Space-time downscaling under error in computer model output

Size: px
Start display at page:

Download "Space-time downscaling under error in computer model output"

Transcription

1 Space-time downscaling under error in computer model output University of Michigan Department of Biostatistics joint work with Alan E. Gelfand, David M. Holland, Peter Guttorp and Peter Craigmile

2 Introduction In many environmental disciplines data come from two sources: monitoring networks and numerical models Numerical models are deterministic mathematical models used to predict environmental spatio-temporal processes Describe the underlying physical and chemical processes via partial differential equations Equations solved via numerical methods by discretizing space and time Predictions are given in terms of averages over grid cells

3 Introduction Observed average temperature Year 7 Climate model ouput for average temperature Year Goteborg Borlange Stockholm Sparse locations Missing data Essentially, true value Large spatial domains No missingness Calibration concerns

4 Introduction Observed average temperature Year 7 Borlange Stockholm Climate model ouput for average temperature Year Sparse locations Missing data Essentially, true value Large spatial domains No missingness Calibration concerns

5 Our goal Fuse the two sources of data Obtain improved predictions at point level by downscaling the computer model output Explicitly address the difference in spatial scale Outputs from numerical models are given in terms of predictions over grid cells Observations from monitors are collected at points Calibrate the numerical model Correct outputs from numerical models

6 Previous approaches Approaches for downscaling include: Atmospheric sciences pproaches Algorithmic Model-based approaches Wikle and Berliner (5) Bayesian Melding of Fuentes and Raftery (5)

7 Downscaler: main idea Observed average temperature Year 7 Climate model ouput for average temperature Year Goteborg Borlange Stockholm

8 Downscaler: main idea Observed average temperature Year 7 Borlange Stockholm Climate model ouput for average temperature Year

9 Downscaler: main idea Observed average temperature Year 7 Borlange Stockholm Climate model ouput for average temperature Year To each point s in the domain S with observation Y (s) we associate the numerical model output at grid cell B, X (B), where B is such that s B: Y (s) X (B)

10 Downscaler Time t is fixed. Y (s) observation at point s, X (B) numerical model output at grid cell B. For s in B: Y (s) = β (s) + β 1 (s)x (B) + ε(s) ε(s) ind N(,τ ) with β i (s) = β i + β i (s), i=,1. β (s) and β 1 (s) correlated mean-zero GP.

11 Downscaler Time t is fixed. Y (s) observation at point s, X (B) numerical model output at grid cell B. For s in B: Y (s) = β (s) + β 1 (s)x (B) + ε(s) ε(s) ind N(,τ ) with β i (s) = β i + β i (s), i=,1. β (s) and β 1 (s) correlated mean-zero GP. Extension to space-time: For s in B and for each t Y (s,t) = β (s,t)+ β 1 (s,t)x (B,t)+ε(s,t) with β i (s,t) = β it + β i (s,t), i=,1. Temporal dependence in β it and β i (s,t): dynamic or independent ε(s,t) ind N(,τ )

12 Downscaler Very flexible and natural hierarchical Bayesian model specification Driven by true station data rather than uncalibrated model output Computationally feasible also for large spatial domains Allows local calibration of the numerical model output Endows the spatial process Y (s) with a non-stationary covariance structure Straightforward downscaling prediction at an unmonitored sites Better predictive performance than other methods (geostatistical and model-based)

13 Extending the downscaler Propose a neighbor-based extension of the downscaler model accounts for information in the numerical model output at neighboring grid cells accounts for uncertainty in the association Y (s) X (B) with s in B

14 Extending the downscaler Propose a neighbor-based extension of the downscaler model accounts for information in the numerical model output at neighboring grid cells accounts for uncertainty in the association Y (s) X (B) with s in B We call the new downscaler a smoothed downscaler using spatially-varying random weights

15 Static setting

16 Smoothed downscaler with spatially-varying weights Downscaler: Y (s) = β (s) + β 1 (s)x (B) + ε(s) s B

17 Smoothed downscaler with spatially-varying weights Downscaler: Y (s) = β (s) + β 1 (s)x (B) + ε(s) s B We don t use the numerical model X (B) output directly anymore. For each s, we introduce a new regressor X (s) and we assume that Y (s) = β (s) + β 1 X (s) + ε(s) ε(s) ind N(,τ ) where X (s) = g k=1 w k(s)x (B k ), and w k (s) random and spatially-varying.

