) Airborne Monitoring Survey Outside 80km from the Fukushima Dai-ichi NPP September 28, 2012 Results of the (i) Fifth Airborne Monitoring Survey and (ii) Airborne Monitoring Survey Outside 80km from the The results of the airborne monitoring survey within a 80km radius of the

More information

Accelerator Facility Accident Report

Accelerator Facility Accident Report Accelerator Facility Accident Report 31 May 2013 Incorporated Administrative Agency - Japan Atomic Energy Agency Inter-University Research Institute - High Energy Accelerator Research Organization Subject:

More information

Kazuaki Yajima, Kazuki Iwaoka, and Hiroshi Yasuda

Kazuaki Yajima, Kazuki Iwaoka, and Hiroshi Yasuda Chapter 6 Radiation Survey Along Two Trails in Mt. Fuji to Investigate the Radioactive Contamination Caused by TEPCO s Fukushima Daiichi Nuclear Plant Accident Kazuaki Yajima, Kazuki Iwaoka, and Hiroshi

More information

Validation of a Lagrangian atmospheric dispersion model against middle-range scale measurements of 85 Kr concentration in Japan

Validation of a Lagrangian atmospheric dispersion model against middle-range scale measurements of 85 Kr concentration in Japan Journal of Nuclear Science and Technology ISSN: 0022-3131 (Print) 1881-1248 (Online) Journal homepage: https://www.tandfonline.com/loi/tnst20 Validation of a Lagrangian atmospheric dispersion model against

More information

Meteorological Data Collection, X/Q and D/Q, Critical Receptors

Meteorological Data Collection, X/Q and D/Q, Critical Receptors Meteorological Data Collection, X/Q and D/Q, Critical Receptors Ken Sejkora Entergy Nuclear Northeast Pilgrim Station Presented at the 23rd Annual RETS-REMP Workshop Training Session Westminster, CO /

More information

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter Energy response for high-energy neutrons of multi-functional electronic personal dosemeter T. Nunomiya 1, T. Ishikura 1, O. Ueda 1, N. Tsujimura 2,, M. Sasaki 2,, T. Nakamura 1,2 1 Fuji Electric Systems

More information

Analysis of Environmental Gamma-Ray Intensity Increase Due to Precipitation Using EGS4 Monte Carlo Simulation Code

Analysis of Environmental Gamma-Ray Intensity Increase Due to Precipitation Using EGS4 Monte Carlo Simulation Code Analysis of Environmental Gamma-Ray Intensity Increase Due to Precipitation Using EGS Monte Carlo Simulation Code T. Nishikawa, Y. Tamagawa and M. Miyajima Faculty of Engineering, Fukui University, Bunkyo,

More information

Field Experiment on the Effects of a Nearby Asphalt Road on Temperature Measurement

Field Experiment on the Effects of a Nearby Asphalt Road on Temperature Measurement 8.3 Field Experiment on the Effects of a Nearby Asphalt Road on Temperature Measurement T. Hamagami a *, M. Kumamoto a, T. Sakai a, H. Kawamura a, S. Kawano a, T. Aoyagi b, M. Otsuka c, and T. Aoshima

More information

Study of the Effect of Weather, Topography and Radionuclide on the TEDE in a Fire Scenario Involving a Dispersion of a Plume in the Atmosphere

Study of the Effect of Weather, Topography and Radionuclide on the TEDE in a Fire Scenario Involving a Dispersion of a Plume in the Atmosphere Middle-East Journal of Scientific Research 18 (8): 1192-1198, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.18.8.12405 Study of the Effect of Weather, Topography and Radionuclide

More information

Development of Process Coupling System for the Numerical Experiment of High Level Radioactive Waste

Development of Process Coupling System for the Numerical Experiment of High Level Radioactive Waste Development of Process Coupling System for the Numerical Experiment of High Level Radioactive Waste ATSUSHI NEYAMA Environmental Engineering Group Computer Software Development Co., Ltd. 15-1, Tomihisa-Cho,

More information

Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident

Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident IRPA 13 - Fukushima session A.Mathieu, I.Korsakissok, D.Quélo, J.Groëll, M.Tombette,

More information

Dispersion for point sources CE 524 February

Dispersion for point sources CE 524 February Dispersion for point sources CE 524 February 2011 1 Concentration Air pollution law in most industrial countries based on concentration of contaminants NAAQS in US Need method dto predict concentrations

