Contents. 3. Flying strategies Needs for turbulence measurements Vertical structure Horizontal spatial variability Thin interfaces Clouds

Size: px
Start display at page:

Download "Contents. 3. Flying strategies Needs for turbulence measurements Vertical structure Horizontal spatial variability Thin interfaces Clouds"

Transcription

1 Contents 1. Planetary Boundary Layer and clouds - Definition - PBL vertical structure - BL Clouds Shallow convection clouds Deep convective clouds Marine Stratocumulus - PBL in complex terrain 2. Probing PBL turbulence - PBL equations - Probing PBL turbulence - Turbulence statistics Approach, turbulence moments Integral scales autocorrelation function Turbulent Kinetic Energy - turbulence spectra Sampling errors - Estimating PBL processes Flux vertical profiles PBL growth Entrainment PBL scaling 3. Flying strategies Needs for turbulence measurements Vertical structure Horizontal spatial variability Thin interfaces Clouds

2 Lecture I 1h

3 Boundary Layer and clouds Marie Lothon Laboratoire d'aérologie, Toulouse Photo by M. Scherrer

4 Diurnal cycle of the surface and low troposphere Definition of the planetary boundary layer (PBL) Courtesy of B. Campistron Courtesy of R. Hogan

5 Surface forcing (a) Daytime over moist surface (b) Nighttime over moist surface (c) Daytime over dry surface (Desert) (d) Dry air over moist surface (Oasis) Wallace and Hobbes, 2006

6 Two important ways to consider the PBL and clouds: (1) Vertical structure / Evolution (2) Spatial variability / Scales

7 Photo by M. Scherrer

8 PBL vertical structure Stull, 1988 Wallace and Hobbes, 2006

9 Courtesy of Colbert et al, 2008

10 Photo by G. Berry

11 Photo by G. Berry

12

13 Rolls See also Lemone, 1973 and Weckwerth et al, 1997

14 Weckwerth et al, 1997

15 Courtesy of Colbert et al, 2008

16 Photo by M. Lothon

17

18

19 Photo by M.

20 Photo by M.

21 Photo by M.

22 Atmospheric moist convection Stevens, 2005

23 Marine Stratocumulus GOES Channel 1 July UTC DYCOMS RF07

24 Photo by G. Vali

25 Main processes in the stratocumulus-topped marine boundary layer (STBL) - SW radiation - Turbulent mixing - Entrainment - Cloud microphysics

26 Conceptual diagram for the stratocumulus-topped PBL Stevens, 2007 Stevens, 2007

27 VERTICAL STRUCTURE OF THE STBL 4 profiles made within a 4-hour period RF07 July 24 θl qt Zi ql

28 Pockets and Open cells in stratocumulus clouds

29 Pockets and Open cells Stevens et al, 2005

30 Pockets and Open cells Van Zanten et al, 2005 Van Zanten, Stevens et al, 2005

31 Structure of the Trade Cumuli Stevens, 2006 Stevens, 2006

32 PBL in complex terrain U Fr = Nh U Fr = N ( Z i h) * Wallace and Hobbes, 2006

33 Lenticular cloud Photo by M.

34 Wallace and Hobbes, 2006

35 Banner cloud Courtesy of Bart Geers

36 Wallace and Hobbes, 2006

37 Lecture II 1h

38 Probing boundary layer turbulence

39 Resolving Navier-Stokes equation with perturbations u = < u > + u'

40 A possible closure: >> Importance of measuring turbulent variables, To check, suggest and improve parameterizations

41 Probing turbulence from the ground Distance/time/frequency equivalence d = Ut 2π ν k= U

42 Probing turbulence from an aircraft Distance/time equivalence d = Ua t 2π ν k= Ua U a : Airplane True Airspeed! Concepts of «Transverse» and «Longitudinal» are different than when measuring from the ground!

43 In situ measurements of the air motion with an aircraft ~100 m/s (approx.) ~1 m/s ~100 m/s ~0.01 ~1 m/s Lenschow, RAF Bulletin #23

44 Definition and measurements of PBL turbulent processes Content: Statistics Integral scales Fluxes Entrainment Turbulent kinetic energy Higher-order moments

45 Example of measured air vertical velocity time series

46 Example of measured air temperature time series

47 Statistical approach

48 Higher-order moments Variance σ 2 w = < w' > 2 µ 3 = < w'3 > µ 4 = < w' > 4 µ3 S= 3 σ µ4 K= 4 σ Skewness Kurtosis

49

50 (m) Integral scale Lw=195 m Lw=195 m

51 Energy density spectrum Vertical velocity energy spectrum Fw ( f ) = FFT ( w(t )) S w ( f ) = Fw ( f ) Fw * ( f ) S w ( f ) = FFT ( Rw (τ )) Rw (τ ) = IFFT ( S w ( f ))

52 Turbulent Kinetic Energy ( 1 e= σ 2 2 u +σ 2 v +σ 2 w ) 4 S w (k ) = α ε 3 2/3 k 5/ 3 Wave number Kolmogorov constant Dissipation rate (units: m2s-3) Stull, 1988 Wallace and Hobbes, 2006 Production terms (buoyancy and shear) transport pressure dissipation

53 Sampling errors F = limt 1 T w' (t ) s' (t )dt 0 Systematic error 1 N w' (i ) s ' (i ) i = 0: N ~10% Associated for example with limited leg or high pass filtering Random error 10 to >50% Instrumental error < 5% Lenschow, 1994 Mann and Lenschow, 1994

54 Kinematic Fluxes

55 Stull, 1988 Wallace and Hobbes, 2006

56 - pdf Potential temperature BL FT Water vapour mixing ratio BL FT Probing the Sahelian boundary layer + pdf Courtesy of G. Canut, 2010