18 Smoothed downscaler with spatially-varying weights Downscaler: Y (s) = β (s) + β 1 (s)x (B) + ε(s) s B We don t use the numerical model X (B) output directly anymore. For each s, we introduce a new regressor X (s) and we assume that Y (s) = β (s) + β 1 X (s) + ε(s) ε(s) ind N(,τ ) where X (s) = g k=1 w k(s)x (B k ), and w k (s) random and spatially-varying. Let r k, k = 1,...,g be the centroids of numerical model grid cells B k, k = 1,...,g, then w k (s) := K (s r k;ψ) exp(q(r k )) g l=1 K (s r l;ψ) exp(q(r l ))

19 Smoothed downscaler with spatially-varying weights Downscaler: Y (s) = β (s) + β 1 (s)x (B) + ε(s) s B We don t use the numerical model X (B) output directly anymore. For each s, we introduce a new regressor X (s) and we assume that Y (s) = β (s) + β 1 X (s) + ε(s) ε(s) ind N(,τ ) where X (s) = g k=1 w k(s)x (B k ), and w k (s) random and spatially-varying. Let r k, k = 1,...,g be the centroids of numerical model grid cells B k, k = 1,...,g, then w k (s) := K (s r k;ψ) exp(q(r k )) g l=1 K (s r l;ψ) exp(q(r l )) Q( ) mean-zero GP with variance σ Q, exponential covariance function and decay parameter φ Q. K (s r k ;ψ) = exp( ψ s r k ).

20 Smoothed downscaler with spatially-varying random weights Observed average temperature Year 7 Climate model ouput for average temperature Year Goteborg Borlange Stockholm

21 Smoothed downscaler with spatially-varying random weights Observed average temperature Year 7 Borlange Stockholm Climate model ouput for average temperature Year

22 Smoothed downscaler with spatially-varying random weights Observed average temperature Year 7 Borlange Stockholm Climate model ouput for average temperature Year

23 Smoothed downscaler with spatially-varying random weights Observed average temperature Year 7 Borlange Stockholm Climate model ouput for average temperature Year

24 w_(s) w_(s) w_1(s) w_3(s) w_5(s) Smoothed downscaler with spatially-varying random weights Observed average temperature Year 7 Borlange Stockholm Climate model ouput for average temperature Year To each point s in the domain S with observation Y (s) we associate X (s), where X (s)= g k=1 w k(s)x(b k ) Y (s) X (s)

25 Spatio-temporal setting

26 Smoothed downscaler with spatially-varying weights Y (s,t) observations at s and time t, X (B,t) numerical model output at grid cell B and time t: Y (s,t) = β (s,t) + β 1,t X (s,t) + ε(s,t) ε(s,t) ind N(,τ ) with β (s,t) = β t + β (s,t), X (s,t) = g k=1 w k(s,t)x (B k,t), and w k (s,t) random and varying both in space and time.

27 Smoothed downscaler with spatially-varying weights Y (s,t) observations at s and time t, X (B,t) numerical model output at grid cell B and time t: Y (s,t) = β (s,t) + β 1,t X (s,t) + ε(s,t) ε(s,t) ind N(,τ ) with β (s,t) = β t + β (s,t), X (s,t) = g k=1 w k(s,t)x (B k,t), and w k (s,t) random and varying both in space and time. w k (s,t) := K (s r k;ψ) exp(q(r k,t)) g l=1 K (s r l;ψ) exp(q(r l,t))

28 Smoothed downscaler with spatially-varying weights Y (s,t) observations at s and time t, X (B,t) numerical model output at grid cell B and time t: Y (s,t) = β (s,t) + β 1,t X (s,t) + ε(s,t) ε(s,t) ind N(,τ ) with β (s,t) = β t + β (s,t), X (s,t) = g k=1 w k(s,t)x (B k,t), and w k (s,t) random and varying both in space and time. w k (s,t) := K (s r k;ψ) exp(q(r k,t)) g l=1 K (s r l;ψ) exp(q(r l,t)) Temporal dependence in β it, i =,1, β (s,t) and Q(r k,t): either (i) independent in time, or (ii) dynamic.