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION SOURCE TERM ESTIMATION FOR THE FUKUSHIMA DAIICHI NUCLEAR POWER STATION ACCIDENT BY COMBINED ANALYSIS OF ENVIRONMENTAL MONITORING AND PLANT DATA THROUGH ATMOSPHERIC DISPERSION SIMULATION H. Nagai, H. Terada,

More information

Fukushima-Daiichi Accident: Main contamination events

Fukushima-Daiichi Accident: Main contamination events Fukushima-Daiichi Accident: Main contamination events The contamination of Honshu Island The ground contamination of Japan s main island by the Fukushima-Daiichi nuclear accident was essentially due to

More information

Mesoscale dispersion of 85 Kr in the vicinity of the AREVA La Hague reprocessing plant

Mesoscale dispersion of 85 Kr in the vicinity of the AREVA La Hague reprocessing plant Radioprotection, vol.46, n 6 (2011) S423 S429 C EDP Sciences, 2011 DOI: 10.1051/radiopro/20116546s Mesoscale dispersion of 85 Kr in the vicinity of the AREVA La Hague reprocessing plant O. Connan 1,K.Smith

More information

Modeling Radiological Consequences of Sever Accidents in BWRs: Review of Models Development, Verification and Validation

Modeling Radiological Consequences of Sever Accidents in BWRs: Review of Models Development, Verification and Validation Modeling Radiological Consequences of Sever Accidents in BWRs: Review of Models Development, Verification and Validation Mohamed GAHEEN Department of Research on Nuclear Safety and Radiological Emergencies,

More information

MODELING FOR ENVIRONMENTAL RADIATION DOSE RECONSTRUCTION. Bruce Napier 23 May 2011

MODELING FOR ENVIRONMENTAL RADIATION DOSE RECONSTRUCTION. Bruce Napier 23 May 2011 MODELING FOR ENVIRONMENTAL RADIATION DOSE RECONSTRUCTION Bruce Napier 23 May 2011 1 Topics NCRP Report No. 163 Atmospheric dispersion modeling Reconstruction of dose from releases of iodines and noble

More information

SAFETY ASSESSMENT CODES FOR THE NEAR-SURFACE DISPOSAL OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE WITH THE COMPARTMENT MODEL: SAGE AND VR-KHNP

SAFETY ASSESSMENT CODES FOR THE NEAR-SURFACE DISPOSAL OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE WITH THE COMPARTMENT MODEL: SAGE AND VR-KHNP SAFETY ASSESSMENT CODES FOR THE NEAR-SURFACE DISPOSAL OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE WITH THE COMPARTMENT MODEL: SAGE AND VR-KHNP J. B. Park, J. W. Park, C. L. Kim, M. J. Song Korea Hydro

More information

RSMC MONTRÉAL USERS' INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS. Version 9

RSMC MONTRÉAL USERS' INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS. Version 9 RSMC MONTRÉAL USERS' INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS Version 9 Environmental Emergency Response Section RSMC Montréal Canadian Meteorological Centre Meteorological Service

More information

AP1000 European 15. Accident Analyses Design Control Document EVALUATION MODELS AND PARAMETERS FOR ANALYSIS OF RADIOLOGICAL CONSEQUENCES OF ACCIDENTS

AP1000 European 15. Accident Analyses Design Control Document EVALUATION MODELS AND PARAMETERS FOR ANALYSIS OF RADIOLOGICAL CONSEQUENCES OF ACCIDENTS APPENDIX 15A EVALUATION MODELS AND PARAMETERS FOR ANALYSIS OF RADIOLOGICAL CONSEQUENCES OF ACCIDENTS This appendix contains the parameters and models that form the basis of the radiological consequences

More information

1.14 A NEW MODEL VALIDATION DATABASE FOR EVALUATING AERMOD, NRPB R91 AND ADMS USING KRYPTON-85 DATA FROM BNFL SELLAFIELD

1.14 A NEW MODEL VALIDATION DATABASE FOR EVALUATING AERMOD, NRPB R91 AND ADMS USING KRYPTON-85 DATA FROM BNFL SELLAFIELD 1.14 A NEW MODEL VALIDATION DATABASE FOR EVALUATING AERMOD, NRPB R91 AND ADMS USING KRYPTON-85 DATA FROM BNFL SELLAFIELD Richard Hill 1, John Taylor 1, Ian Lowles 1, Kathryn Emmerson 1 and Tim Parker 2

