EST 5101 Climate Change Science Chapter 5. Climate Models. Rezaul Karim Environmental Science & Technology Jessore University of science & Technology

Size: px
Start display at page:

Download "EST 5101 Climate Change Science Chapter 5. Climate Models. Rezaul Karim Environmental Science & Technology Jessore University of science & Technology"

Transcription

1 EST 5101 Climate Change Science Chapter 5. Climate Models Rezaul Karim Environmental Science & Technology Jessore University of science & Technology

2 Chapter outline overview of climate modelling; How Are Models Constructed; Simulating Climatic Change; Advances in Modelling; How reliable are current climate model predictions?

3 Reference IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change ( Chapter 1 & 5)

4 Outline Introduction Why do we need models? Basic processes Radiation Atmospheric/Oceanic circulation Model basics Resolution Parameterizations Limitations

5 Why do we need models? Weather forecast What will the weather be in Norrköping tomorrow? What activities shall we plan for the weekend?

6 Why do we need models? Climate analysis How large is the natural variability? Mechanisms of climate processes?

7 Why do we need models? Climate scenarios How will the climate be in Norrköping in 30 years? Do we will have more extremes? How is sea level changing? Simulated temperature change until

8 The Climate System : What do we need to include?

9 Radiation: Black body radiation A black body absorbs all incident radiation A blackbody emits radiation according to Planck s law (shape of curves) Wien s displacement law give the temperature of a radiation source (maximum of curves) Total flux given by the Stefan-Boltzmann law (integration over the curve) wavelength [µm]

10 Longwave radiation of the Earth Emitted radiation at the Earth s surface 4-100µm (maximum at around 10µm) CO 2 and O 3 absorb at wavelengths within the Earth s emission spectrum. Increases in their concentration will increase the natural greenhouse effect and warm the planet. Water Vapour is the most active abosrbing gas in the IR spectrum.

11 Solar radiation Absorption of incoming solar radiation small Incoming radiation may be reflected by clouds, particles or by the ground The albedo (A) is the ratio between reflected and incoming radiation Cloud albedo varies (30-90%) Global average ca 30% (including clouds) Properties of the ground Snow Old snow Ice Sand Grass Forest Water Water (Sun close to horizon) Albedo (%)

12 Radiation balance of the Earth Assume balance between outgoing and incoming radiation on long term basis Solar constant 1368 W m -2 planetary albedo 30% Outgoing terrestrial radiation (longwave) is absorbed and reemitted in the atmosphere. The net effect is a warming of the surface (Te = 288 K)

13 Radiation Balance, Differential Heating Imbalances leads to temperature differences and thereby pressure gradients generating the general circulation of the atmosphere (and the oceans) Long term imbalance leads to climate change

14 Atmospheric motion Air is under influence of a number of forces resulting in movements (winds and turbulence) The forces are; the pressure gradient force, gravity, friction, centrifugal forces and the Coriolis force, The Coriolis force is an apparent force that leads to a deflection to the right (left) of all motion in the northern (southern) hemisphere It is proportional to the speed and depends on latitude (increasing towards the poles)

15 Atmospheric Circulation No rotation of the Earth cooling heating cooing Conservation of absolute angular momemtum and the stability of fluid flows leads to the break up of a thermally direct circulation around 30 poleward of the equator. Here the atmosphere develops instabilities (extra-tropical cyclones) that efficiently transport energy and momentum poleward.

16 Large scale ocean circulation The ocean circulation is driven by density contrasts in the ocean. Regions of intense heat loss from the ocean, surface winds and salinity of the ocean (sea ice melt, runoff, precipitation) govern the circulation. The continents play an important role.

17 Equations describing the atmosphere u t r u + V u + ω p fv + φ = x v r v φ + V v + ω + fu + = t p y φ = α p T r T + V T + ω αω / Cp = t p F X F y Q / Cp r V q t + p α = RT r + V ω = 0 p q q + ω p The atmosphere is governed by a set of physical laws expressing how the air moves, heating and cooling, moisture, and so on. Although the equations describing atmospheric behaviour can be formulated, they cannot be solved analytically. Instead, numerical methods are needed to provide approximate solutions. = S q

18 A global climate model (model describing the general circulation - GCM) In a GCM grid boxes cover the entire planet (ocean and atmosphere) Typical size is km in the horizontal Iayers in the vertical both in atmosphere and ocean Typical time step can be 30 min