57 Cloud edges

58 Buoyancy flux vertical structure Courtesy of G. Canut, 2010

59 Vertical profiles of the fluxes in the Sahelian boundary layer Canut et al, 2010

60 Boundary layer growth and warming encroachment entrainment Garratt, 1992

61 Entrainment rate Entrainment velocity δ Zero-order model (ZOM) First-Order Model (FOM)

62 Estimating entrainment from aircraft measurements

63 Boundary layer growth and warming

64 Boundary layer scaling

65 Flying strategies defined as a function of (consensus between): Scientific goals and Capability of the aircraft (autonomy, minimum and maximum heights, airspeed, payload/instruments, )

66 NCAR C130 during DYCOMS-II (DYNAMICS AND CHEMISTRY OF MARINE STRATOCUMULUS) Stevens et al., BAMS, 84 (2003)

67 Studying the boundary layer vertical structure

68 DYCOMS-II DYNAMICS AND CHEMISTRY OF MARINE STRATOCUMULUS CT CB SC SF Stevens et al., BAMS, 84 (2003) RL

69 Fine-scale structure at stratocumulus cloud top Lenschow et al, 2000

70 RICO Rain In Cumulus over the Ocean Rauber, Stevens et al, 2007

71 HiCu High Plains Cumulus Damiani and Vali, 2007

72 CuPIDO Cumulus, Photogrammetric, In situ and Doppler Observations Damiani et al, 2008

73 CuPIDO Cumulus, Photogrammetric, In situ and Doppler Observations Damiani et al, 2008

74 95 GHz WYOMING CLOUD RADAR Antennas diameter 25 cm Beam width 0.7 Peak power 1.6 kw Repetition frequency 5 khz / 20 khz Pulse length 250 ns (33 m) Number of profiles per sec 20 27

75 growing cell in-situ gust-probe data Divergence associated with updraft top reflectivity dbz FSSP total conc. (# cm-3) air temperature (ºC) vertical plane horizontal plane Doppler vertical velocity (m/s) Thermal Core surrounded by descending flow 1d-c total conc. (# L-1) liquid water content (g m-3) Aug 26th, 2003

76 thermal top 1st pass Higher Z at the sides of updraft. Coalescence/ Ice nucleation. Lack of sensitivity

77 July 13th HBDD: final stages Jul 13th, 2003

78 Organized large scale horizontal dynamics Jul 12th, 2003

79 References - Textbooks Garratt, J. R. : The Atmospheric Boundary Layer. Cambridge Atmospheric and Space Science Series, 1992, 316 pp. Lenschow, D. H. : Probing the Atmospheric Boundary Layer. American Meteorological Society, Boston, Massachusetts, 1976, 269 pp. Monin, A. S. and A. M. Yaglom: Statistical Fluid Mechanics II. Massachusetts Institute Technology Press, 1975, 874 pp. Stull, R. B. : An Introduction to the Atmospheric Boundary Layer Meteorology. Kluwer Academin Publishers, 1988, 666 p. Wallace, J. M. and P. V. Hobbes: Atmospheric Science: An introductory Survey. 2d ed. Elsevier, 2006, Wyngaard, J. C. : Turbulence in the Atmosphere. Cambridge University Press, 2010, 393 pp.

80 References - Articles Canut, G., M. Lothon and F. Saïd, 2010: Observation of entrainment at the interface between monsoon flow and Saharan Air Layer, Quart. J. Roy. Meteorol. Soc., 136, Damiani R. and G. Vali, 2007: Evidence for tilted toroidal circulations in cumulus. J. Atmos. Sci., 64, Damiani, R., et al, 2008: The cumulus, photogrammetric, in situ, and Doppler observations experiment of 2006: Bull. Am. Met. Soc., 89, 57-+ Lemone, M. A., 1973: The structure and dynamics of horizontal vortices in the planetary boundary layer. J. Atmos. Sci., 30, Lenschow, D. H, J. Mann and L. Kristensen, 1994: How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Oceanic Technol., 11, Lenschow, D. H. et al 2000: Measurements of the fine-scale structure at the top of Marine Stratocumulus. Boundary-Layer Meteorol., 97, Mann J. and D. H. and Lenschow, 1994: Errors in airborne flux measurements. J. Geophys. Res., 99,

81 References - Articles Stevens, B., 2005: Atmospheric Moist Convection. Annu. Earth Planet. Sci. 32, Stevens, B., 2006: Bulk boundary layer concepts for simplifed models of tropical dynamics, heoretical and Computational Fluid Dyn., 20, Stevens, B. et al, 2007: On the structure of the lower troposphere in the summertime stratocumulus regime of the northeast Pacific, Mon. Weath. Rev, 135, Stevens B. et al 2003, Dynamics and Chemistry of Marine Stratocumulus - DYCOMS-II, Bull. Amer. Meteor. Soc., 84, Van Zanten, M. C. and B. Stevens, 2005: Observations of the structure of heavily precipitating marine stratocumuls, J. Atmos. Sci., 62, Weckwerth, T. M., 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, Rauber, R. M., B. Stevens et al, 2007: Rain in (shallow) cumulus over the ocean The RICO campaign, Bull. of the American Meteorol. Soc., 88,

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2)

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2) The Atmospheric Boundary Layer Turbulence (9.1) The Surface Energy Balance (9.2) Vertical Structure (9.3) Evolution (9.4) Special Effects (9.5) The Boundary Layer in Context (9.6) What processes control

More information

Large Eddy Simulation: Estimation, Attribution, Exploration

Large Eddy Simulation: Estimation, Attribution, Exploration bjorn.stevens ucla atmos & ocean sci IMAGe-3 Nov 4 2005 Large Eddy Simulation: Estimation, Attribution, Exploration 1 what is large eddy simulation? A religion? Three-dimensional flows whose smallest cut-off/

More information

Ship-Based Measurements of Cloud Microphysics and PBL Properties in Precipitating Trade Cumuli During RICO