More information

Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident

Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident IRPA 13 - Fukushima session A.Mathieu, I.Korsakissok, D.Quélo, J.Groëll, M.Tombette,

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Simulation of nocturnal drainage flows and dispersion of pollutants in a complex valley D. Boucoulava, M. Tombrou, C. Helmis, D. Asimakopoulos Department ofapplied Physics, University ofathens, 33 Ippokratous,

More information

Delia Arnold 1, Arturo Vargas 1,Milagros Montero 2, Alla Dvorzhak 2 and Petra Seibert 3

Delia Arnold 1, Arturo Vargas 1,Milagros Montero 2, Alla Dvorzhak 2 and Petra Seibert 3 COMPARISON OF THE DISPERSION MODEL IN RODOS-LX AND MM5-V3.7-FLEXPART(V6.2). A CASE STUDY FOR THE NUCLEAR POWER PLANT OF ALMARAZ Delia Arnold 1, Arturo Vargas 1,Milagros Montero 2, Alla Dvorzhak 2 and Petra

More information

RSMC WASHINGTON USER'S INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS

RSMC WASHINGTON USER'S INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS RSMC WASHINGTON USER'S INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS -Version 2.0- (January 2007) 1. Introduction In the context of current agreements between the National Oceanic and Atmospheric

More information

350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995

350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995 350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995 A puff-particle dispersion model P. de Haan and M. W. Rotach Swiss Federal Institute of Technology, GGIETH, Winterthurerstrasse 190, 8057 Zürich,

More information

Tritium Environmental Assessment for Fusion Reactor Using TAS3.0

Tritium Environmental Assessment for Fusion Reactor Using TAS3.0 Tritium Environmental Assessment for Fusion Reactor Using TAS3.0 Baojie Nie, Muyi Ni, Minghuang Wang, Jing Song Contributed by FDS Team Key laboratory of Neutronics and Radiation Safety Institute of Nuclear

More information

PAJ Oil Spill Simulation Model for the Sea of Okhotsk

PAJ Oil Spill Simulation Model for the Sea of Okhotsk PAJ Oil Spill Simulation Model for the Sea of Okhotsk 1. Introduction Fuji Research Institute Corporation Takashi Fujii In order to assist in remedial activities in the event of a major oil spill The Petroleum

More information

Information (11:00), February 12, 2019

Information (11:00), February 12, 2019 Information (11:00), February 12, 2019 To All Missions (Embassies, Consular posts and International Organizations in Japan) Report on the discharge record and the seawater monitoring results at Fukushima

More information

EQUIPMENT AND METHOD For this study of mesoscale atmospheric dispersion, two systems measuring

EQUIPMENT AND METHOD For this study of mesoscale atmospheric dispersion, two systems measuring CONTRIBUTION TO THE STUDY OF ATMOSPHERIC DISPERSION OF A MESOSCALE POLLUTANT: USE OF KRYPTON-85 RELEASED BY THE COGEMA LA HAGUE NUCLEAR SPENT FUEL REPROCESSING PLANT AS ATMOSPHERIC TRACER Denis Maro 1,

More information

Mapping the Baseline of Terrestrial Gamma Radiation in China

Mapping the Baseline of Terrestrial Gamma Radiation in China Radiation Environment and Medicine 2017 Vol.6, No.1 29 33 Note Mapping the Baseline of Terrestrial Gamma Radiation in China Zhen Yang, Weihai Zhuo* and Bo Chen Institute of Radiation Medicine, Fudan University,

More information

The Improvement of JMA Operational Wave Models

The Improvement of JMA Operational Wave Models The Improvement of JMA Operational Wave Models Toshiharu Tauchi Nadao Kohno * Mika Kimura Japan Meteorological Agency * (also) Meteorological Research Institute, JMA 10 th International Workshop on Wave

More information

AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution. Paper No Prepared By:

AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution. Paper No Prepared By: AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution Paper No. 33252 Prepared By: Anthony J Schroeder, CCM Managing Consultant TRINITY CONSULTANTS 7330 Woodland Drive Suite 225