19 Climate Model The information needed to run a GCM (atmosphere and ocean) is: Initial state of all the variables in all boxes A description of the land surface (topography and land use) Solar radiation Gas and aerosol composition of the atmosphere The resources needed to run a GCM (atmosphere and ocean) are: Super computer (many processors & 100 TB disk) Takes 2 weeks for 100 years simulation

20 Space and time scales Typical timescales of variation in the climate system. Atmosphere (seconds to weeks) Surface vegetation (weeks to years) Surface snow and sea-ice (days to years) Upper Ocean (days to years) Deep Ocean (months to multi-century) Glaciers (years to multi-century) Continental distribution and mountain building (100s to 1000s of thousand years)

21 Parametrized processes in a climate model Sea ice processes Mixing Deep Convection Eddies

22 The Development of Climate models Mid-1970s Mid-1980s Early 1990s Late 1990s Early 2000s Late 2000s Source: IPCC, TAR, 2001

23 Types of Climate Models There are many different types of climate models Huge range of complexities, physical processes represented, etc E.g., compare a seasonal forecast model to an ice age cycle model Today we ll focus primarily on the climate models for global warming predictions (from IPCC AR4/AR5) Data is publicly available from PCMDI website

24 General Circulation Models (GCMs) What are the components of these models? What are the essential physical processes that are being modeled? How have the models of these physical processes evolved over the history of climate modeling?

25 Climate Models We ll discuss with two examples: The discovery of chaos by Ed Lorenz The first climate models of Suki Manabe But first: Climate models are closely related to weather prediction models Let s discuss some history of weather prediction using computer models And the first attempt at numerical weather forecasting by Lewis Fry Richardson

26 Numerical Weather Prediction (NWP) Improvements in weather prediction over the last 60 years are among the most impressive accomplishments of society Northern Hem. 3 day forecast Southern Hem. 3 day forecast 5 day forecasts (NH & SH) 7 day forecasts (NH & SH) Simmons & Hollingsworth 02

27 Lewis Fry Richardson British mathematician, physicist, atmospheric scientist Scientific career very influenced by his Quaker beliefs (pacifism) Made the first numerical weather prediction in 1922 Also had a dream of the future of weather prediction

28 Richardson s Dream: The Forecast Factory Filled with employees ( computers ) doing calculations Richardson s dream in 1922 of a global forecasting system He estimated 64,000 computers (people) would be necessary to forecast over the globe Much info from the next few slides is from a book by Peter Lynch (U Coll Dublin)

29 The First Successful NWP Experiment John von Neumann, Jule Charney, Ragnar Fjortoft (1950) Research proposal proposed three uses for NWP: Weather prediction (duh) Planning where to take observations Weather modification!

30 Weather Forecasting vs Climate Forecasting Weather models and climate models are similar in a lot of ways Use very similar mathematical equations But weather forecasting and climate forecasting have very different goals How can we predict the climate in 50 years if we can t predict the weather 2 weeks from now?

31 Chaos Ed Lorenz was running a computer model & put in slightly different inputs He found the predictions were similar for a while but then wildly diverged to different solutions Chaos: when small changes make a big & unpredictable difference Edward Lorenz! ( )! meteorologist, M.I.T.! father of chaos theory!

32 Climate Forecasts This limit to weather prediction doesn t affect climate forecasts It all averages out after a few months of storms Climate forecasts: Summer is hotter than winter After a strong volcano blows up, the Earth will cool The Earth will be hotter with more greenhouse gases Shifts in weather patterns when El Niño is present Etc

33 Suki Manabe: Father of Climate Modeling Syukuro Manabe (born 1931): Worked at GFDL from : Director of Earth Simulator, Japan

34 Early Manabe Modeling Studies Radiative model: M. and Moller (1961) Radiative-convective model: M. and Strickler (1964) Atmosphere only model: Smagorinsky, M. and Holloway (1965)

35 AGCM Components AGCM: Atmospheric General Circulation Model Dynamics : Fluid equations on a rotating sphere Physics : Radiative transfer Surface fluxes/boundary layer scheme Clouds Moist convection

36 Dynamical Core of AGCMs Essentially just fluid equations on the rotating sphere

37 More Dynamical Core Details Momentum equations: Coriolis terms: due to rotation of Earth (not sphericity) Metric terms : to account for sphericity Energy equation: Energy balance is in the standard fluid equations Goes into the GCM without approximation