Ship-Based Measurements of Cloud Microphysics and PBL Properties in Precipitating Trade Cumuli During RICO Ship-Based Measurements of Cloud Microphysics and PBL Properties in Precipitating Trade Cumuli During RICO Institutions: University of Miami; University of Colorado; NOAA ETL Investigators: P. Kollias

More information

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira

More information

PALM - Cloud Physics. Contents. PALM group. last update: Monday 21 st September, 2015

PALM - Cloud Physics. Contents. PALM group. last update: Monday 21 st September, 2015 PALM - Cloud Physics PALM group Institute of Meteorology and Climatology, Leibniz Universität Hannover last update: Monday 21 st September, 2015 PALM group PALM Seminar 1 / 16 Contents Motivation Approach

More information

A Framework to Evaluate Unified Parameterizations for Seasonal Prediction: An LES/SCM Parameterization Test-Bed

A Framework to Evaluate Unified Parameterizations for Seasonal Prediction: An LES/SCM Parameterization Test-Bed DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Framework to Evaluate Unified Parameterizations for Seasonal Prediction: An LES/SCM Parameterization Test-Bed Joao Teixeira

More information

Supporting Information for The origin of water-vapor rings in tropical oceanic cold pools

Supporting Information for The origin of water-vapor rings in tropical oceanic cold pools GEOPHYSICAL RESEARCH LETTERS Supporting Information for The origin of water-vapor rings in tropical oceanic cold pools Wolfgang Langhans 1 and David M. Romps 1,2 Contents of this file 1. Texts S1 to S2

More information

UNRESOLVED ISSUES. 1. Spectral broadening through different growth histories 2. Entrainment and mixing 3. In-cloud activation

UNRESOLVED ISSUES. 1. Spectral broadening through different growth histories 2. Entrainment and mixing 3. In-cloud activation URESOLVED ISSUES. Spectral broadening through different growth histories 2. Entrainment and mixing. In-cloud activation /4 dr dt ξ ( S ) r, ξ F D + F K 2 dr dt 2ξ ( S ) For a given thermodynamic conditions

More information

A framework to evaluate unified parameterizations for seasonal prediction: an LES/SCM parameterization test-bed

A framework to evaluate unified parameterizations for seasonal prediction: an LES/SCM parameterization test-bed DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A framework to evaluate unified parameterizations for seasonal prediction: an LES/SCM parameterization test-bed Joao Teixeira

More information

TURBULENT KINETIC ENERGY

TURBULENT KINETIC ENERGY TURBULENT KINETIC ENERGY THE CLOSURE PROBLEM Prognostic Moment Equation Number Number of Ea. fg[i Q! Ilial.!.IokoQlI!!ol Ui au. First = at au.'u.' '_J_ ax j 3 6 ui'u/ au.'u.' a u.'u.'u k ' Second ' J =

More information

ture and evolution of the squall line developed over the China Continent. We made data analysis of the three Doppler radar observation during the IFO

ture and evolution of the squall line developed over the China Continent. We made data analysis of the three Doppler radar observation during the IFO Simulation Experiment of Squall Line Observed in the Huaihe River Basin, China Kazuhisa Tusboki 1 and Atsushi Sakakibara 2 1 Hydrospheric Atmospheric Research Center, Nagoya University 2 Research Organization

More information

Bulk Boundary-Layer Model

Bulk Boundary-Layer Model Bulk Boundary-Layer Model David Randall Ball (1960) was the first to propose a model in which the interior of the planetary boundary layer (PBL) is well-mixed in the conservative variables, while the PBL

More information

From small-scale turbulence to large-scale convection: a unified scale-adaptive EDMF parameterization

From small-scale turbulence to large-scale convection: a unified scale-adaptive EDMF parameterization From small-scale turbulence to large-scale convection: a unified scale-adaptive EDMF parameterization Kay Sušelj 1, Joao Teixeira 1 and Marcin Kurowski 1,2 1 JET PROPULSION LABORATORY/CALIFORNIA INSTITUTE

More information

Effect of WENO advection scheme on simulation of stratocumulus-topped atmospheric boundary layer. Hannah L. Hagen ABSTRACT

Effect of WENO advection scheme on simulation of stratocumulus-topped atmospheric boundary layer. Hannah L. Hagen ABSTRACT MAY 2016 HAGEN 1 Effect of WENO advection scheme on simulation of stratocumulus-topped atmospheric boundary layer Hannah L. Hagen ABSTRACT Clouds maintain Earth s energy balance and are a key regulator

More information

8.2 Numerical Study of Relationships between Convective Vertical Velocity, Radar Reflectivity Profiles, and Passive Microwave Brightness Temperatures

8.2 Numerical Study of Relationships between Convective Vertical Velocity, Radar Reflectivity Profiles, and Passive Microwave Brightness Temperatures 8.2 Numerical Study of Relationships between Convective Vertical Velocity, Radar Reflectivity Profiles, and Passive Microwave Brightness Temperatures Yaping Li, Edward J. Zipser, Steven K. Krueger, and

More information

Cloud Structure and Entrainment in Marine Atmospheric Boundary Layers

Cloud Structure and Entrainment in Marine Atmospheric Boundary Layers Cloud Structure and Entrainment in Marine Atmospheric Boundary Layers David C. Lewellen MAE Dept., PO Box 6106, West Virginia University Morgantown, WV, 26506-6106 phone: (304) 293-3111 (x2332) fax: (304)

More information

Lecture 2. Turbulent Flow

Lecture 2. Turbulent Flow Lecture 2. Turbulent Flow Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of this turbulent water jet. If L is the size of the largest eddies, only very small

More information

REQUEST FOR C-130 and WCR SUPPORT DYCOMS II ADDENDUM NCAR/ATD - October 2000 OFAP Meeting