More information

KRYPTON-85: A TOOL FOR INVESTIGATING NEAR FIELD ATMOSPHERIC DISPERSION FOR ELEVATED EMISSIONS AROUND LA HAGUE SPENT FUEL NUCLEAR REPROCESSING PLANT

KRYPTON-85: A TOOL FOR INVESTIGATING NEAR FIELD ATMOSPHERIC DISPERSION FOR ELEVATED EMISSIONS AROUND LA HAGUE SPENT FUEL NUCLEAR REPROCESSING PLANT KRYPTON-85: A TOOL FOR INVESTIGATING NEAR FIELD ATMOSPHERIC DISPERSION FOR ELEVATED EMISSIONS AROUND LA HAGUE SPENT FUEL NUCLEAR REPROCESSING PLANT Denis Maro, Pierre Germain, Didier Hebert, Luc Solier,

More information

MODEL EVALUATION OF RIMPUFF WITHIN COMPLEX TERRAIN USING AN 41 AR RADIOLOGICAL DATASET. Leisa L. Dyer 1 and Poul Astrup 2

MODEL EVALUATION OF RIMPUFF WITHIN COMPLEX TERRAIN USING AN 41 AR RADIOLOGICAL DATASET. Leisa L. Dyer 1 and Poul Astrup 2 MODEL EVALUATION OF RIMPUFF WITHIN COMPLEX TERRAIN USING AN 41 AR RADIOLOGICAL DATASET Leisa L. Dyer 1 and Poul Astrup 2 1 Australian Nuclear Science and Technology Organisation (ANSTO), Quality, Safety,

More information

Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility

Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility Y. Nakane 1, H. Nakano 1, T. Abe 2, H. Nakashima 1 1 Center for Proton Accelerator

More information

Lawrence Livermore National Laboratory 2 LLNL-PRES

Lawrence Livermore National Laboratory 2 LLNL-PRES International Workshop on Source Term Estimation Methods for Estimating the Atmospheric Radiation Release from the Fukushima Daiichi Nuclear Power Plant 2012 February 22-24 This work was performed under

More information

TEPCO s Activities on the Investigation into Unsolved Issues in the Fukushima Daiichi NPS Accident

TEPCO s Activities on the Investigation into Unsolved Issues in the Fukushima Daiichi NPS Accident 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 0 TEPCO s Activities on the Investigation into Unsolved Issues in the Fukushima Daiichi NPS Accident IAEA IEM8 Vienna International Centre,

More information

ICONE DRAFT - EVALUATION OF THE CONSERVATISM OF NPP SAFETY ANALYSIS DOSE CALCULATIONS AS TYPICAL FOR LICENSING PURPOSES

ICONE DRAFT - EVALUATION OF THE CONSERVATISM OF NPP SAFETY ANALYSIS DOSE CALCULATIONS AS TYPICAL FOR LICENSING PURPOSES Proceedings of the 18th International Conference on Nuclear Engineering ICONE18 May 17-21, 21, Xi'an, China ICONE18-29465 DRAFT - EVALUATION OF THE CONSERVATISM OF NPP SAFETY ANALYSIS DOSE CALCULATIONS

More information

Numerical simulation of dispersion and deposition of radioactive materials from the Fukushima Daiichi nuclear power plant in March of 2011

Numerical simulation of dispersion and deposition of radioactive materials from the Fukushima Daiichi nuclear power plant in March of 2011 Numerical simulation of dispersion and deposition of radioactive materials from the Fukushima Daiichi nuclear power plant in March of 2011 MINGYUAN DU, SEIICHIEO YONEMURA National Institute for Agro-Environmental

More information

NUMUG POSITION PAPER What is a Qualified Meteorologist?