38 Numerical Methods Gridpoint methods: Fields specified at points Common resolutions: 2x2.5 deg (90x144 points) Spectral methods: Uses Fourier representations of fields around latitude circles Common resolutions: T42 (64x128; 2.8 deg), T85 (128x256; 1.4 deg) Highest resolution model in AR4: T106 (1.1 deg resolution)

39 Model Resolution Evolution Changes in resolution over time: AR = assessment report FAR = first AR, etc FAR: 1990 SAR: 1995 TAR: 2001 AR4: 2007 AR5: 2014

40 Physics of AGCMs Climate models have some very complex parameterizations of physical processes Radiative transfer Convection Clouds Surface fluxes/boundary layer schemes We ll describe general ideas of how these are parameterized And the history of some of the parameterizations

41 Radiative transfer models Clear sky radiative transfer is essentially a solved problem Divide electromagnetic spectrum into bands Solar absorption and scattering by H2O, CO2, O3, O2, clouds, aerosols

42 Radiative transfer models Longwave absorption and emission by H2O, CO2, O3, N2O, CH4, CFC-11, CFC-12, CFC-113, HCFC-22, aerosols, clouds 8 longwave bands Very computationally expensive! Often a large percentage of the total CPU usage is running the radiation code In some models, not called every time step

43 Moist convection schemes Convection: vertical overturning due to density differences Atmosphere is strongly heated from below, leading to large amounts of convection Moisture complicates convection significantly (huge heat source)

44 Moist convection schemes Classical goals of cumulus parameterization (Cu param): Precipitation Vertical distribution of heating and drying/moistening Non-classical goals of Cu param: Mass fluxes (for movement of pollution, etc) Generation of liquid and ice phases of water Interactions with PBL, radiation, and flow (momentum transport) Goals from review by Arakawa (2004)

45 Cloud schemes Cloud interactions are the most uncertain process in GCMs Lead to the largest differences between models

46 Cloud schemes Historical implementations of cloud parameterizations: First, climatological cloud distributions were used (e.g., Holloway and Manabe 1971) After that, diagnostic cloud parameterizations were used Based on properties such as relative humidity, vertical velocity, and static stability E.g., Wetherald and Manabe 1988: clouds when relative humidity exceeds 99% Slingo 1987: Diagnostic scheme based on convective precipitation, humidity, vertical velocity, and stability

47 Surface Flux Parameterization Surface flux schemes How much evaporation & heat flux comes off the ocean/land SH = C v (T Ts) Surface drag coefficient C is a function of stability and shear Monin-Obukhov similarity theory Neutral drag coefficient: just a function of surface roughness & von Karman coefficient Surface roughness values for different surfaces

48 Boundary Layer Parameterizations Boundary layer scheme How heat, moisture and momentum are distributed in the turbulent boundary layer Typically based on turbulent closures with empirical data Matched to Monin-Obukhov surface layer Some have an additional prognostic variable, the turbulent kinetic energy Gives memory to the mixing

49 Additional GCM Parameterizations Shallow convection UW shallow convection scheme is implemented in GFDL s AM3 model (for AR5) UW scheme is a single-plume mass flux scheme Other ways: Diffusive schemes Adjustment Cumulus momentum transport Gravity wave drag Momentum fluxes due to gravity waves near topography

50 Climate Modeling Centers Modeling centers from CMIP3 Very international effort! GFDL, Princeton, NJ NCAR, Boulder, CO

51 Other Successful Predictions of Climate Models More warming at night than day Most warming in Arctic than anywhere else (especially during winter) Least warming in/around Antarctica Wet regions get wetter, subtropical regions dry Tropopause moves upward Large scale tropical circulations weaken

Torben Königk Rossby Centre/ SMHI

Torben Königk Rossby Centre/ SMHI Fundamentals of Climate Modelling Torben Königk Rossby Centre/ SMHI Outline Introduction Why do we need models? Basic processes Radiation Atmospheric/Oceanic circulation Model basics Resolution Parameterizations

More information

ATM S 111, Global Warming Climate Models

ATM S 111, Global Warming Climate Models ATM S 111, Global Warming Climate Models Jennifer Fletcher Day 27: July 29, 2010 Using Climate Models to Build Understanding Often climate models are thought of as forecast tools (what s the climate going