REQUEST FOR C-130 and WCR SUPPORT DYCOMS II ADDENDUM NCAR/ATD - October 2000 OFAP Meeting REQUEST FOR C-130 and WCR SUPPORT DYCOMS II ADDENDUM NCAR/ATD - October 2000 OFAP Meeting Submitted July 6, 2000. Corresponding Principal Investigator Name: Gabor Vali Institution: University of Wyoming

More information

Higher-order closures and cloud parameterizations

Higher-order closures and cloud parameterizations Higher-order closures and cloud parameterizations Jean-Christophe Golaz National Research Council, Naval Research Laboratory Monterey, CA Vincent E. Larson Atmospheric Science Group, Dept. of Math Sciences

More information

Boundary Layer Verification. ECMWF training course April 2014 Maike Ahlgrimm

Boundary Layer Verification. ECMWF training course April 2014 Maike Ahlgrimm Boundary Layer Verification ECMWF training course April 2014 Maike Ahlgrimm Aim of this lecture To give an overview over strategies for boundary layer evaluation By the end of this session you should be

More information

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius A. S. Frisch and G. Feingold Cooperative Institute for Research in the Atmosphere National Oceanic and Atmospheric

More information

Sungsu Park, Chris Bretherton, and Phil Rasch

Sungsu Park, Chris Bretherton, and Phil Rasch Improvements in CAM5 : Moist Turbulence, Shallow Convection, and Cloud Macrophysics AMWG Meeting Feb. 10. 2010 Sungsu Park, Chris Bretherton, and Phil Rasch CGD.NCAR University of Washington, Seattle,

More information

Lecture 14. Marine and cloud-topped boundary layers Marine Boundary Layers (Garratt 6.3) Marine boundary layers typically differ from BLs over land

Lecture 14. Marine and cloud-topped boundary layers Marine Boundary Layers (Garratt 6.3) Marine boundary layers typically differ from BLs over land Lecture 14. Marine and cloud-topped boundary layers Marine Boundary Layers (Garratt 6.3) Marine boundary layers typically differ from BLs over land surfaces in the following ways: (a) Near surface air

More information

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches LONG-TERM

More information

Warm rain and climate: VOCALS, CloudSat, Models. Robert Wood University of Washington

Warm rain and climate: VOCALS, CloudSat, Models. Robert Wood University of Washington Warm rain and climate: VOCALS, CloudSat, Models Robert Wood University of Washington Warm rain a missing climatology Image: NASA GSFC Shipboard remote sensing shows frequent precipitation from shallow

More information

Vertical Velocity Statistics in Fair-Weather Cumuli at the ARM TWP Nauru Climate Research Facility

Vertical Velocity Statistics in Fair-Weather Cumuli at the ARM TWP Nauru Climate Research Facility 6590 J O U R N A L O F C L I M A T E VOLUME 23 Vertical Velocity Statistics in Fair-Weather Cumuli at the ARM TWP Nauru Climate Research Facility PAVLOS KOLLIAS Department of Atmospheric and Oceanic Sciences,

More information

Warm rain variability and its association with cloud mesoscalestructure t and cloudiness transitions. Photo: Mingxi Zhang

Warm rain variability and its association with cloud mesoscalestructure t and cloudiness transitions. Photo: Mingxi Zhang Warm rain variability and its association with cloud mesoscalestructure t and cloudiness transitions Robert Wood, Universityof Washington with help and data from Louise Leahy (UW), Matt Lebsock (JPL),

More information

Using Cloud-Resolving Models for Parameterization Development

Using Cloud-Resolving Models for Parameterization Development Using Cloud-Resolving Models for Parameterization Development Steven K. Krueger University of Utah! 16th CMMAP Team Meeting January 7-9, 2014 What is are CRMs and why do we need them? Range of scales diagram

More information

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine Lecture Ch. 12 Review of simplified climate model Revisiting: Kiehl and Trenberth Overview of atmospheric heat engine Current research on clouds-climate Curry and Webster, Ch. 12 For Wednesday: Read Ch.

More information

Precipitation Structure and Processes of Typhoon Nari (2001): A Modeling Propsective

Precipitation Structure and Processes of Typhoon Nari (2001): A Modeling Propsective Precipitation Structure and Processes of Typhoon Nari (2001): A Modeling Propsective Ming-Jen Yang Institute of Hydrological Sciences, National Central University 1. Introduction Typhoon Nari (2001) struck

More information

Numerical simulation of marine stratocumulus clouds Andreas Chlond

Numerical simulation of marine stratocumulus clouds Andreas Chlond Numerical simulation of marine stratocumulus clouds Andreas Chlond Marine stratus and stratocumulus cloud (MSC), which usually forms from 500 to 1000 m above the ocean surface and is a few hundred meters

More information

Ship-Based Measurements of Cloud Microphysics and PBL Properties in Precipitating Trade Cumuli During RICO

Ship-Based Measurements of Cloud Microphysics and PBL Properties in Precipitating Trade Cumuli During RICO Ship-Based Measurements of Cloud Microphysics and PBL Properties in Precipitating Trade Cumuli During RICO Institutions: University of Miami; University of Colorado; NOAA ETL Investigators: P. Kollias

More information

An integral approach to modeling PBL transports and clouds: ECMWF

An integral approach to modeling PBL transports and clouds: ECMWF An integral approach to modeling PBL transports and clouds: EDMF @ ECMWF Martin Köhler ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom Martin.Koehler@ecmwf.int 1 Introduction The importance of low

More information

A Framework to Evaluate Unified Parameterizations for Seasonal Prediction: An LES/SCM Parameterization Test-Bed

A Framework to Evaluate Unified Parameterizations for Seasonal Prediction: An LES/SCM Parameterization Test-Bed DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Framework to Evaluate Unified Parameterizations for Seasonal Prediction: An LES/SCM Parameterization Test-Bed Joao Teixeira