NUMUG POSITION PAPER What is a Qualified Meteorologist? ANSI-ANS-3.11-2005(R2010), Determining Meteorological Information at Nuclear Facilities, and other nuclear industry guidance documents expect certain tasks associated with the atmospheric sciences to be

More information

Tritium The French situation

Tritium The French situation 資料 3 (No.3) Tritium The French situation Jean-Luc LACHAUME Deputy Director General ASN 9 April 2014 Tokyo Tritium 1 Content The regulation of the discharges of tritium from nuclear facilities in France

More information

Development and Validation of Polar WRF

Development and Validation of Polar WRF Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio Development and Validation of Polar WRF David H. Bromwich 1,2, Keith M. Hines 1, and Le-Sheng Bai 1 1 Polar

More information

CAPACITY BUILDING FOR NON-NUCLEAR ATMOSPHERIC TRANSPORT EMERGENCY RESPONSE ACTIVITIES. (Submitted by RSMC-Beijing) Summary and purpose of document

CAPACITY BUILDING FOR NON-NUCLEAR ATMOSPHERIC TRANSPORT EMERGENCY RESPONSE ACTIVITIES. (Submitted by RSMC-Beijing) Summary and purpose of document WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS OPAG on DPFS Task Team on Development of Operational Procedures for non-nuclear ERA CBS-DPFS/TT-DOP-nNERA/Doc.8 (4.X.2012) Agenda item : 8

More information

Information (10:00), July 3, 2018

Information (10:00), July 3, 2018 Information (10:00), July 3, 2018 To All Missions (Embassies, Consular posts and International Organizations in Japan) Report on the discharge record and the seawater monitoring results at Fukushima Daiichi

More information

Integration of dispersion and radio ecological modelling in ARGOS NT

Integration of dispersion and radio ecological modelling in ARGOS NT Integration of dispersion and radio ecological modelling in ARGOS NT Steen Hoe 1, Heinz Müller 2 and Soeren Thykier Nielsen 3 1 Danish Emergency Management Agency (DEMA) - Nuclear Safety Division, Denmark

More information

Meteorology and Dispersion Forecast in Nuclear Emergency in Argentina

Meteorology and Dispersion Forecast in Nuclear Emergency in Argentina Meteorology and Dispersion Forecast in Nuclear Emergency in Argentina Kunst, J.J.; Boutet, L.I.; Jordán, O.D.; Hernández, D.G.; Guichandut, M.E. and Chiappesoni, H. Presentado en: 12 th International Congress

More information

Worldwide Data Quality Effects on PBL Short-Range Regulatory Air Dispersion Models

Worldwide Data Quality Effects on PBL Short-Range Regulatory Air Dispersion Models Worldwide Data Quality Effects on PBL Short-Range Regulatory Air Dispersion Models Jesse L. Thé 1, Russell Lee 2, Roger W. Brode 3 1 Lakes Environmental Software, -2 Philip St, Waterloo, ON, N2L 5J2, Canada

More information

Irradiation Behaviors of Nuclear Grade Graphite in Commercial Reactor, (II)

Irradiation Behaviors of Nuclear Grade Graphite in Commercial Reactor, (II) Journal of NUCLEAR SCIENCE and TECHNOLOGY, 22[3J, pp. 225-232 (March 1985). 225 TECHNICAL REPORT Irradiation Behaviors of Nuclear Grade Graphite in Commercial Reactor, (II) Thermal and Physical Properties

More information

Radiation Protection Dosimetry (2005) Vol. 113, No. 1, pp Advance Access publication 30 November 2004

Radiation Protection Dosimetry (2005) Vol. 113, No. 1, pp Advance Access publication 30 November 2004 Radiation Protection Dosimetry (2005) Vol. 113, No. 1, pp. 75 89 Advance Access publication 30 November 2004 doi:10.1093/rpd/nch423 ANALYSIS OF A KALMAN FILTER BASED METHOD FOR ON-LINE ESTIMATION OF ATMOSPHERIC

More information

Modeling of consequences of hypothetical accidental radioactive contamination of gulfs and bays in Murmansk region of Russian Federation

Modeling of consequences of hypothetical accidental radioactive contamination of gulfs and bays in Murmansk region of Russian Federation Radioprotection, vol.44, n 5 (2009) 765 769 C EDP Sciences, 2009 DOI: 10.1051/radiopro/20095138 Modeling of consequences of hypothetical accidental radioactive contamination of gulfs and bays in Murmansk

More information

European Fallout from Chernobyl

European Fallout from Chernobyl European Fallout from Chernobyl Fukushima Reactors: before & after earthquake and tsunami Fukushima reactors 3 & 4 (picture released by Tokyo Electric Power Company) Fukushima Reactor 1 A view inside one