More information

Climate Modeling Dr. Jehangir Ashraf Awan Pakistan Meteorological Department

Climate Modeling Dr. Jehangir Ashraf Awan Pakistan Meteorological Department Climate Modeling Dr. Jehangir Ashraf Awan Pakistan Meteorological Department Source: Slides partially taken from A. Pier Siebesma, KNMI & TU Delft Key Questions What is a climate model? What types of climate

More information

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER CHRIS BRIERLEY Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences 5. Human

More information

Course Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Changing climate. 3. Future climate change

Course Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Changing climate. 3. Future climate change COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER CHRIS BRIERLEY Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences 5. Human

More information

Chapter 6: Modeling the Atmosphere-Ocean System

Chapter 6: Modeling the Atmosphere-Ocean System Chapter 6: Modeling the Atmosphere-Ocean System -So far in this class, we ve mostly discussed conceptual models models that qualitatively describe the system example: Daisyworld examined stable and unstable

More information

ATMOSPHERIC CIRCULATION AND WIND

ATMOSPHERIC CIRCULATION AND WIND ATMOSPHERIC CIRCULATION AND WIND The source of water for precipitation is the moisture laden air masses that circulate through the atmosphere. Atmospheric circulation is affected by the location on the

More information

Some remarks on climate modeling

Some remarks on climate modeling Some remarks on climate modeling A. Gettelman & J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Selected overheads by Doug Nychka Outline Hierarchy of atmospheric modeling strategies

More information

GEO1010 tirsdag

GEO1010 tirsdag GEO1010 tirsdag 31.08.2010 Jørn Kristiansen; jornk@met.no I dag: Først litt repetisjon Stråling (kap. 4) Atmosfærens sirkulasjon (kap. 6) Latitudinal Geographic Zones Figure 1.12 jkl TØRR ATMOSFÆRE Temperature

More information

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 Name: Student ID: Please answer the following questions on your Scantron Multiple Choice [1 point each] (1) The gases that contribute to

More information

Course Outline. About Me. Today s Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2.

Course Outline. About Me. Today s Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER 5. Human impacts 6.

More information

An Introduction to Climate Modeling

An Introduction to Climate Modeling An Introduction to Climate Modeling A. Gettelman & J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline What is Climate & why do we care Hierarchy of atmospheric modeling strategies

More information

Climate Dynamics (PCC 587): Hydrologic Cycle and Global Warming

Climate Dynamics (PCC 587): Hydrologic Cycle and Global Warming Climate Dynamics (PCC 587): Hydrologic Cycle and Global Warming D A R G A N M. W. F R I E R S O N U N I V E R S I T Y O F W A S H I N G T O N, D E P A R T M E N T O F A T M O S P H E R I C S C I E N C

More information

Glaciology HEAT BUDGET AND RADIATION

Glaciology HEAT BUDGET AND RADIATION HEAT BUDGET AND RADIATION A Heat Budget 1 Black body radiation Definition. A perfect black body is defined as a body that absorbs all radiation that falls on it. The intensity of radiation emitted by a

More information

Lecture 7: The Monash Simple Climate

Lecture 7: The Monash Simple Climate Climate of the Ocean Lecture 7: The Monash Simple Climate Model Dr. Claudia Frauen Leibniz Institute for Baltic Sea Research Warnemünde (IOW) claudia.frauen@io-warnemuende.de Outline: Motivation The GREB

More information

The PRECIS Regional Climate Model

The PRECIS Regional Climate Model The PRECIS Regional Climate Model General overview (1) The regional climate model (RCM) within PRECIS is a model of the atmosphere and land surface, of limited area and high resolution and locatable over

More information

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun Radiation and the Planetary Energy Balance Electromagnetic Radiation Solar radiation warms the planet Conversion of solar energy at the surface Absorption and emission by the atmosphere The greenhouse

More information

1. Weather and climate.

1. Weather and climate. Lecture 31. Introduction to climate and climate change. Part 1. Objectives: 1. Weather and climate. 2. Earth s radiation budget. 3. Clouds and radiation field. Readings: Turco: p. 320-349; Brimblecombe:

More information

Lecture 2 Global and Zonal-mean Energy Balance

Lecture 2 Global and Zonal-mean Energy Balance Lecture 2 Global and Zonal-mean Energy Balance A zero-dimensional view of the planet s energy balance RADIATIVE BALANCE Roughly 70% of the radiation received from the Sun at the top of Earth s atmosphere

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

Chapter outline. Reference 12/13/2016

Chapter outline. Reference 12/13/2016 Chapter 2. observation CC EST 5103 Climate Change Science Rezaul Karim Environmental Science & Technology Jessore University of science & Technology Chapter outline Temperature in the instrumental record

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

Radiation in climate models.

