The Search for a Human Fingerprint in the Changing Thermal Structure of the Atmosphere

Size: px
Start display at page:

Download "The Search for a Human Fingerprint in the Changing Thermal Structure of the Atmosphere"

Transcription

1 The Search for a Human Fingerprint in the Changing Thermal Structure of the Atmosphere Ben Santer Program for Climate Model Diagnosis and Intercomparison Lawrence Livermore National Laboratory Third Workshop on Understanding Climate Change from Data Northwestern University, Evanston, Illinois August 15, 2013 CMIP-5 models (ALL+8.5)! Observations (Santa Rosa)! Pressure (hpa)! Pressure (hpa)! Trend over 1979 to 2012 ( C/decade)!

2 My collaborators and co-authors Jeff Painter, Celine Bonfils, Peter Gleckler, Charles Doutriaux, Karl Taylor (Lawrence Livermore National Laboratory) Carl Mears, Frank Wentz (Remote Sensing Systems) Susan Solomon (M.I.T.) Tom Wigley (University of Adelaide) Gavin Schmidt (NASA/Goddard Institute for Space Studies) Nathan Gillett (Canadian Climate Centre) Peter Thorne (National Climatic Data Center) 2

3 Structure Identifying human influences on atmospheric temperature Æ Early fingerprint work (mid-1990s) Æ Update with latest satellite data and CMIP-5 simulations Comparing modeled and observed temperature variability Conclusions 3

4 Different factors that influence climate have different fingerprints Source: Global Climate Change Impacts in the United States (Karl et al., 2009; modified from Santer et al., 1996, 2006)

5 Different factors that influence climate have different fingerprints

6 Weather balloon estimates of atmospheric temperature change are consistent with human influence fingerprints Source: Allen and Sherwood, Nature Geoscience (2008) Trend ( C/decade; changes over 1970 to 2005)

7 Structure Identifying human influences on atmospheric temperature Æ Early fingerprint work (mid-1990s) Æ Update with latest satellite data and CMIP-5 simulations Comparing modeled and observed temperature variability Conclusions 7

8 Measuring atmospheric temperature from space Figure and text courtesy of Carl Mears, Remote Sensing Systems Higher temperatures = more microwave emissions from oxygen molecules By choosing different microwave frequencies, different layers in the atmosphere can be measured 8

9 Our fingerprint study uses zonal-mean changes in the temperature of broad atmospheric layers 9

10 The changing thermal structure of the atmosphere in the latest observations and model simulations Pressure (hpa)! CMIP-5 models (Human effects)! Pressure (hpa)! Observations (Santa Rosa)! Source: Santer et al., PNAS (2013b; in press) Trend ( C/decade over 1979 to 2012)! 10

11 Fingerprint detection explained pictorially. Observations 1979! 1980! 1981! 1982! 1983! 1984!!! 2010! 2011! Spatial covariance, ANT fingerprint and OBS! 0.5! 0.0! -0.5! 1980! 1985! 1990! 1995! 2000! 2005! 2010! Projection onto model fingerprint Projection time series Model ANTHRO fingerprint 11

12 Global-mean lower stratospheric temperature changes in CMIP-5 pre-industrial control runs (CTL) 12

13 Fingerprint detection explained pictorially. Control run 1! 2! 3! 4! 5! 6!!! 3999! 4000! Spatial covariance, ANT fingerprint and CTL! 0.5! 0.0! -0.5! 0! 1000! 2000! 3000! 4000! Projection onto model fingerprint Projection time series Model ANTHRO fingerprint 13

14 Estimating signal-to-noise ratios Trend length (years)! 12! 17! 22! 27! 32! Signal-to-noise ratio! 10! 8! 6! 4! 2! Santa Rosa observations Alabama observations 0! 1990! 1995! 2000! 2005! 2010! Last year of trend! 14

15 Global-mean lower stratospheric temperature changes in CMIP-5 simulations with solar and volcanic forcing (NAT) 15

16 Estimating signal-to-noise ratios Santa Rosa (CTL noise) U. Alabama (CTL noise) Santa Rosa (NAT noise) U. Alabama (NAT noise) 16

17 Global-mean lower stratospheric temperature changes in CMIP-5 Last Millennium simulations (P1000) 17

18 Estimating signal-to-noise ratios Santa Rosa (CTL noise) U. Alabama (CTL noise) Santa Rosa (NAT noise) U. Alabama (NAT noise) Santa Rosa (P1000 noise) U. Alabama (P1000 noise) 18