More information

NUCLEAR EMERGENCY RESPONSE ACTIVITIES COORDINATION GROUP Original: ENGLISH EC-JRC ENSEMBLE APPROACH TO LONG RANGE ATMOSPHERIC DISPERSION

NUCLEAR EMERGENCY RESPONSE ACTIVITIES COORDINATION GROUP Original: ENGLISH EC-JRC ENSEMBLE APPROACH TO LONG RANGE ATMOSPHERIC DISPERSION WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS CBS/CG-NERA/Doc. (number) (26.04.2006) OPAG on DPFS NUCLEAR EMERGENCY RESPONSE ACTIVITIES COORDINATION GROUP Original: ENGLISH VIENNA, AUSTRIA,

More information

Table D-1-2. ATDM-Meteorology simulations completed (C) by each participating ATDM model (rows) with different meteorological data (columns) and also

Table D-1-2. ATDM-Meteorology simulations completed (C) by each participating ATDM model (rows) with different meteorological data (columns) and also D. ATDM experiments D-1. Design of the Task Team Experiment 1 The ATDMs used by the WMO Task Team members included MLDP0 (Modèle Lagrangien de Dispersion de Particules d ordre 0 Canada; D Amours et al.,

More information

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 4, May 2014

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 4, May 2014 Impact Factor 1.393, ISSN: 3583, Volume, Issue 4, May 14 A STUDY OF INVERSIONS AND ISOTHERMALS OF AIR POLLUTION DISPERSION DR.V.LAKSHMANARAO DR. K. SAI LAKSHMI P. SATISH Assistant Professor(c), Dept. of

More information

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Kasufumi TSUJIMOTO Center for Proton Accelerator Facilities, Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

More information

Assessment of Radiological Dose around a 3-MW TRIGA Mark-II Research Reactor

Assessment of Radiological Dose around a 3-MW TRIGA Mark-II Research Reactor International Letters of Chemistry, Physics and Astronomy Online: 2013-06-29 ISSN: 2299-3843, Vol. 15, pp 183-200 doi:10.18052/www.scipress.com/ilcpa.15.183 2013 SciPress Ltd., Switzerland Assessment of

More information

Commissariat à l Energie Atomique, Département Analyse, Surveillance, Environnement Bruyères-le-Châtel, France 2

Commissariat à l Energie Atomique, Département Analyse, Surveillance, Environnement Bruyères-le-Châtel, France 2 ANALYSIS OF ATMOSPHERIC RADIOXENON ACTIVITIES MEASURED BY A RADIONUCLIDE GAS STATION LOCATED IN FRANCE: SIMULATION OF THE ATMOSPHERIC TRANSPORT WITH A MESOSCALE MODELLING SYSTEM Patrick Armand 1, Pascal

More information

ARTICLE. Progress in Nuclear Science and Technology Volume 4 (2014) pp Yoshiko Harima a*, Naohiro Kurosawa b and Yukio Sakamoto c

ARTICLE. Progress in Nuclear Science and Technology Volume 4 (2014) pp Yoshiko Harima a*, Naohiro Kurosawa b and Yukio Sakamoto c DOI: 10.15669/pnst.4.548 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 548-552 ARTICLE Parameter search of geometric-progression formula for gamma-ray isotropic point source buildup factors

More information

October 2017 November Employees Contractors

October 2017 November Employees Contractors Attachment Exposure Dose Distribution 1. Effective Dose from External Exposure Table 1 shows the distribution of external exposure dose of workers who were involved in radiation work at the Fukushima Daiichi

More information

AP1000 European 15. Accident Analyses Design Control Document

AP1000 European 15. Accident Analyses Design Control Document 15.7 Radioactive Release from a Subsystem or Component This group of events includes the following: Gas waste management system leak or failure Liquid waste management system leak or failure (atmospheric

More information

J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul

J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul Hae-Jung Koo *, Kyu Rang Kim, Young-Jean Choi, Tae Heon Kwon, Yeon-Hee Kim, and Chee-Young Choi

More information

INTER-COMPARISON AND VALIDATION OF RANS AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE. Resources, Kozani, Greece

INTER-COMPARISON AND VALIDATION OF RANS AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE. Resources, Kozani, Greece INTER-COMPARISON AND VALIDATION OF AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE S. Andronopoulos 1, D.G.E. Grigoriadis 1, I. Mavroidis 2, R.F. Griffiths 3 and J.G.