Radiation in climate models. Lecture. Radiation in climate models. Objectives:. A hierarchy of the climate models.. Radiative and radiative-convective equilibrium.. Examples of simple energy balance models.. Radiation in the atmospheric

More information

Science 1206 Chapter 1 - Inquiring about Weather

Science 1206 Chapter 1 - Inquiring about Weather Science 1206 Chapter 1 - Inquiring about Weather 1.1 - The Atmosphere: Energy Transfer and Properties (pp. 10-25) Weather and the Atmosphere weather the physical conditions of the atmosphere at a specific

More information

MAPH & & & & & & 02 LECTURE

MAPH & & & & & & 02 LECTURE Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh

Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh SAGES Scottish Alliance for Geoscience, Environment & Society Modelling Climate Change Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh Climate Modelling Climate

More information

Lecture 2: Light And Air

Lecture 2: Light And Air Lecture 2: Light And Air Earth s Climate System Earth, Mars, and Venus Compared Solar Radiation Greenhouse Effect Thermal Structure of the Atmosphere Atmosphere Ocean Solid Earth Solar forcing Land Energy,

More information

5. General Circulation Models

5. General Circulation Models 5. General Circulation Models I. 3-D Climate Models (General Circulation Models) To include the full three-dimensional aspect of climate, including the calculation of the dynamical transports, requires

More information

Lecture 3: Global Energy Cycle

Lecture 3: Global Energy Cycle Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1.

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1. Climate Chap. 2 Introduction I. Forces that drive climate and their global patterns A. Solar Input Earth s energy budget B. Seasonal cycles C. Atmospheric circulation D. Oceanic circulation E. Landform

More information

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy.

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy. Fluid Circulation Review Vocabulary Absorption - taking in energy as in radiation. For example, the ground will absorb the sun s radiation faster than the ocean water. Air pressure Albedo - Dark colored

More information

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site:   Lecture 27 Dec Weather Forecasts and Climate AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Climate Natural Variations Feedback Mechanisms Lecture 27 Dec 4 2018 1 Climate

More information

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models An Introduction to Physical Parameterization Techniques Used in Atmospheric Models J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline Frame broader scientific problem Hierarchy

More information

Global warming and Extremes of Weather. Prof. Richard Allan, Department of Meteorology University of Reading

Global warming and Extremes of Weather. Prof. Richard Allan, Department of Meteorology University of Reading Global warming and Extremes of Weather Prof. Richard Allan, Department of Meteorology University of Reading Extreme weather climate change Recent extreme weather focusses debate on climate change Can we

More information

Chapter 9 External Energy Fuels Weather and Climate

Chapter 9 External Energy Fuels Weather and Climate Natural Disasters Tenth Edition Chapter 9 External Energy Fuels Weather and Climate Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9-1 Weather Versus Climate

More information

Understanding the Greenhouse Effect

Understanding the Greenhouse Effect EESC V2100 The Climate System spring 200 Understanding the Greenhouse Effect Yochanan Kushnir Lamont Doherty Earth Observatory of Columbia University Palisades, NY 1096, USA kushnir@ldeo.columbia.edu Equilibrium

More information

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems The Atmosphere 1 How big is the atmosphere? Why is it cold in Geneva? Why do mountaineers need oxygen on Everest? 2 A relatively thin layer of gas over the Earths surface Earth s radius ~ 6400km Atmospheric

More information

2018 Science Olympiad: Badger Invitational Meteorology Exam. Team Name: Team Motto:

2018 Science Olympiad: Badger Invitational Meteorology Exam. Team Name: Team Motto: 2018 Science Olympiad: Badger Invitational Meteorology Exam Team Name: Team Motto: This exam has 50 questions of various formats, plus 3 tie-breakers. Good luck! 1. On a globally-averaged basis, which

More information

Factors That Affect Climate

Factors That Affect Climate Factors That Affect Climate Factors That Affect Climate Latitude As latitude (horizontal lines) increases, the intensity of solar energy decreases. The tropical zone is between the tropic of Cancer and

More information

Earth s Energy Balance and the Atmosphere

Earth s Energy Balance and the Atmosphere Earth s Energy Balance and the Atmosphere Topics we ll cover: Atmospheric composition greenhouse gases Vertical structure and radiative balance pressure, temperature Global circulation and horizontal energy