29 Application 5 5 Borlange Stockholm Goteborg Yearly average temperature: observations and regional climate model output for years Climate model output for southern Sweden: the Rossby Centre Regional Climate model RCA3 at 1-km grid resolution (g =,). 17 monitoring sites used for fitting the model and sites used for validation: Borlange and Goteborg Missing data:.5% Time-varying parameters: independent in time

30 Observations and climate model output Observations Regional climate model output Scatterplot of observed yearly average temperature at the 17 training sites versus the climate model output at the corresponding grid cells. Correlation coefficient: R =.

31 Observations, climate model output and predictions Borlange Goteborg We will look at observations and predictions at the 17 training sites by the climate model output and the downscaler model with spatially-varying random weights.

32 Observations, climate model output and predictions Location 1 Location Location 3 Temperature Temperature Temperature Year Year Year Location Location 5 Location Temperature Temperature Temperature Year Year Year Location 7 Location Location 9 Temperature Temperature Temperature Year Year Year Observed yearly average temperature at the 17 training sites (black line), climate model output (blue line), downscaler predictions (red line)

33 Observations, climate model output and predictions Location 1 Location 11 Location 1 Temperature Temperature Temperature Year Year Year Location 13 Location 1 Location 15 Temperature Temperature Temperature Year Year Year Location 1 Location 17 Temperature Temperature Year Year Observed yearly average temperature at the 17 training sites (black line), climate model output (blue line), downscaler predictions (red line)

34 Mean Absolute Error Mean Absolute Error 1 3 Downscaler Regional climate model Year Mean absolute error at the 17 training sites: climate model output (blue line), downscaler (red line)

35 Results Predictive performance at the 17 training sites, averaged over space and time. Results are in degree Celsius. Coverage Avg. length Method MSPE MAPE 95% PI 95% PI Regional climate model 1.9. Smoothed downscaler with spatially-varying weights % 7.

36 Observations, climate model output and predictions Goteborg Average yearly temperature (in degree Celsius) Year Observed yearly average temperature at Goteborg (black line), climate model output (blue line), downscaler predictions (red line). The shaded grey area indicates the 95% prediction interval.

37 Observations, climate model output and predictions Borlange Average yearly temperature (in degree Celsius) Year Observed yearly average temperature at Borlange (black line), climate model output (blue line), downscaler predictions (red line). The shaded grey area indicates the 95% prediction interval.

38 Results Predictive performance at Borlange and Goteborg averaged over years Results are in degree Celsius. Coverage Avg. length City Method MSPE MAPE 95% PI 95% PI Regional climate model Goteborg Smoothed downscaler with spatially-varying weights % 5.7 Borlange Regional climate model Smoothed downscaler with spatially-varying weights % 5.9

39 Predictions: year 199 Climate model ouput Year 199 Downscaler Year Goteborg Borlange Stockholm 5 5 Goteborg Borlange Stockholm

40 Predictions: year 199 Downscaler Climate model output Year Borlange Stockholm Goteborg

41 Predictions: year 7 Climate model ouput Year 7 Downscaler Year Goteborg Borlange Stockholm 5 5 Goteborg Borlange Stockholm

42 Predictions: year 7 Downscaler Climate model ouput Year Borlange Stockholm Goteborg

43 Conclusions Presented a method to downscale the output from numerical models that accounts for uncertainty in the association of a site to its putatively associated grid cells In our application, predictions are less biased than the predictions from a regional climate model. Currently, we are comparing the merits of this approach versus those of an upscaling approach

Fusing space-time data under measurement error for computer model output

Fusing space-time data under measurement error for computer model output for computer model output (vjb2@stat.duke.edu) SAMSI joint work with Alan E. Gelfand and David M. Holland Introduction In many environmental disciplines data come from two sources: monitoring networks

More information

Fusing point and areal level space-time data. data with application to wet deposition