More information

Simulation of Radioactivity Concentrations in the Sea Area (the 5th report

Simulation of Radioactivity Concentrations in the Sea Area (the 5th report Simulation of Radioactivity Concentrations in the Sea Area (the 5th report Press Release May 24, 2011 Ministry of Education, Culture, Sports, Science and Technology 1. Outline The Ministry of Education,

More information

A Personal Use Program for Calculation of Aviation Route Doses

A Personal Use Program for Calculation of Aviation Route Doses A Personal Use Program for Calculation of Aviation Route Doses Hiroshi Yasuda a*, Tatsuhiko Sato b and Masato Terakado c a National Institute of Radiological Sciences, 9-1 Anagawa 4, Inage-ku, Chiba 263-8555,

More information

Analysis of air discharges from a radiopharmaceutical production center based on a cyclotron

Analysis of air discharges from a radiopharmaceutical production center based on a cyclotron Analysis of air discharges from a radiopharmaceutical production center based on a cyclotron Elio Tomarchio * Palermo University, Energy Department, Nuclear Engineering Section, Viale delle Scienze, Building

More information

An introduction to Neutron Resonance Densitometry (Short Summary)

An introduction to Neutron Resonance Densitometry (Short Summary) An introduction to Neutron Resonance Densitometry (Short Summary) H. Harada 1, M. Koizumi 1, H. Tsuchiya 1, F. Kitatani 1, M. Seya 1 B. Becker 2, J. Heyse 2, S. Kopecky 2, C. Paradela 2, P. Schillebeeckx

More information

Dose Reconstruction Methods and Source Term Assessment using Data from Monitoring Networks and Mobile Teams A German Approach

Dose Reconstruction Methods and Source Term Assessment using Data from Monitoring Networks and Mobile Teams A German Approach Dose Reconstruction Methods and Source Term Assessment using Data from Monitoring Networks and Mobile Teams A German Approach M. Bleher, U. Stöhlker, F. Gering Federal Office for Radiation Protection (BfS),

More information

Assessment of Atmospheric Dispersion for the Fukushima Dai-ichi Nuclear Power Plant Accident

Assessment of Atmospheric Dispersion for the Fukushima Dai-ichi Nuclear Power Plant Accident Assessment of Atmospheric Dispersion for the Fukushima Dai-ichi Nuclear Power Plant Accident Anne Mathieu, Irène Korsakissok, Denis Quélo, Jérôme Groëll, Marilyne Tombette, Damien Didier, Emmanuel Quentric,

More information

Analysis for Progression of Accident at Fukushima Dai-ichi Nuclear Power Station with THALES2 code

Analysis for Progression of Accident at Fukushima Dai-ichi Nuclear Power Station with THALES2 code Analysis for Progression of Accident at Fukushima Dai-ichi Nuclear Power Station with THALES2 code Toshinori MATSUMOTO, Jun ISHIKAWA, and Yu MARUYAMA Nuclear Safety Research Center, Japan Atomic Energy

More information

Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors

Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors January 15, 2015 Japan Atomic Energy Agency Tanaka Precious Metals Tanaka Holdings Co., Ltd. Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors World

More information

Lessons learned in responding to the accident at the Fukushima Daiichi nuclear power stations: THE WAY FORWARD

Lessons learned in responding to the accident at the Fukushima Daiichi nuclear power stations: THE WAY FORWARD WMO World Meteorological Organization Working together in weather, climate and water Lessons learned in responding to the accident at the Fukushima Daiichi nuclear power stations: THE WAY FORWARD WMO:

More information

ADAPTATION OF A LAGRANGIAN PARTICLE-DISPERSION MODEL FOR THE USE IN RADIOPROTECTION AND RADIOECOLOGY

ADAPTATION OF A LAGRANGIAN PARTICLE-DISPERSION MODEL FOR THE USE IN RADIOPROTECTION AND RADIOECOLOGY ADAPTATION OF A LAGRANGIAN PARTICLE-DISPERSION MODEL FOR THE USE IN RADIOPROTECTION AND RADIOECOLOGY Christoph Haustein TÜV Industrie Service GmbH TÜV Süd Gruppe, Munich, Germany INTRODUCTION The assessment