More information

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

The Structure and Motion of the Atmosphere OCEA 101

The Structure and Motion of the Atmosphere OCEA 101 The Structure and Motion of the Atmosphere OCEA 101 Why should you care? - the atmosphere is the primary driving force for the ocean circulation. - the atmosphere controls geographical variations in ocean

More information

Climate Modeling Research & Applications in Wales. John Houghton. C 3 W conference, Aberystwyth

Climate Modeling Research & Applications in Wales. John Houghton. C 3 W conference, Aberystwyth Climate Modeling Research & Applications in Wales John Houghton C 3 W conference, Aberystwyth 26 April 2011 Computer Modeling of the Atmosphere & Climate System has revolutionized Weather Forecasting and

More information

Weather & Climate. Sanjay S. Limaye Space Science & Engineering Center University of Wisconsin-Madison

Weather & Climate. Sanjay S. Limaye Space Science & Engineering Center University of Wisconsin-Madison Weather & Climate Sanjay S. Limaye Space Science & Engineering Center University of Wisconsin-Madison 1 What is Weather? Webster s New Collegiate Dictionary: state of the atmosphere with respect to heat

More information

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008 A Global Atmospheric Model Joe Tribbia NCAR Turbulence Summer School July 2008 Outline Broad overview of what is in a global climate/weather model of the atmosphere Spectral dynamical core Some results-climate

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds What is an atmosphere? Sources of Gas Losses of Gas Thermal Escape Earth s Atmosphere About 10 km thick Consists mostly of molecular

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it ATMO 436a The General Circulation Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it Scales of Atmospheric Motion vs. Lifespan The general circulation Atmospheric oscillations

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

Wind: Global Systems Chapter 10

Wind: Global Systems Chapter 10 Wind: Global Systems Chapter 10 General Circulation of the Atmosphere General circulation of the atmosphere describes average wind patterns and is useful for understanding climate Over the earth, incoming

More information

Topic # 12 How Climate Works

Topic # 12 How Climate Works Topic # 12 How Climate Works A Primer on How the Energy Balance Drives Atmospheric & Oceanic Circulation, Natural Climatic Processes pp 63-68 in Class Notes How do we get energy from this........ to drive

More information

Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki

Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki 19.9.2012 Outline Some basic questions and answers about climate change How are projections of climate

More information

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION Chapter 2 - pg. 1 CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION The atmosphere is driven by the variations of solar heating with latitude. The heat is transferred to the air by direct absorption

More information

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely CHAPTER 3 SOLAR AND TERRESTRIAL RADIATION MULTIPLE CHOICE QUESTIONS 1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely 2. is the distance between successive

More information

Why build a climate model

Why build a climate model Climate Modeling Why build a climate model Atmosphere H2O vapor and Clouds Absorbing gases CO2 Aerosol Land/Biota Surface vegetation Ice Sea ice Ice sheets (glaciers) Ocean Box Model (0 D) E IN = E OUT

More information

Earth s Climate Patterns

Earth s Climate Patterns Earth s Climate Patterns Reading: Chapter 17, GSF 10/2/09 Also Jackson (linked on course web site) 1 What aspects of climate affect plant distributions? Climate: long-term distribution of weather in an

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Interhemispheric climate connections: What can the atmosphere do?

Interhemispheric climate connections: What can the atmosphere do? Interhemispheric climate connections: What can the atmosphere do? Raymond T. Pierrehumbert The University of Chicago 1 Uncertain feedbacks plague estimates of climate sensitivity 2 Water Vapor Models agree

More information

Climate models. René D. Garreaud. Departement of Geophysics Universidad de Chile

Climate models. René D. Garreaud. Departement of Geophysics Universidad de Chile Climate models René D. Garreaud Departement of Geophysics Universidad de Chile www.dgf.uchile.cl/rene My first toy model A system of coupled, non-linear algebraic equations X (t) = A X (t-1) Y (t) B Z

More information

Week: Dates: 3/2 3/20 Unit: Climate

Week: Dates: 3/2 3/20 Unit: Climate clementaged.weebly.com Name: EVEN Period: Week: 28 30 Dates: 3/2 3/20 Unit: Climate Monday Tuesday Wednesday Thursday Friday 2 O 3 E *Vocabulary *Water in the Atmosphere and Clouds Notes *Cloud Drawings

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

Temperature (T) degrees Celsius ( o C) arbitrary scale from 0 o C at melting point of ice to 100 o C at boiling point of water Also (Kelvin, K) = o C