19 Why do we obtain such large S/N ratios? Pressure (hpa)! CMIP-5 models (Human effects)! Pressure (hpa)! Observations (Santa Rosa)! Source: Santer et al., PNAS (2013b; in press) Trend ( C/decade over 1979 to 2012)! 19

20 The dominant patterns of internal and total natural variability do not look like the searched-for fingerprint A CTL EOF1 (31.85%)! B CTL EOF2 (23.21%)! C CTL EOF3 (17.31%)! D NAT EOF1 (34.72%)! E NAT EOF2 (18.38%)! F NAT EOF3 (15.3%)! G P1000 EOF1 (48.84%)! H P1000 EOF2 (15.73%)! I P1000 EOF3 (12.07%)! EOF loading!

21 Structure Identifying human influences on atmospheric temperature Æ Early fingerprint work (mid-1990s) Æ Update with latest satellite data and CMIP-5 simulations Comparing modeled and observed temperature variability Conclusions 21

22 Comparing modeled and observed variability Slow (5 to 20 years) Fast (< 2 years) 22

23 Do CMIP-5 models underestimate the observed slow variability of tropospheric temperature? MODELS! Quadrant of doom! Slow temperature variability ( C)! OBSERVATIONS! Santa Rosa! Univ. Alabama! Fast temperature variability ( C)! Source: Santer et al., PNAS (2013a) 23

24 Do CMIP-5 models underestimate the observed slow variability of tropospheric temperature? MODELS! Slow temperature variability ( C)! OBSERVATIONS! Uncertainty! Santa Rosa! Univ. Alabama! Fast temperature variability ( C)! Source: Santer et al., PNAS (2013a) 24

25 Do CMIP-5 models underestimate the observed slow variability of tropospheric temperature? Slow temperature variability ( C)! MODELS! Model A! Model B! Model C! Model D! Model E! Model F! OBSERVATIONS! Santa Uncertainty! Rosa! Santa Rosa! Univ. Alabama! Fast temperature variability ( C)! Source: Santer et al., PNAS (2013a) 25

26 Do CMIP-5 models underestimate the observed slow variability of tropospheric temperature? Slow temperature variability ( C)! MODELS! Model A! Model B! Model C! Model D! Model E! Model F! Model G! Model H! Model I! Model I! Model J! OBSERVATIONS! Uncertainty! Santa Rosa! Univ. Alabama! Fast temperature variability ( C)! Source: Santer et al., PNAS (2013a) 26

27 Do CMIP-5 models underestimate the observed slow variability of tropospheric temperature? Slow temperature variability ( C)! MODELS! Model A! Model B! Model C! Model D! Model E! Model F! Model G! Model H! Model I! Model I! Model J! Model K! Model L! Model M! Model N! Model O! Model P! Model Q! Model R! Model R! OBSERVATIONS! Uncertainty! Santa Rosa! Univ. Alabama! Fast temperature variability ( C)! Source: Santer et al., PNAS (2013a) 27

28 Do CMIP-5 models underestimate the observed slow variability of tropospheric temperature? Slow temperature variability ( C)! MODELS! Model A! Model B! Model C! Model D! Model E! Model F! Model G! Model H! Model I! Model I! Model J! Model K! Model L! Model M! Model N! Model O! Model P! Model Q! Model R! Model R! Model average! OBSERVATIONS! Uncertainty! Santa Rosa! Univ. Alabama! Fast temperature variability ( C)! Source: Santer et al., PNAS (2013a) 28

29 Conclusions A human-caused latitude/altitude pattern of atmospheric temperature change is consistently identifiable in satellite observations This fingerprint of tropospheric warming and stratospheric cooling can be discriminated from the background noise of: Æ Internal climate variability (CTL) Æ Variability caused by natural changes in solar irradiance and volcanic aerosol loadings (NAT, P1000) Our significance testing framework is highly conservative Æ NAT and P1000 total noise estimates include volcanic eruptions and solar irradiance changes much larger than those observed over the satellite era Internal and total natural variability cannot produce sustained global-scale warming of the troposphere and cooling of the stratosphere 29

What Satellite Data Tell Us About Global Warming

What Satellite Data Tell Us About Global Warming What Satellite Data Tell Us About Global Warming Ben Santer Program for Climate Model Diagnosis and Intercomparison Lawrence Livermore National Laboratory, Livermore, CA 94550 Climate Matters Workshop,