More information

RADIOACTIVITY IN THE AIR

RADIOACTIVITY IN THE AIR RADIOACTIVITY IN THE AIR REFERENCES M. Sternheim and J. Kane, General Physics (See the discussion on Half Life) Evans, The Atomic Nucleus, pp. 518-522 Segre, Nuclei and Particles, p. 156 See HEALTH AND

More information

O R D E R OF THE HEAD OF THE STATE NUCLEAR POWER SAFETY INSPECTORATE

O R D E R OF THE HEAD OF THE STATE NUCLEAR POWER SAFETY INSPECTORATE O R D E R OF THE HEAD OF THE STATE NUCLEAR POWER SAFETY INSPECTORATE ON THE APPROVAL OF NUCLEAR SAFETY REQUIREMENTS BSR-1.9.1-2011 STANDARDS OF RELEASE OF RADIONUCLIDES FROM NUCLEAR INSTALLATIONS AND REQUIREMENTS

More information

Footprints: outline Üllar Rannik University of Helsinki

Footprints: outline Üllar Rannik University of Helsinki Footprints: outline Üllar Rannik University of Helsinki -Concept of footprint and definitions -Analytical footprint models -Model by Korman and Meixner -Footprints for fluxes vs. concentrations -Footprints

More information

Cold air outbreak over the Kuroshio Extension Region

Cold air outbreak over the Kuroshio Extension Region Cold air outbreak over the Kuroshio Extension Region Jensen, T. G. 1, T. Campbell 1, T. A. Smith 1, R. J. Small 2 and R. Allard 1 1 Naval Research Laboratory, 2 Jacobs Engineering NRL, Code 7320, Stennis

More information

Wind Potential Evaluation in El Salvador Abstract: Key words: 1. Introduction Corresponding author:

Wind Potential Evaluation in El Salvador Abstract: Key words: 1. Introduction Corresponding author: Journal of Energy and Power Engineering 11 (2017) 225-232 doi: 10.17265/1934-8975/2017.04.002 D DAVID PUBLISHING Tsutomu Dei 1, Hironori Hayasi 2, Takeshi Okamura 3 and Izumi Ushiyama 4 1. Division of

More information

High Resolution Modeling of Multi-scale Cloud and Precipitation Systems Using a Cloud-Resolving Model

High Resolution Modeling of Multi-scale Cloud and Precipitation Systems Using a Cloud-Resolving Model Chapter 1 Atmospheric and Oceanic Simulation High Resolution Modeling of Multi-scale Cloud and Precipitation Systems Using a Cloud-Resolving Model Project Representative Kazuhisa Tsuboki Author Kazuhisa

More information

Radionuclides in food and water. Dr. Ljudmila Benedik

Radionuclides in food and water. Dr. Ljudmila Benedik Radionuclides in food and water Dr. Ljudmila Benedik ISO-FOOD WP 3 and WP4 WP 3 Research and education P1 Food authenticity P2 Translation of regional isotopic and elemental signatures from natural environment

More information

In-situ radiation measurements and GIS visualization / interpretation

In-situ radiation measurements and GIS visualization / interpretation In-situ radiation measurements and GIS visualization / interpretation Román Padilla Alvarez, Iain Darby Nuclear Science and Instrumentation Laboratory Department of Nuclear Sciences and Applications, International

More information

THE ENVIRONMENTAL RADIATION ANALYSIS ON THE RESIDENTIAL AREA AROUND NUCLEAR POWER PLANTS

THE ENVIRONMENTAL RADIATION ANALYSIS ON THE RESIDENTIAL AREA AROUND NUCLEAR POWER PLANTS Proceedings of the 2013 21st International Conference on Nuclear Engineering ICONE21 July 29 - August 2, 2013, Chengdu, China ICONE21-16111 THE ENVIRONMENTAL RADIATION ANALYSIS ON THE RESIDENTIAL AREA

More information

Identifying civil Xe-emissions: from source to receptor

Identifying civil Xe-emissions: from source to receptor Identifying civil Xe-emissions: from source to receptor A. Bollhöfer, P. De Meutter, F. Gubernator, Benoît Deconninck, C. Schlosser, U. Stöhlker, G. Kirchner, 1 2,3,4 5 6 1 1 C. Strobl1, A. Delcloo3, J.

More information