Fusing point and areal level space-time data. data with application to wet deposition Fusing point and areal level space-time data with application to wet deposition Alan Gelfand Duke University Joint work with Sujit Sahu and David Holland Chemical Deposition Combustion of fossil fuel produces

More information

A Spatio-Temporal Downscaler for Output From Numerical Models

A Spatio-Temporal Downscaler for Output From Numerical Models Supplementary materials for this article are available at 10.1007/s13253-009-0004-z. A Spatio-Temporal Downscaler for Output From Numerical Models Veronica J. BERROCAL,AlanE.GELFAND, and David M. HOLLAND

More information

Space-Time Data fusion Under Error in Computer Model Output: An Application to Modeling Air Quality

Space-Time Data fusion Under Error in Computer Model Output: An Application to Modeling Air Quality Biometrics 68, 837 848 September 2012 DOI: 10.1111/j.1541-0420.2011.01725.x Space-Time Data fusion Under Error in Computer Model Output: An Application to Modeling Air Quality Veronica J. Berrocal, 1,

More information

NRCSE. Misalignment and use of deterministic models

NRCSE. Misalignment and use of deterministic models NRCSE Misalignment and use of deterministic models Work with Veronica Berrocal Peter Craigmile Wendy Meiring Paul Sampson Gregory Nikulin The choice of spatial scale some questions 1. Which spatial scale

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Chris Paciorek Department of Biostatistics Harvard School of Public Health application joint

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley Department of Forestry & Department of Geography, Michigan State University, Lansing

More information

Bruno Sansó. Department of Applied Mathematics and Statistics University of California Santa Cruz bruno

Bruno Sansó. Department of Applied Mathematics and Statistics University of California Santa Cruz   bruno Bruno Sansó Department of Applied Mathematics and Statistics University of California Santa Cruz http://www.ams.ucsc.edu/ bruno Climate Models Climate Models use the equations of motion to simulate changes

More information

Of what use is a statistician in climate modeling?

Of what use is a statistician in climate modeling? Of what use is a statistician in climate modeling? Peter Guttorp University of Washington Norwegian Computing Center peter@stat.washington.edu http://www.stat.washington.edu/peter Acknowledgements ASA

More information

Bayesian hierarchical modelling for data assimilation of past observations and numerical model forecasts

Bayesian hierarchical modelling for data assimilation of past observations and numerical model forecasts Bayesian hierarchical modelling for data assimilation of past observations and numerical model forecasts Stan Yip Exeter Climate Systems, University of Exeter c.y.yip@ex.ac.uk Joint work with Sujit Sahu

More information

Can a regional climate model reproduce observed extreme temperatures? Peter F. Craigmile

Can a regional climate model reproduce observed extreme temperatures? Peter F. Craigmile Can a regional climate model reproduce observed extreme temperatures? Peter F. Craigmile http://www.stat.osu.edu/~pfc/ Workshop on the analysis of environmental extremes, The Pennsylvania State University,

More information

Bayesian spatial quantile regression

Bayesian spatial quantile regression Brian J. Reich and Montserrat Fuentes North Carolina State University and David B. Dunson Duke University E-mail:reich@stat.ncsu.edu Tropospheric ozone Tropospheric ozone has been linked with several adverse

More information

Statistics for extreme & sparse data

Statistics for extreme & sparse data Statistics for extreme & sparse data University of Bath December 6, 2018 Plan 1 2 3 4 5 6 The Problem Climate Change = Bad! 4 key problems Volcanic eruptions/catastrophic event prediction. Windstorms

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

A Geostatistical Approach to Linking Geographically-Aggregated Data From Different Sources

A Geostatistical Approach to Linking Geographically-Aggregated Data From Different Sources A Geostatistical Approach to Linking Geographically-Aggregated Data From Different Sources Carol A. Gotway Crawford National Center for Environmental Health Centers for Disease Control and Prevention,

More information

Statistical Models for Monitoring and Regulating Ground-level Ozone. Abstract

Statistical Models for Monitoring and Regulating Ground-level Ozone. Abstract Statistical Models for Monitoring and Regulating Ground-level Ozone Eric Gilleland 1 and Douglas Nychka 2 Abstract The application of statistical techniques to environmental problems often involves a tradeoff