More information

Satellite Data Uncertainties: Impact on Detection and Attribution Results

Satellite Data Uncertainties: Impact on Detection and Attribution Results Satellite Data Uncertainties: Impact on Detection and Attribution Results Ben Santer Program for Climate Diagnosis and Intercomparison Lawrence Livermore National Laboratory, Livermore, CA 94550 Earth

More information

A HIERARCHICAL MODEL FOR REGRESSION-BASED CLIMATE CHANGE DETECTION AND ATTRIBUTION

A HIERARCHICAL MODEL FOR REGRESSION-BASED CLIMATE CHANGE DETECTION AND ATTRIBUTION A HIERARCHICAL MODEL FOR REGRESSION-BASED CLIMATE CHANGE DETECTION AND ATTRIBUTION Richard L Smith University of North Carolina and SAMSI Joint Statistical Meetings, Montreal, August 7, 2013 www.unc.edu/~rls

More information

Fact Sheet for Consistency of Modelled and Observed Temperature Trends in the Tropical Troposphere, by B.D. Santer et al. A

Fact Sheet for Consistency of Modelled and Observed Temperature Trends in the Tropical Troposphere, by B.D. Santer et al. A Fact Sheet for Consistency of Modelled and Observed Temperature Trends in the Tropical Troposphere, by B.D. Santer et al. A Abstract Using state-of-the-art observational datasets and results from a large

More information

Summary of the Climate Dialogue on the (missing) tropical hot spot

Summary of the Climate Dialogue on the (missing) tropical hot spot Summary of the Climate Dialogue on the (missing) tropical hot spot Authors: Marcel Crok, Bart Strengers (PBL) October 2014 Climatedialogue.org (October 2014) 1 Introduction Based on theoretical considerations

More information

How Do We Know That Human Activities Have Influenced Global Climate?

How Do We Know That Human Activities Have Influenced Global Climate? How Do We Know That Human Activities Have Influenced Global Climate? Ben Santer Program for Climate Model Diagnosis and Intercomparison Lawrence Livermore National Laboratory, Livermore, CA 94550 Email:

More information

Effects of Black Carbon on Temperature Lapse Rates

Effects of Black Carbon on Temperature Lapse Rates Effects of Black Carbon on Temperature Lapse Rates Joyce E. Penner 1 Minghuai Wang 1, Akshay Kumar 1, Leon Rotstayn 2, Ben Santer 1 University of Michigan, 2 CSIRO, 3 LLNL Thanks to Warren Washington and

More information

Attribution of anthropogenic influence on seasonal sea level pressure

Attribution of anthropogenic influence on seasonal sea level pressure Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L23709, doi:10.1029/2009gl041269, 2009 Attribution of anthropogenic influence on seasonal sea level pressure N. P. Gillett 1 and P. A.

More information

Which Climate Model is Best?

Which Climate Model is Best? Which Climate Model is Best? Ben Santer Program for Climate Model Diagnosis and Intercomparison Lawrence Livermore National Laboratory, Livermore, CA 94550 Adapting for an Uncertain Climate: Preparing

More information

The Missing Greenhouse Signature

The Missing Greenhouse Signature The Missing Greenhouse Signature Introduction Dr David Evans (david.evans@sciencespeak.com) 21 July 2008 Background Briefing Each possible cause of global warming has a different pattern of where in the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11784 Methods The ECHO-G model and simulations The ECHO-G model 29 consists of the 19-level ECHAM4 atmospheric model and 20-level HOPE-G ocean circulation model.

More information

4.3 INTERCOMPARISON OF GLOBAL UPPER-AIR TEMPERATURE DATASETS FROM RADIOSONDES AND SATELLITES. Obninsk, Kaluga Region, Russian Federation

4.3 INTERCOMPARISON OF GLOBAL UPPER-AIR TEMPERATURE DATASETS FROM RADIOSONDES AND SATELLITES. Obninsk, Kaluga Region, Russian Federation 4.3 INTERCOMPARISON OF GLOBAL UPPER-AIR TEMPERATURE DATASETS FROM RADIOSONDES AND SATELLITES D.J. Seidel 1, J. Angell 1, J. Christy 2, M. Free 1, S. Klein 3, J. Lanzante 3, C. Mears 4, D. Parker 5, M.