Temperature (T) degrees Celsius ( o C) arbitrary scale from 0 o C at melting point of ice to 100 o C at boiling point of water Also (Kelvin, K) = o C 1 2 3 4 Temperature (T) degrees Celsius ( o C) arbitrary scale from 0 o C at melting point of ice to 100 o C at boiling point of water Also (Kelvin, K) = o C plus 273.15 0 K is absolute zero, the minimum

More information

Modeling the General Circulation of the Atmosphere. Topic 1: A Hierarchy of Models

Modeling the General Circulation of the Atmosphere. Topic 1: A Hierarchy of Models Modeling the General Circulation of the Atmosphere. Topic 1: A Hierarchy of Models DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES TOPIC 1: 1-7-16 Modeling the General

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Topic # 11 HOW CLIMATE WORKS PART II

Topic # 11 HOW CLIMATE WORKS PART II Topic # 11 HOW CLIMATE WORKS PART II The next chapter in the story: How differences in INSOLATION between low and high latitudes drive atmospheric circulation! pp 64 in Class Notes THE RADIATION BALANCE

More information

WEATHER AND CLIMATE PREDICTION

WEATHER AND CLIMATE PREDICTION WEATHER AND CLIMATE PREDICTION ATM S 380, Winter 2017 INSTRUCTOR Daehyun Kim Born in 1980 B.S. 2003 Ph.D. 2010 2010-2013 2014- Assistant Professor at Dept. of Atmospheric Sciences Office: ATG 608 E-mail:

More information

Science Chapter 13,14,15

Science Chapter 13,14,15 Science 1206 Chapter 13,14,15 1 Weather dynamics is the study of how the motion of water and air causes weather patterns. Energy from the Sun drives the motion of clouds, air, and water. Earth s tilt at

More information

Extremes of Weather and the Latest Climate Change Science. Prof. Richard Allan, Department of Meteorology University of Reading

Extremes of Weather and the Latest Climate Change Science. Prof. Richard Allan, Department of Meteorology University of Reading Extremes of Weather and the Latest Climate Change Science Prof. Richard Allan, Department of Meteorology University of Reading Extreme weather climate change Recent extreme weather focusses debate on climate

More information

Emission Temperature of Planets. Emission Temperature of Earth

Emission Temperature of Planets. Emission Temperature of Earth Emission Temperature of Planets The emission temperature of a planet, T e, is the temperature with which it needs to emit in order to achieve energy balance (assuming the average temperature is not decreasing

More information

Computer Models of the Earth s Climate

Computer Models of the Earth s Climate Computer Models of the Earth s Climate DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES MATH DAY, 3-25-13 Climate Models Climate Models Climate Models Mathematical model: uses equations to describe

More information

Climate System. Sophie Zechmeister-Boltenstern

Climate System. Sophie Zechmeister-Boltenstern Climate System Sophie Zechmeister-Boltenstern Reference: Chapin F. St., Matson P., Mooney Harold A. 2002 Principles of Terrestrial Ecosystem Ecology. Springer, Berlin, 490 p. Structure of this lecture

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? Planetary Atmospheres Pressure Composition Greenhouse effect Atmospheric structure Color of the sky 1 Atmospheres

More information

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties

More information

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club Model description of AGCM5 of GFD-Dennou-Club edition SWAMP project, GFD-Dennou-Club Mar 01, 2006 AGCM5 of the GFD-DENNOU CLUB edition is a three-dimensional primitive system on a sphere (Swamp Project,

More information

Chapter 3- Energy Balance and Temperature

Chapter 3- Energy Balance and Temperature Chapter 3- Energy Balance and Temperature Understanding Weather and Climate Aguado and Burt Influences on Insolation Absorption Reflection/Scattering Transmission 1 Absorption An absorber gains energy

More information

Weather and Climate: Detailed Outline

Weather and Climate: Detailed Outline Weather and Climate: Detailed Outline Day 1, AM: Radiation (Atmospheric Greenhouse Effect) Radiation is an important means of energy transfer. Understanding radiation means understanding some properties

More information

Earth Systems Science Chapter 3

Earth Systems Science Chapter 3 Earth Systems Science Chapter 3 ELECTROMAGNETIC RADIATION: WAVES I. Global Energy Balance and the Greenhouse Effect: The Physics of the Radiation Balance of the Earth 1. Electromagnetic Radiation: waves,