More information

Hierarchical Modeling for Spatio-temporal Data

Hierarchical Modeling for Spatio-temporal Data Hierarchical Modeling for Spatio-temporal Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of

More information

On Gaussian Process Models for High-Dimensional Geostatistical Datasets

On Gaussian Process Models for High-Dimensional Geostatistical Datasets On Gaussian Process Models for High-Dimensional Geostatistical Datasets Sudipto Banerjee Joint work with Abhirup Datta, Andrew O. Finley and Alan E. Gelfand University of California, Los Angeles, USA May

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

Regional climate model assessment via spatio-temporal modeling. Peter F. Craigmile

Regional climate model assessment via spatio-temporal modeling. Peter F. Craigmile Regional climate model assessment via spatio-temporal modeling Peter F. Craigmile http://www.stat.osu.edu/~pfc/ Symposium on Data Science and Statistics, Reston, VA May 16-19, 2018. Adapted from research

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

My research interests

My research interests My research interests Peter F. Craigmile http://www.stat.osu.edu/~pfc/ Stat 8010 Department of Statistics The Ohio State University 22 January 2016 1 Being a graduate student Notes on the PhD Degree by

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Wrapped Gaussian processes: a short review and some new results

Wrapped Gaussian processes: a short review and some new results Wrapped Gaussian processes: a short review and some new results Giovanna Jona Lasinio 1, Gianluca Mastrantonio 2 and Alan Gelfand 3 1-Università Sapienza di Roma 2- Università RomaTRE 3- Duke University

More information

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University Seminar p.1/28 Predictive spatio-temporal models for spatially sparse environmental data Xavier de Luna and Marc G. Genton xavier.deluna@stat.umu.se and genton@stat.ncsu.edu http://www.stat.umu.se/egna/xdl/index.html

More information

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Models for models Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Outline Statistical models and tools Spatial fields (Wavelets) Climate regimes (Regression and clustering)

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Online Updating of Computer Model Output Using Real-Time Sensor Data

Online Updating of Computer Model Output Using Real-Time Sensor Data Supplementary materials for this article are available online. Please go to http://www.tandfonline.com/r/tech Online Updating of Computer Model Output Using Real-Time Sensor Data Huijing JIANG IBM Watson

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

Gaussian predictive process models for large spatial data sets.

Gaussian predictive process models for large spatial data sets. Gaussian predictive process models for large spatial data sets. Sudipto Banerjee, Alan E. Gelfand, Andrew O. Finley, and Huiyan Sang Presenters: Halley Brantley and Chris Krut September 28, 2015 Overview

More information

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models Andrew O. Finley 1, Sudipto Banerjee 2, and Bradley P. Carlin 2 1 Michigan State University, Departments

More information

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Chris Paciorek March 11, 2005 Department of Biostatistics Harvard School of

More information

Bayesian Hierarchical Models

Bayesian Hierarchical Models Bayesian Hierarchical Models Gavin Shaddick, Millie Green, Matthew Thomas University of Bath 6 th - 9 th December 2016 1/ 34 APPLICATIONS OF BAYESIAN HIERARCHICAL MODELS 2/ 34 OUTLINE Spatial epidemiology

More information

Statistical integration of disparate information for spatially-resolved PM exposure estimation

Statistical integration of disparate information for spatially-resolved PM exposure estimation Statistical integration of disparate information for spatially-resolved PM exposure estimation Chris Paciorek Department of Biostatistics May 4, 2006 www.biostat.harvard.edu/~paciorek L Y X - FoilT E X

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes EUROHEIS2 Kuopio, Finland 17-18 August 2010 Aki Vehtari (former Helsinki University of Technology) Department of Biomedical Engineering and Computational Science (BECS) Acknowledgments Researchers - Jarno

More information

Sub-kilometer-scale space-time stochastic rainfall simulation

Sub-kilometer-scale space-time stochastic rainfall simulation Picture: Huw Alexander Ogilvie Sub-kilometer-scale space-time stochastic rainfall simulation Lionel Benoit (University of Lausanne) Gregoire Mariethoz (University of Lausanne) Denis Allard (INRA Avignon)