More information

Homogenization of the global radiosonde temperature and wind dataset using innovation statistics from reanalyses

Homogenization of the global radiosonde temperature and wind dataset using innovation statistics from reanalyses Homogenization of the global radiosonde temperature and wind dataset using innovation statistics from reanalyses Leopold Haimberger 1, Christine Gruber 1, Stefan Sperka 1 and Christina Tavolato 2 1 Department

More information

The Canadian Climate Model 's Epic Failure November 2016

The Canadian Climate Model 's Epic Failure November 2016 The Canadian Climate Model 's Epic Failure November 2016 By: Ken Gregory The Canadian Centre for Climate Modeling and Analysis located at the University of Victoria in British Columbia submitted five runs

More information

Laura Revell, Andrea Stenke, Beiping Luo, Stefanie Kremser, Eugene Rozanov, Timofei Sukhodolov and Thomas Peter

Laura Revell, Andrea Stenke, Beiping Luo, Stefanie Kremser, Eugene Rozanov, Timofei Sukhodolov and Thomas Peter Impacts of Mt. Pinatubo volcanic aerosol on the tropical stratosphere in chemistry-climate model simulations using CCMI and CMIP6 stratospheric aerosol data Laura Revell, Andrea Stenke, Beiping Luo, Stefanie

More information

Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses and CMIP3 models

Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses and CMIP3 models doi:10.5194/gmd-6-1705-2013 Author(s) 2013. CC Attribution 3.0 License. Geoscientific Model Development Open Access Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses

More information

Impacts of historical ozone changes on climate in GFDL-CM3

Impacts of historical ozone changes on climate in GFDL-CM3 Impacts of historical ozone changes on climate in GFDL-CM3 Larry Horowitz (GFDL) with: Vaishali Naik (GFDL), Pu Lin (CICS), and M. Daniel Schwarzkopf (GFDL) WMO (2014) Figure ADM 5-1 1 Response of tropospheric

More information

Polar Ozone Depletion and Trends as Represented by the Whole Atmosphere Community Climate Model (WACCM)

Polar Ozone Depletion and Trends as Represented by the Whole Atmosphere Community Climate Model (WACCM) Polar Ozone Depletion and Trends as Represented by the Whole Atmosphere Community Climate Model (WACCM) Doug Kinnison 1, Susan Solomon 2, Diane Ivy 2, Mike Mills 1, Ryan Neely III 3, and Anja Schmidt 3

More information

Correction notice. Nature Climate Change 2, (2012)

Correction notice. Nature Climate Change 2, (2012) Correction notice Nature Climate Change 2, 524 549 (2012) Human-induced global ocean warming on multidecadal timescales P. J. Gleckler, B. D. Santer, C. M. Domingues, D.W. Pierce, T. P. Barnett, J. A.

More information

A Response to the Data or Dogma? hearing

A Response to the Data or Dogma? hearing 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 A Response to the Data or Dogma? hearing On December 8, 2015, Senator Ted Cruz the chairman of the Senate subcommittee

More information

The use of marine data for attribution of climate change and constraining climate predictions

The use of marine data for attribution of climate change and constraining climate predictions The use of marine data for attribution of climate change and constraining climate predictions Peter Stott, Climar III, Thursday 8 May 2008 The use of marine data to: Quantify the contribution of human

More information

Monitoring Climate Change using Satellites: Lessons from MSU

Monitoring Climate Change using Satellites: Lessons from MSU Monitoring Climate Change using Satellites: Lessons from MSU Peter Thorne, Simon Tett Hadley Centre, Met Office, Exeter, UK UAH data from John Christy Residual uncertainty work in collaboration with John

More information

Volcanic contribution to decadal changes in tropospheric temperature

Volcanic contribution to decadal changes in tropospheric temperature Volcanic contribution to decadal changes in tropospheric temperature The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Santer,

More information

Temperature Trends in the Lower Atmosphere. Steps for Understanding and Reconciling Differences

Temperature Trends in the Lower Atmosphere. Steps for Understanding and Reconciling Differences Temperature Trends in the Lower Atmosphere Steps for Understanding and Reconciling Differences U.S. Climate Change Science Program Synthesis and Assessment Product 1.1 April 2006 EDITORIAL TEAM Chief Editor:...Thomas

More information

Causes of differences in model and satellite tropospheric warming rates

Causes of differences in model and satellite tropospheric warming rates Causes of differences in model and satellite tropospheric warming rates Article Accepted Version Santer, B. D., Fyfe, J. C., Pallotta, G., Flato, G. M., Meehl, G. A., England, M. H., Hawkins, E., Mann,