More information

LECTURE NOTES ON THE Planetary Boundary Layer

LECTURE NOTES ON THE Planetary Boundary Layer LECTURE NOTES ON THE Planetary Boundary Layer Chin-Hoh Moeng prepared for lectures given at the Department of Atmospheric Science, CSU in 1994 & 1998 and at the Department of Atmospheric and Oceanic Sciences,

More information

Boundary layer equilibrium [2005] over tropical oceans

Boundary layer equilibrium [2005] over tropical oceans Boundary layer equilibrium [2005] over tropical oceans Alan K. Betts [akbetts@aol.com] Based on: Betts, A.K., 1997: Trade Cumulus: Observations and Modeling. Chapter 4 (pp 99-126) in The Physics and Parameterization

More information

Some comments on weather modification and its science base

Some comments on weather modification and its science base Some comments on weather modification and its science base Woods Hole -- July 31, 2002 Gabor Vali University of Wyoming Collaborators: R.D. Kelly, D. Leon, S. Haimov, S. Gill 1 BASC - WxMod Jul 31, 2002

More information

Climate Modeling Issues at GFDL on the Eve of AR5

Climate Modeling Issues at GFDL on the Eve of AR5 Climate Modeling Issues at GFDL on the Eve of AR5 Leo Donner, Chris Golaz, Yi Ming, Andrew Wittenberg, Bill Stern, Ming Zhao, Paul Ginoux, Jeff Ploshay, S.J. Lin, Charles Seman CPPA PI Meeting, 29 September

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the

More information

Cloud Feedbacks and Climate Models

Cloud Feedbacks and Climate Models Cloud Feedbacks and Climate Models oão Teixeira, USA Together with many people including S. Cardoso (IDL/NCAR), A. Gettelman (NCAR), B. Kahn, S. Klein (LLNL), P. Miranda (IDL), A.P. Siebesma (KNMI), P.

More information

Clouds and turbulent moist convection

Clouds and turbulent moist convection Clouds and turbulent moist convection Lecture 2: Cloud formation and Physics Caroline Muller Les Houches summer school Lectures Outline : Cloud fundamentals - global distribution, types, visualization

More information

H. Gerber* Gerber Scientific, Inc., Reston, Virginia ABSTRACT

H. Gerber* Gerber Scientific, Inc., Reston, Virginia ABSTRACT 2F.269 MIXING IN SMALL WARM CUMULI H. Gerber* Gerber Scientific, Inc., Reston, Virginia ABSTRACT High resolution (500 Hz data; 20-cm horizontal in-cloud) Re (droplet effective radius) and LWC (liquid water

More information

Atm S 547 Boundary-Layer Meteorology. Lecture 15. Subtropical stratocumulus-capped boundary layers. In this lecture

Atm S 547 Boundary-Layer Meteorology. Lecture 15. Subtropical stratocumulus-capped boundary layers. In this lecture Atm S 547 Boundary-Layer Meteorology Bretherton Lecture 15. Subtropical stratocumulus-capped boundary layers In this lecture Physical processes and their impact on Sc boundary layer structure Mixed-layer

More information

Myung-Sook Park, Russell L. Elsberry and Michael M. Bell. Department of Meteorology, Naval Postgraduate School, Monterey, California, USA

Myung-Sook Park, Russell L. Elsberry and Michael M. Bell. Department of Meteorology, Naval Postgraduate School, Monterey, California, USA Latent heating rate profiles at different tropical cyclone stages during 2008 Tropical Cyclone Structure experiment: Comparison of ELDORA and TRMM PR retrievals Myung-Sook Park, Russell L. Elsberry and

More information

2.1 Temporal evolution

2.1 Temporal evolution 15B.3 ROLE OF NOCTURNAL TURBULENCE AND ADVECTION IN THE FORMATION OF SHALLOW CUMULUS Jordi Vilà-Guerau de Arellano Meteorology and Air Quality Section, Wageningen University, The Netherlands 1. MOTIVATION

More information

Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models

Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute

More information

Modified PM09 parameterizations in the shallow convection grey zone

Modified PM09 parameterizations in the shallow convection grey zone Modified PM09 parameterizations in the shallow convection grey zone LACE stay report Toulouse Centre National de Recherche Meteorologique, 02. February 2015 27. February 2015 Scientific supervisor: Rachel

More information

A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean

A New Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean D. B. Parsons Atmospheric Technology Division National Center for Atmospheric Research (NCAR) Boulder,

More information

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China Impact of different cumulus parameterizations on the numerical simulation of rain over southern China P.W. Chan * Hong Kong Observatory, Hong Kong, China 1. INTRODUCTION Convective rain occurs over southern

More information

SIMULATION OF STRATOCUMULUS AND DEEP CONVECTIVE CLOUDS WITH THE DYNAMIC RECONSTRUCTION TURBULENCE CLOSURE

SIMULATION OF STRATOCUMULUS AND DEEP CONVECTIVE CLOUDS WITH THE DYNAMIC RECONSTRUCTION TURBULENCE CLOSURE 10.2 SIMULATION OF STRATOCUMULUS AND DEEP CONVECTIVE CLOUDS WITH THE DYNAMIC RECONSTRUCTION TURBULENCE CLOSURE Xiaoming Shi 1 * Fotini Katopodes Chow 1, Robert L. Street 2 and George H. Bryan 3 1 University

More information

Improved rainfall and cloud-radiation interaction with Betts-Miller-Janjic cumulus scheme in the tropics

Improved rainfall and cloud-radiation interaction with Betts-Miller-Janjic cumulus scheme in the tropics Improved rainfall and cloud-radiation interaction with Betts-Miller-Janjic cumulus scheme in the tropics Tieh-Yong KOH 1 and Ricardo M. FONSECA 2 1 Singapore University of Social Sciences, Singapore 2

More information

Object-based approaches for exploring high-resolution simulations

Object-based approaches for exploring high-resolution simulations GEWEX Convection-Permitting Climate Modeling Meeting, Boulder, Colorado, 6-8 Sept 2016 Object-based approaches for exploring high-resolution simulations Jean-Pierre CHABOUREAU Laboratoire d Aérologie,

More information

A brief overview of the scheme is given below, taken from the whole description available in Lopez (2002).