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

Geostatistics for Seismic Data Integration in Earth Models

Geostatistics for Seismic Data Integration in Earth Models 2003 Distinguished Instructor Short Course Distinguished Instructor Series, No. 6 sponsored by the Society of Exploration Geophysicists European Association of Geoscientists & Engineers SUB Gottingen 7

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique

Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique Katie Colborn, PhD Department of Biostatistics and Informatics University of Colorado

More information

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources th International Conference on Information Fusion Chicago, Illinois, USA, July -8, Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources Priyadip Ray Department of Electrical

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

Gaussian Processes. 1 What problems can be solved by Gaussian Processes?

Gaussian Processes. 1 What problems can be solved by Gaussian Processes? Statistical Techniques in Robotics (16-831, F1) Lecture#19 (Wednesday November 16) Gaussian Processes Lecturer: Drew Bagnell Scribe:Yamuna Krishnamurthy 1 1 What problems can be solved by Gaussian Processes?

More information

Data are collected along transect lines, with dense data along. Spatial modelling using GMRFs. 200m. Today? Spatial modelling using GMRFs

Data are collected along transect lines, with dense data along. Spatial modelling using GMRFs. 200m. Today? Spatial modelling using GMRFs Centre for Mathematical Sciences Lund University Engineering geology Lund University Results A non-stationary extension The model Estimation Gaussian Markov random fields Basics Approximating Mate rn covariances

More information

Spatio-temporal prediction of site index based on forest inventories and climate change scenarios

Spatio-temporal prediction of site index based on forest inventories and climate change scenarios Forest Research Institute Spatio-temporal prediction of site index based on forest inventories and climate change scenarios Arne Nothdurft 1, Thilo Wolf 1, Andre Ringeler 2, Jürgen Böhner 2, Joachim Saborowski

More information

way and atmospheric models

way and atmospheric models Scale-consistent consistent two-way way coupling of land-surface and atmospheric models COSMO-User-Seminar 9-11 March 2009 Annika Schomburg, Victor Venema, Felix Ament, Clemens Simmer TR / SFB 32 Objective

More information

Annex I to Target Area Assessments

Annex I to Target Area Assessments Baltic Challenges and Chances for local and regional development generated by Climate Change Annex I to Target Area Assessments Climate Change Support Material (Climate Change Scenarios) SWEDEN September

More information

Statistical Inference for Food Webs

Statistical Inference for Food Webs Statistical Inference for Food Webs Part I: Bayesian Melding Grace Chiu and Josh Gould Department of Statistics & Actuarial Science CMAR-Hobart Science Seminar, March 6, 2009 1 Outline CMAR-Hobart Science

More information

An Additive Gaussian Process Approximation for Large Spatio-Temporal Data

An Additive Gaussian Process Approximation for Large Spatio-Temporal Data An Additive Gaussian Process Approximation for Large Spatio-Temporal Data arxiv:1801.00319v2 [stat.me] 31 Oct 2018 Pulong Ma Statistical and Applied Mathematical Sciences Institute and Duke University

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach. Radford M. Neal, 28 February 2005

Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach. Radford M. Neal, 28 February 2005 Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach Radford M. Neal, 28 February 2005 A Very Brief Review of Gaussian Processes A Gaussian process is a distribution over

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016 C3 Repetition Creating Q Spectral Non-grid Spatial Statistics with Image Analysis Lecture 8 Johan Lindström November 25, 216 Johan Lindström - johanl@maths.lth.se FMSN2/MASM25L8 1/39 Lecture L8 C3 Repetition

More information

Multi-resolution models for large data sets

Multi-resolution models for large data sets Multi-resolution models for large data sets Douglas Nychka, National Center for Atmospheric Research National Science Foundation NORDSTAT, Umeå, June, 2012 Credits Steve Sain, NCAR Tia LeRud, UC Davis

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

Groundwater permeability

Groundwater permeability Groundwater permeability Easy to solve the forward problem: flow of groundwater given permeability of aquifer Inverse problem: determine permeability from flow (usually of tracers With some models enough

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Arno Solin and Simo Särkkä Aalto University, Finland Workshop on Gaussian Process Approximation Copenhagen, Denmark, May 2015 Solin &