More information

Explaining Changes in Extremes and Decadal Climate Fluctuations

Explaining Changes in Extremes and Decadal Climate Fluctuations Explaining Changes in Extremes and Decadal Climate Fluctuations Gerald A. Meehl Julie Arblaster, Claudia Tebaldi, Aixue Hu, Ben Santer Explaining changes implies attributing those changes to some cause

More information

Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends

Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L18701, doi:10.1029/2009gl040419, 2009 Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends

More information

Observed Southern Ocean Cloud Properties and Shortwave Reflection

Observed Southern Ocean Cloud Properties and Shortwave Reflection Observed Southern Ocean Cloud Properties and Shortwave Reflection Daniel T McCoy* 1, Dennis L Hartmann 1, and Daniel P Grosvenor 2 University of Washington 1 University of Leeds 2 *dtmccoy@atmosuwedu Introduction

More information

ECMWF global reanalyses: Resources for the wind energy community

ECMWF global reanalyses: Resources for the wind energy community ECMWF global reanalyses: Resources for the wind energy community (and a few myth-busters) Paul Poli European Centre for Medium-range Weather Forecasts (ECMWF) Shinfield Park, RG2 9AX, Reading, UK paul.poli

More information

Avoiding Gotchas in CMIP5 Data, Metadata, and Analysis

Avoiding Gotchas in CMIP5 Data, Metadata, and Analysis Avoiding Gotchas in CMIP5 Data, Metadata, and Analysis Karl E. Taylor Program for Climate Model Diagnosis and Intercomparison () Lawrence Livermore National Laboratory Presented to the Workshop Boulder,

More information

Centre for Australian Weather and Climate Research A partnership between CSIRO and the Australian Bureau of Meteorology

Centre for Australian Weather and Climate Research A partnership between CSIRO and the Australian Bureau of Meteorology Improved Ocean Warming Estimates: Implications for Climate Models and Sea-Level Rise Catia Domingues 1 John Church 1,2 Neil White 1,2 Peter Gleckler 3 Susan Wijffels 1 Paul Barker 1 Jeff Dunn 1 1 Centre

More information

Microwave Limb Sounder Observations of Polar Middle Atmosphere: Decadal and Inter-annual Variability

Microwave Limb Sounder Observations of Polar Middle Atmosphere: Decadal and Inter-annual Variability Microwave Limb Sounder Observations of Polar Middle Atmosphere: Decadal and Inter-annual Variability Jae N. Lee 1, Dong L. Wu 2, Alexander ozone Ruzmaikin 1, Gloria J. Manney 1, and Sultan Hameed 4 1.

More information

MLOST MLOST MLOST Upper Air Temperature Advances in Multi-Decadal Observational Records

MLOST MLOST MLOST Upper Air Temperature Advances in Multi-Decadal Observational Records Chapter Observations: Atmosphere and Surface MLOST 1911-194 MLOST 1951-198 MLOST 1981-1 -1.5-1 -.8 -.6 -.5 -.3 -. -.1.1..3.4.5.6.8 1 1.5 Trend ( C per decade) Figure. Trends in surface temperature from

More information

Have greenhouse gases intensified the contrast between wet and dry regions?

Have greenhouse gases intensified the contrast between wet and dry regions? GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 4783 4787, doi:10.1002/grl.50923, 2013 Have greenhouse gases intensified the contrast between wet and dry regions? D. Polson, 1 G. C. Hegerl, 1 R. P. Allan, 2 and

More information

The role of poleward energy transport in Arctic temperature evolution

The role of poleward energy transport in Arctic temperature evolution Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl043934, 2010 The role of poleward energy transport in Arctic temperature evolution Xiao Yi Yang, 1 John C. Fyfe, 1

More information

A brief assessment of the impact of large-scale climate change on severe thunderstorms and tornadoes

A brief assessment of the impact of large-scale climate change on severe thunderstorms and tornadoes A brief assessment of the impact of large-scale climate change on severe thunderstorms and tornadoes This document briefly summarizes our current scientific understanding of: 1) observed changes in severe

More information

Detection and Attribution of Climate Change

Detection and Attribution of Climate Change Detection and Attribution of Climate Change What is D&A? Global Mean Temperature Extreme Event Attribution Geert Jan van Oldenborgh, Sjoukje Philip (KNMI) Definitions Detection: demonstrating that climate