A brief overview of the scheme is given below, taken from the whole description available in Lopez (2002). Towards an operational implementation of Lopez s prognostic large scale cloud and precipitation scheme in ARPEGE/ALADIN NWP models F.Bouyssel, Y.Bouteloup, P. Marquet Météo-France, CNRM/GMAP, 42 av. G.

More information

ECMWF now and future dry PBL stratocumulus shallow cumulus. ongoing work parcel numerics stratocumulus down-drafts shallow cumulus

ECMWF now and future dry PBL stratocumulus shallow cumulus. ongoing work parcel numerics stratocumulus down-drafts shallow cumulus An integral approach to modeling PBL transports and clouds Martin Köhler, ECMWF EDMF @ ECMWF now and future dry PBL stratocumulus shallow cumulus stratocumulus: evaluation against observations EPIC marine

More information

Thermodynamics of Atmospheres and Oceans

Thermodynamics of Atmospheres and Oceans Thermodynamics of Atmospheres and Oceans Judith A. Curry and Peter J. Webster PROGRAM IN ATMOSPHERIC AND OCEANIC SCIENCES DEPARTMENT OF AEROSPACE ENGINEERING UNIVERSITY OF COLORADO BOULDER, COLORADO USA

More information

2 DESCRIPTION OF THE LES MODEL

2 DESCRIPTION OF THE LES MODEL SENSITIVITY OF THE MARINE STRATOCUMULUS DIURNAL CYCLE TO THE AEROSOL LOADING I. Sandu 1, J.L. Brenguier 1, O. Geoffroy 1, O. Thouron 1, V. Masson 1 1 GAME/CNRM, METEO-FRANCE - CNRS, FRANCE 1 INTRODUCTION

More information

Investigating 2D Modeling of Atmospheric Convection in the PBL

Investigating 2D Modeling of Atmospheric Convection in the PBL 15 APRIL 004 MOENG ET AL. 889 Investigating D Modeling of Atmospheric Convection in the PBL C.-H. MOENG National Center for Atmospheric Research,* Boulder, Colorado J. C. MCWILLIAMS National Center for

More information

ERAD Enhancement of precipitation by liquid carbon dioxide seeding. Proceedings of ERAD (2002): c Copernicus GmbH 2002

ERAD Enhancement of precipitation by liquid carbon dioxide seeding. Proceedings of ERAD (2002): c Copernicus GmbH 2002 Proceedings of ERAD (2002): 150 154 c Copernicus GmbH 2002 ERAD 2002 Enhancement of precipitation by liquid carbon dioxide seeding K. Nishiyama 1, K. Wakimizu 2, Y. Suzuki 2, H. Yoshikoshi 2, and N. Fukuta

More information

Thunderstorm Downburst Prediction: An Integrated Remote Sensing Approach. Ken Pryor Center for Satellite Applications and Research (NOAA/NESDIS)

Thunderstorm Downburst Prediction: An Integrated Remote Sensing Approach. Ken Pryor Center for Satellite Applications and Research (NOAA/NESDIS) Thunderstorm Downburst Prediction: An Integrated Remote Sensing Approach Ken Pryor Center for Satellite Applications and Research (NOAA/NESDIS) Topics of Discussion Thunderstorm Life Cycle Thunderstorm

More information

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size L Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size 0.01L or smaller are subject to substantial viscous

More information

Bulk Boundary-Layer Models

Bulk Boundary-Layer Models Copyright 2006, David A. Randall Revised Wed, 8 Mar 06, 16:19:34 Bulk Boundary-Layer Models David A. Randall Department of Atmospheric Science Colorado State University, Fort Collins, Colorado 80523 Ball

More information

The Effect of Sea Spray on Tropical Cyclone Intensity

The Effect of Sea Spray on Tropical Cyclone Intensity The Effect of Sea Spray on Tropical Cyclone Intensity Jeffrey S. Gall, Young Kwon, and William Frank The Pennsylvania State University University Park, Pennsylvania 16802 1. Introduction Under high-wind

More information

9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS

9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS 9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS Ulrike Wissmeier, Robert Goler University of Munich, Germany 1 Introduction One does not associate severe storms with the tropics

More information

HIERARCHY OF MICROPHYSICAL PARAMETERIZATIONS SUITABLE FOR CLOUD AND MESOSCALE MODELS.

HIERARCHY OF MICROPHYSICAL PARAMETERIZATIONS SUITABLE FOR CLOUD AND MESOSCALE MODELS. HIERARCHY OF MICROPHYSICAL PARAMETERIZATIONS SUITABLE FOR CLOUD AND MESOSCALE MODELS. William D. Hall, Roy M. Rasmussen, and Gregory Thompson National Center for Atmospheric Research, Boulder, Colorado

More information

Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica

Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica S. Argentini, I. Pietroni,G. Mastrantonio, A. Viola, S. Zilitinchevich ISAC-CNR Via del Fosso del Cavaliere 100,

More information

Atmospheric Boundary Layers

Atmospheric Boundary Layers Lecture for International Summer School on the Atmospheric Boundary Layer, Les Houches, France, June 17, 2008 Atmospheric Boundary Layers Bert Holtslag Introducing the latest developments in theoretical

More information

P1.17 SENSITIVITY OF THE RETRIEVAL OF STRATOCUMULUS CLOUD LIQUID WATER AND PRECIPITATION FLUX TO DOPPLER RADAR PARAMETERS