More information

Fusing point and areal level space-time data with application

Fusing point and areal level space-time data with application Fusing point and areal level space-time data with application to wet deposition Sujit K. Sahu University of Southampton, UK Alan E. Gelfand Duke University, USA David M. Holland Environmental Protection

More information

Spatio-temporal Statistical Modelling for Environmental Epidemiology

Spatio-temporal Statistical Modelling for Environmental Epidemiology Spatio-temporal Statistical Modelling for Environmental Epidemiology Peter Diggle Department of Medicine, Lancaster University and Department of Biostatistics, Johns Hopkins University WHO Geneva, September

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Spatio-temporal precipitation modeling based on time-varying regressions

Spatio-temporal precipitation modeling based on time-varying regressions Spatio-temporal precipitation modeling based on time-varying regressions Oleg Makhnin Department of Mathematics New Mexico Tech Socorro, NM 87801 January 19, 2007 1 Abstract: A time-varying regression

More information

Estimating the long-term health impact of air pollution using spatial ecological studies. Duncan Lee

Estimating the long-term health impact of air pollution using spatial ecological studies. Duncan Lee Estimating the long-term health impact of air pollution using spatial ecological studies Duncan Lee EPSRC and RSS workshop 12th September 2014 Acknowledgements This is joint work with Alastair Rushworth

More information

Predicting Long-term Exposures for Health Effect Studies

Predicting Long-term Exposures for Health Effect Studies Predicting Long-term Exposures for Health Effect Studies Lianne Sheppard Adam A. Szpiro, Johan Lindström, Paul D. Sampson and the MESA Air team University of Washington CMAS Special Session, October 13,

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Matthias Katzfuß Advisor: Dr. Noel Cressie Department of Statistics The Ohio State University

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

Statistical Science: Contributions to the Administration s Research Priority on Climate Change

Statistical Science: Contributions to the Administration s Research Priority on Climate Change Statistical Science: Contributions to the Administration s Research Priority on Climate Change April 2014 A White Paper of the American Statistical Association s Advisory Committee for Climate Change Policy

More information

Non-gaussian spatiotemporal modeling

Non-gaussian spatiotemporal modeling Dec, 2008 1/ 37 Non-gaussian spatiotemporal modeling Thais C O da Fonseca Joint work with Prof Mark F J Steel Department of Statistics University of Warwick Dec, 2008 Dec, 2008 2/ 37 1 Introduction Motivation

More information

Estimation of non-stationary spatial covariance structure

Estimation of non-stationary spatial covariance structure Estimation of non-stationary spatial covariance structure DAVID J NOTT Department of Statistics, University of New South Wales, Sydney 2052, Australia djn@mathsunsweduau WILLIAM T M DUNSMUIR Division of

More information

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University Spatial Lasso with Application to GIS Model Selection F. Jay Breidt Colorado State University with Hsin-Cheng Huang, Nan-Jung Hsu, and Dave Theobald September 25 The work reported here was developed under

More information

Bayesian Hierarchical Modelling: Incorporating spatial information in water resources assessment and accounting

Bayesian Hierarchical Modelling: Incorporating spatial information in water resources assessment and accounting Bayesian Hierarchical Modelling: Incorporating spatial information in water resources assessment and accounting Grace Chiu & Eric Lehmann (CSIRO Mathematics, Informatics and Statistics) A water information

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

DS-GA 1002 Lecture notes 12 Fall Linear regression

DS-GA 1002 Lecture notes 12 Fall Linear regression DS-GA Lecture notes 1 Fall 16 1 Linear models Linear regression In statistics, regression consists of learning a function relating a certain quantity of interest y, the response or dependent variable,

More information

Hierarchical Bayesian models for space-time air pollution data

Hierarchical Bayesian models for space-time air pollution data Hierarchical Bayesian models for space-time air pollution data Sujit K. Sahu June 14, 2011 Abstract Recent successful developments in Bayesian modeling and computation for large and complex data sets have