More information

Introduction to climate modelling: Evaluating climate models

Introduction to climate modelling: Evaluating climate models Introduction to climate modelling: Evaluating climate models Why? How? Professor David Karoly School of Earth Sciences, University of Melbourne Experiment design Detection and attribution of climate change

More information

Krakatoa lives: The effect of volcanic eruptions on ocean heat content and thermal expansion

Krakatoa lives: The effect of volcanic eruptions on ocean heat content and thermal expansion GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L17702, doi:10.1029/2006gl026771, 2006 Krakatoa lives: The effect of volcanic eruptions on ocean heat content and thermal expansion P. J. Gleckler, 1 K. AchutaRao,

More information

ECMWF reanalyses: Diagnosis and application

ECMWF reanalyses: Diagnosis and application ECMWF reanalyses: Diagnosis and application Dick Dee ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom D.Dee@ecmwf.int 1 Introduction Reanalysis uses a modern data assimilation system to reprocess

More information

Doing science with multi-model ensembles

Doing science with multi-model ensembles Doing science with multi-model ensembles Gerald A. Meehl National Center for Atmospheric Research Biological and Energy Research Regional and Global Climate Modeling Program Why use a multi-model ensemble

More information

The stratospheric response to extratropical torques and its relationship with the annular mode

The stratospheric response to extratropical torques and its relationship with the annular mode The stratospheric response to extratropical torques and its relationship with the annular mode Peter Watson 1, Lesley Gray 1,2 1. Atmospheric, Oceanic and Planetary Physics, Oxford University 2. National

More information

Open Letter to the Climate Science Community: Response to A Climatology Conspiracy?

Open Letter to the Climate Science Community: Response to A Climatology Conspiracy? Open Letter to the Climate Science Community: Response to A Climatology Conspiracy? Summary A paper by D.H. Douglass, J.R. Christy, B.D. Pearson, and S.F. Singer, published online in the International

More information

The Stratospheric Link Between the Sun and Climate

The Stratospheric Link Between the Sun and Climate The Stratospheric Link Between the Sun and Climate The Stratospheric Link Between the Sun and Climate Mark P. Baldwin Northwest Research Associates, USA SORCE, 27 October 2004 Overview Climatology of the

More information

Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data

Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data Hsi-Yen Ma In collaboration with Shaocheng Xie, James Boyle, Stephen Klein, and Yuying Zhang Program

More information

Statistical significance of trends and trend differences in layer-average atmospheric temperature time series

Statistical significance of trends and trend differences in layer-average atmospheric temperature time series JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. D6, PAGES 7337 7356, MARCH 27, 2000 Statistical significance of trends and trend differences in layer-average atmospheric temperature time series B. D. Santer,

More information

Physical and Optical Properties of the Stratospheric Aerosol Layer

Physical and Optical Properties of the Stratospheric Aerosol Layer Physical and Optical Properties of the Stratospheric Aerosol Layer Patrick Hamill Department of Physics and Astronomy San Jose State University San Jose, California Justification for this Talk Much debate

More information

Why the hiatus in global mean surface temperature trends in the last decade?

Why the hiatus in global mean surface temperature trends in the last decade? Why the hiatus in global mean surface temperature trends in the last decade? G. Bala Divecha Center for Climate Change Indian Institute of Science, Bangalore (Email: gbala@caos.iisc.ernet.in) On 27 September

More information

University of Bristol - Explore Bristol Research

University of Bristol - Explore Bristol Research Mitchell, D. M. (2016). Attributing the forced components of observed stratospheric temperature variability to external drivers. Quarterly Journal of the Royal Meteorological Society, 142(695), 1041-1047.

More information

MS RAND CPP PROG0407. HadAT: An update to 2005 and development of the dataset website

MS RAND CPP PROG0407. HadAT: An update to 2005 and development of the dataset website MS RAND CPP PROG0407 HadAT: An update to 2005 and development of the dataset website Holly Coleman and Peter Thorne CV(CR) Contract Deliverable reference number: 03.09.04 File: M/DoE/2/9 Delivered from

More information

Detection and Attribution of Temperature Changes in the Mountainous Western United States

Detection and Attribution of Temperature Changes in the Mountainous Western United States 6404 J O U R N A L O F C L I M A T E VOLUME 21 Detection and Attribution of Temperature Changes in the Mountainous Western United States CÉLINE BONFILS,* BENJAMIN D. SANTER,* DAVID W. PIERCE, HUGO G. HIDALGO,