P1.17 SENSITIVITY OF THE RETRIEVAL OF STRATOCUMULUS CLOUD LIQUID WATER AND PRECIPITATION FLUX TO DOPPLER RADAR PARAMETERS P1.17 SENSITIVITY OF THE RETRIEVAL OF STRATOCUMULUS CLOUD LIQUID WATER AND PRECIPITATION FLUX TO DOPPLER RADAR PARAMETERS Yefim L. Kogan*, Zena N. Kogan, and David B. Mechem Cooperative Institute for Mesoscale

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Observations and Large-Eddy Simulations of Entrainment in the Sheared Sahelian Boundary Layer

Observations and Large-Eddy Simulations of Entrainment in the Sheared Sahelian Boundary Layer Boundary-Layer Meteorol (212) 142:79 11 DOI 1.17/s1546-11-9661-x ARTICLE Observations and Large-Eddy Simulations of Entrainment in the Sheared Sahelian Boundary Layer Guylaine Canut Fleur Couvreux Marie

More information

The Retrieval of Stratus Cloud Droplet Effective Radius with Cloud Radars

The Retrieval of Stratus Cloud Droplet Effective Radius with Cloud Radars JUNE 00 FRISCH ET AL. 835 The Retrieval of Stratus Cloud Droplet Effective Radius with Cloud Radars SHELBY FRISCH NOAA/Environmental Technology Laboratory, Boulder, Colorado, and Colorado State University,

More information

The TRMM Precipitation Radar s View of Shallow, Isolated Rain

The TRMM Precipitation Radar s View of Shallow, Isolated Rain OCTOBER 2003 NOTES AND CORRESPONDENCE 1519 The TRMM Precipitation Radar s View of Shallow, Isolated Rain COURTNEY SCHUMACHER AND ROBERT A. HOUZE JR. Department of Atmospheric Sciences, University of Washington,

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model W. O Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California

More information

Extending EDMF into the statistical modeling of boundary layer clouds

Extending EDMF into the statistical modeling of boundary layer clouds Extending EDMF into the statistical modeling of boundary layer clouds Roel A. J. Neggers ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom Roel.Neggers@ecmwf.int 1 Introduction The representation

More information

1.5 DOPPLER LIDAR MEASUREMENTS OF VERTICAL VELOCITY SPECTRA, LENGTH SCALES, AND COHERENCE IN THE CONVECTIVE PLANETARY BOUNDARY LAYER

1.5 DOPPLER LIDAR MEASUREMENTS OF VERTICAL VELOCITY SPECTRA, LENGTH SCALES, AND COHERENCE IN THE CONVECTIVE PLANETARY BOUNDARY LAYER 1.5 DOPPLER LIDAR MEASUREMENTS OF VERTICAL VELOCITY SPECTRA, LENGTH SCALES, AND COHERENCE IN THE CONVECTIVE PLANETARY BOUNDARY LAYER Donald H. Lenschow, Marie Lothon, and Shane D. Mayor National Center

More information

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine. The Atmospheric Heat Engine. Atmospheric Heat Engine

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine. The Atmospheric Heat Engine. Atmospheric Heat Engine Lecture Ch. 1 Review of simplified climate model Revisiting: Kiehl and Trenberth Overview of atmospheric heat engine Current research on clouds-climate Curry and Webster, Ch. 1 For Wednesday: Read Ch.

More information

Threshold radar reflectivity for drizzling clouds

Threshold radar reflectivity for drizzling clouds Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L03807, doi:10.1029/2007gl031201, 2008 Threshold radar reflectivity for drizzling clouds Yangang Liu, 1 Bart Geerts, 2 Mark Miller, 2

More information

Aiguo Dai * and Kevin E. Trenberth National Center for Atmospheric Research (NCAR) $, Boulder, CO. Abstract

Aiguo Dai * and Kevin E. Trenberth National Center for Atmospheric Research (NCAR) $, Boulder, CO. Abstract 9.2 AMS 14 th Symposium on Global Change and Climate Variations, 9-13 Feb. 2003, Long Beach, CA. Diurnal Variations in the Community Climate System Model Aiguo Dai * and Kevin E. Trenberth National Center

More information

A Framework to Evaluate Unified Parameterizations for Seasonal Prediction: An LES/SCM Parameterization Test-Bed

A Framework to Evaluate Unified Parameterizations for Seasonal Prediction: An LES/SCM Parameterization Test-Bed DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Framework to Evaluate Unified Parameterizations for Seasonal Prediction: An LES/SCM Parameterization Test-Bed Joao Teixeira

More information

Cloud and Dynamical Processes of Precipitating Warm Cumuli During RICO

Cloud and Dynamical Processes of Precipitating Warm Cumuli During RICO Cloud and Dynamical Processes of Precipitating Warm Cumuli During RICO Bart Geerts and Gabor Vali, University of Wyoming Jeffrey French, NOAA Air Resources Laboratory 1 This proposal is linked to the Rain

More information

Correspondence to: C. N. Franklin

Correspondence to: C. N. Franklin Atmos. Chem. Phys., 14, 6557 6570, 2014 doi:10.5194/acp-14-6557-2014 Author(s) 2014. CC Attribution 3.0 License. The effects of turbulent collision coalescence on precipitation formation and precipitation-dynamical

More information

Boundary layer processes. Bjorn Stevens Max Planck Institute for Meteorology, Hamburg

Boundary layer processes. Bjorn Stevens Max Planck Institute for Meteorology, Hamburg Boundary layer processes Bjorn Stevens Max Planck Institute for Meteorology, Hamburg The Atmospheric Boundary Layer (ABL) An Abstraction (Wippermann 76) The bottom 100-3000 m of the Troposphere (Stull