More information

A re-sampling based weather generator

A re-sampling based weather generator A re-sampling based weather generator Sara Martino 1 Joint work with T. Nipen 2 and C. Lussana 2 1 Sintef Energy Resources 2 Norwegian Metereologic Institute Stockholm 7th Dec. 2017 Sara Martino Joint

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Non-stationary Cross-Covariance Models for Multivariate Processes on a Globe

Non-stationary Cross-Covariance Models for Multivariate Processes on a Globe Scandinavian Journal of Statistics, Vol. 38: 726 747, 2011 doi: 10.1111/j.1467-9469.2011.00751.x Published by Blackwell Publishing Ltd. Non-stationary Cross-Covariance Models for Multivariate Processes

More information

Multivariate modelling and efficient estimation of Gaussian random fields with application to roller data

Multivariate modelling and efficient estimation of Gaussian random fields with application to roller data Multivariate modelling and efficient estimation of Gaussian random fields with application to roller data Reinhard Furrer, UZH PASI, Búzios, 14-06-25 NZZ.ch Motivation Microarray data: construct alternative

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Nearest Neighbor Gaussian Processes for Large Spatial Data

Nearest Neighbor Gaussian Processes for Large Spatial Data Nearest Neighbor Gaussian Processes for Large Spatial Data Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns

More information

Urban Water Security Research Alliance

Urban Water Security Research Alliance Urban Water Security Research Alliance Drought Frequency and Duration Projections for South East Queensland David Kent, Wenju Cai, Kim Nguyen Climate and Water 29 September 2010 Outline Previous projections

More information

Basic Sampling Methods

Basic Sampling Methods Basic Sampling Methods Sargur Srihari srihari@cedar.buffalo.edu 1 1. Motivation Topics Intractability in ML How sampling can help 2. Ancestral Sampling Using BNs 3. Transforming a Uniform Distribution

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies MODELING TRAVEL-TIME CORRELATIONS BASED ON SENSITIVITY KERNELS AND CORRELATED VELOCITY ANOMALIES William L. Rodi 1 and Stephen C. Myers 2 Massachusetts Institute of Technology 1 and Lawrence Livermore

More information

Uncertainty Quantification and Validation Using RAVEN. A. Alfonsi, C. Rabiti. Risk-Informed Safety Margin Characterization. https://lwrs.inl.

Uncertainty Quantification and Validation Using RAVEN. A. Alfonsi, C. Rabiti. Risk-Informed Safety Margin Characterization. https://lwrs.inl. Risk-Informed Safety Margin Characterization Uncertainty Quantification and Validation Using RAVEN https://lwrs.inl.gov A. Alfonsi, C. Rabiti North Carolina State University, Raleigh 06/28/2017 Assumptions

More information

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y.

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y. ATMO/OPTI 656b Spring 009 Bayesian Retrievals Note: This follows the discussion in Chapter of Rogers (000) As we have seen, the problem with the nadir viewing emission measurements is they do not contain

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

Model Selection for Geostatistical Models

Model Selection for Geostatistical Models Model Selection for Geostatistical Models Richard A. Davis Colorado State University http://www.stat.colostate.edu/~rdavis/lectures Joint work with: Jennifer A. Hoeting, Colorado State University Andrew

More information

BAYESIAN KRIGING AND BAYESIAN NETWORK DESIGN

BAYESIAN KRIGING AND BAYESIAN NETWORK DESIGN BAYESIAN KRIGING AND BAYESIAN NETWORK DESIGN Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C., U.S.A. J. Stuart Hunter Lecture TIES 2004

More information

Gaussian Processes: We demand rigorously defined areas of uncertainty and doubt

Gaussian Processes: We demand rigorously defined areas of uncertainty and doubt Gaussian Processes: We demand rigorously defined areas of uncertainty and doubt ACS Spring National Meeting. COMP, March 16 th 2016 Matthew Segall, Peter Hunt, Ed Champness matt.segall@optibrium.com Optibrium,

More information

Bayesian Dynamic Modeling for Space-time Data in R

Bayesian Dynamic Modeling for Space-time Data in R Bayesian Dynamic Modeling for Space-time Data in R Andrew O. Finley and Sudipto Banerjee September 5, 2014 We make use of several libraries in the following example session, including: ˆ library(fields)

More information