More information

Features of Global Warming Review. GEOG/ENST 2331 Lecture 23 Ahrens: Chapter 16

Features of Global Warming Review. GEOG/ENST 2331 Lecture 23 Ahrens: Chapter 16 Features of Global Warming Review GEOG/ENST 2331 Lecture 23 Ahrens: Chapter 16 The Greenhouse Effect 255 K 288 K Ahrens, Fig. 2.12 What can change the global energy balance? Incoming energy Solar strength

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? 10.1 Atmospheric Basics Our goals for learning:! What is an atmosphere?! How does the greenhouse effect warm

More information

Meteorology Practice Test

Meteorology Practice Test Meteorology Practice Test 1. Transition zones between two air masses of different densities are called what? 2. A front occurs when a cold air mass replaces a warmer one. 3. A front occurs when a warm

More information

Mon Oct 20. Today: radiation and temperature (cont) sun-earth geometry energy balance >> conceptual model of climate change Tues:

Mon Oct 20. Today: radiation and temperature (cont) sun-earth geometry energy balance >> conceptual model of climate change Tues: Mon Oct 20 Announcements: bring calculator to class from now on > in-class activities > midterm and final Today: radiation and temperature (cont) sun-earth geometry energy balance >> conceptual model of

More information

Earth is tilted (oblique) on its Axis!

Earth is tilted (oblique) on its Axis! MONDAY AM Radiation, Atmospheric Greenhouse Effect Earth's orbit around the Sun is slightly elliptical (not circular) Seasons & Days Why do we have seasons? Why aren't seasonal temperatures highest at

More information

Concepts of energy and heat

Concepts of energy and heat Concepts of energy and heat On the molecular level, what is heat? Energy absorbed by the molecule and converted to kinetic energy How is heat transferred? Conduction Convection Radiation Transfer of heat

More information

CHAPTER 6 Air-Sea Interaction Pearson Education, Inc.

CHAPTER 6 Air-Sea Interaction Pearson Education, Inc. CHAPTER 6 Air-Sea Interaction Chapter Overview The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

More information

Weather and Climate Prediction ATM S 380

Weather and Climate Prediction ATM S 380 Weather and Climate Prediction ATM S 380 Course web site http://www.atmos.washington.edu/academics/classes/2011q1/380/ Instructor: Professor Cecilia Bitz, PhD in UW atmospheric sciences 1997 Lecture notes

More information

Earth s Heat Budget. What causes the seasons? Seasons

Earth s Heat Budget. What causes the seasons? Seasons Earth s Heat Budget Solar energy and the global heat budget Transfer of heat drives weather and climate Ocean circulation A. Rotation of the Earth B. Distance from the Sun C. Variations of Earth s orbit

More information

Climate Roles of Land Surface

Climate Roles of Land Surface Lecture 5: Land Surface and Cryosphere (Outline) Climate Roles Surface Energy Balance Surface Water Balance Sea Ice Land Ice (from Our Changing Planet) Surface Albedo Climate Roles of Land Surface greenhouse

More information

HEATING THE ATMOSPHERE

HEATING THE ATMOSPHERE HEATING THE ATMOSPHERE Earth and Sun 99.9% of Earth s heat comes from Sun But

More information

ENVIRONMENTAL MANAGEMENT I

ENVIRONMENTAL MANAGEMENT I ENVIRONMENTAL MANAGEMENT I Environmental science is the study of the interaction of humans with the natural environment. The environment includes all conditions that surround living organisms: Climate

More information

Lecture 1. Amplitude of the seasonal cycle in temperature

Lecture 1. Amplitude of the seasonal cycle in temperature Lecture 6 Lecture 1 Ocean circulation Forcing and large-scale features Amplitude of the seasonal cycle in temperature 1 Atmosphere and ocean heat transport Trenberth and Caron (2001) False-colour satellite

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information

Weather Notes. Chapter 16, 17, & 18

Weather Notes. Chapter 16, 17, & 18 Weather Notes Chapter 16, 17, & 18 Weather Weather is the condition of the Earth s atmosphere at a particular place and time Weather It is the movement of energy through the atmosphere Energy comes from

More information

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 13: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Wednesday Quiz #2 Wednesday Mid Term is Wednesday May 6 Practice

More information

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 17 The Atmosphere: Structure and Temperature 17.1 Atmosphere Characteristics Composition of the Atmosphere Weather is constantly changing, and it refers

More information