More information

Dynamical System Approach to Organized Convection Parameterization for GCMs. Mitchell W. Moncrieff

Dynamical System Approach to Organized Convection Parameterization for GCMs. Mitchell W. Moncrieff Dynamical System Approach to Organized Convection Parameterization for GCMs Mitchell W. Moncrieff Atmospheric Modeling & Predictability Section Climate & Global Dynamics Laboratory NCAR Year of Tropical

More information

A New Ocean Mixed-Layer Model Coupled into WRF

A New Ocean Mixed-Layer Model Coupled into WRF ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2012, VOL. 5, NO. 3, 170 175 A New Ocean Mixed-Layer Model Coupled into WRF WANG Zi-Qian 1,2 and DUAN An-Min 1 1 The State Key Laboratory of Numerical Modeling

More information

Boundary layer parameterization and climate. Chris Bretherton. University of Washington

Boundary layer parameterization and climate. Chris Bretherton. University of Washington Boundary layer parameterization and climate Chris Bretherton University of Washington Some PBL-related climate modeling issues PBL cloud feedbacks on tropical circulations, climate sensitivity and aerosol

More information

Improved prediction of boundary layer clouds

Improved prediction of boundary layer clouds from Newsletter Number 14 Summer 25 METEOROLOGY Improved prediction of boundary layer clouds doi:1.21957/812mkwz37 This article appeared in the Meteorology section of ECMWF Newsletter No. 14 Summer 25,

More information

The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km

The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km Martina Tudor, Stjepan Ivatek-Šahdan and Antonio Stanešić tudor@cirus.dhz.hr Croatian

More information

Leo Donner GFDL/NOAA, Princeton University. EGU, Vienna, 18 April 2016

Leo Donner GFDL/NOAA, Princeton University. EGU, Vienna, 18 April 2016 Cloud Dynamical Controls on Climate Forcing by Aerosol-Cloud Interactions: New Insights from Observations, High- Resolution Models, and Parameterizations Leo Donner GFDL/NOAA, Princeton University EGU,

More information

EUREC 4 A. A proposal for a HALO deployment out of Barbados to measure the winter North Atlantic Trades in February 2020

EUREC 4 A. A proposal for a HALO deployment out of Barbados to measure the winter North Atlantic Trades in February 2020 EUREC 4 A A proposal for a HALO deployment out of Barbados to measure the winter North Atlantic Trades in February 2020 Felix Ament, Sandrine Bony, Susanne Crewell, Bernhard Mayer, Markus Rapp, Bjorn Stevens,

More information

Second Year Report: Sea-salt Aerosol in Hawaii and the Influence of Large Organized Structures (LOS) or Rolls on Fluxes and Visibility

Second Year Report: Sea-salt Aerosol in Hawaii and the Influence of Large Organized Structures (LOS) or Rolls on Fluxes and Visibility Second Year Report: Sea-salt Aerosol in Hawaii and the Influence of Large Organized Structures (LOS) or Rolls on Fluxes and Visibility Antony D. Clarke Department of Oceanography, University of Hawaii

More information

Land-surface response to shallow cumulus. Fabienne Lohou and Edward Patton

Land-surface response to shallow cumulus. Fabienne Lohou and Edward Patton Land-surface response to shallow cumulus Fabienne Lohou and Edward Patton Outline 1/ SEB response on average and locally ( Radiative and turbulent effects (not shown here)) Solar input Turbulence Radiative

More information

Practical Use of the Skew-T, log-p diagram for weather forecasting. Primer on organized convection

Practical Use of the Skew-T, log-p diagram for weather forecasting. Primer on organized convection Practical Use of the Skew-T, log-p diagram for weather forecasting Primer on organized convection Outline Rationale and format of the skew-t, log-p diagram Some basic derived diagnostic measures Characterizing

More information

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008 A Global Atmospheric Model Joe Tribbia NCAR Turbulence Summer School July 2008 Outline Broad overview of what is in a global climate/weather model of the atmosphere Spectral dynamical core Some results-climate

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 8. Parameterization of BL Turbulence I In this lecture Fundamental challenges and grid resolution constraints for BL parameterization Turbulence closure (e. g. first-order closure and TKE) parameterizations

More information

P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL

P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL Preprints, 21 st Conference on Severe Local Storms 12-16 August 2002, San Antonio, Texas P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL 1. INTRODUCTION Catherine A. Finley * Department of Earth Sciences

More information

Mark T. Stoelinga*, Christopher P. Woods, and John D. Locatelli. University of Washington, Seattle, Washington 2. THE MODEL

Mark T. Stoelinga*, Christopher P. Woods, and John D. Locatelli. University of Washington, Seattle, Washington 2. THE MODEL P2.51 PREDICTION OF SNOW PARTICLE HABIT TYPES WITHIN A SINGLE-MOMENT BULK MICROPHYSICAL SCHEME Mark T. Stoelinga*, Christopher P. Woods, and John D. Locatelli University of Washington, Seattle, Washington

More information

Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model

Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model Cécile Hannay, Dave Williamson, Jerry Olson, Rich Neale, Andrew Gettelman,

More information

New Observations of Precipitation Initiation in Warm Cumulus Clouds

New Observations of Precipitation Initiation in Warm Cumulus Clouds 2972 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 65 New Observations of Precipitation Initiation in Warm Cumulus Clouds JENNIFER D. SMALL AND PATRICK Y. CHUANG Cloud and Aerosol

More information

Entrainment in laboratory analogs of cumulus and stratocumulus clouds tops

Entrainment in laboratory analogs of cumulus and stratocumulus clouds tops Entrainment in laboratory analogs of cumulus and stratocumulus clouds tops A. Gorska 1,3, S. P. Malinowski 1,3, S. Blonski 2, J. Fugal 3,4, T. A. Kowalewski 2, P. Korczyk 2, W. Kumala 1 1 Institute of

More information