More information

Chapter 4. Convening Lead Author: Carl Mears. Lead Authors: Chris Forest, Roy Spencer, Russell Vose, and Dick Reynolds. Contributing Authors

Chapter 4. Convening Lead Author: Carl Mears. Lead Authors: Chris Forest, Roy Spencer, Russell Vose, and Dick Reynolds. Contributing Authors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Chapter 4 What is our understanding of the contribution made by observational

More information

CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations

CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations Dan Marsh, Mike Mills, Natalia Calvo, Marika Holland, Cécile Hannay WAWG meeting, Boulder, February 2011 NCAR is sponsored by the National Science

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Amplification of surface temperature trends and variability in the tropical atmosphere Permalink https://escholarship.org/uc/item/050980tk

More information

Transient Climate Simulations with the HadGEM1 Climate Model: Causes of Past Warming and Future Climate Change

Transient Climate Simulations with the HadGEM1 Climate Model: Causes of Past Warming and Future Climate Change 15 JUNE 2006 S TOTT ET AL. 2763 Transient Climate Simulations with the HadGEM1 Climate Model: Causes of Past Warming and Future Climate Change PETER A. STOTT Hadley Centre for Climate Prediction and Research,

More information

Of what use is a statistician in climate modeling?

Of what use is a statistician in climate modeling? Of what use is a statistician in climate modeling? Peter Guttorp University of Washington Norwegian Computing Center peter@stat.washington.edu http://www.stat.washington.edu/peter Acknowledgements ASA

More information

Anthropogenic warming of central England temperature

Anthropogenic warming of central England temperature ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 7: 81 85 (2006) Published online 18 September 2006 in Wiley InterScience (www.interscience.wiley.com).136 Anthropogenic warming of central England temperature

More information

Reply to Comments on A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit

Reply to Comments on A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit 1014 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 30 Reply to Comments on A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding

More information

PMIP3/CMIP5 Last Millennium Model Simulation Effort

PMIP3/CMIP5 Last Millennium Model Simulation Effort PMIP3/CMIP5 Last Millennium Model Simulation Effort Bette Otto-Bliesner and Steven Phipps National Center for Atmospheric Research, Boulder, Colorado University of New South Wales, Sydney Outline Background

More information

Measuring Global Temperatures: Satellites or Thermometers?

Measuring Global Temperatures: Satellites or Thermometers? Measuring Global Temperatures: Satellites or Thermometers? January 26, 2016 by Dr. Roy Spencer, http://www.cfact.org/2016/01/26/measuring-global-temperatures-satellites-orthermometers/ The University of

More information

The exceptional Arctic winter 2005/06

The exceptional Arctic winter 2005/06 SPARC data assimilation workshop, 2-4 October 2006 The exceptional Arctic winter 2005/06 An example to investigate polar processes using different assimilations systems 1, Gloria Manney 2,3, Steven Pawson

More information

The role of data assimilation in atmospheric composition monitoring and forecasting

The role of data assimilation in atmospheric composition monitoring and forecasting The role of data assimilation in atmospheric composition monitoring and forecasting Why data assimilation? Henk Eskes Royal Netherlands Meteorological Institute, De Bilt, The Netherlands Atmospheric chemistry

More information

Panel and Multivariate Methods for Tests of Trend Equivalence in Climate Data Series

Panel and Multivariate Methods for Tests of Trend Equivalence in Climate Data Series Panel and Multivariate Methods for Tests of Trend Equivalence in Climate Data Series Ross McKitrick (Corresponding Author) Department of Economics University of Guelph rmckitri@uoguelph.ca Stephen McIntyre

More information

Simulation of Polar Ozone Depletion in SD-WACCM4 / MERRA

Simulation of Polar Ozone Depletion in SD-WACCM4 / MERRA Simulation of Polar Ozone Depletion in SD-WACCM4 / MERRA D. Kinnison (NCAR), S. Solomon (MIT), J. Bandoro (MIT), and R. Garcia (NCAR) June 16, 2015 WACCM Working Group Meeting, Baltimore MD. Image courtesy

More information

A distinct stronger warming in the tropical tropopause layer during using GPS radio occultation: Association with minor volcanic eruptions

A distinct stronger warming in the tropical tropopause layer during using GPS radio occultation: Association with minor volcanic eruptions A distinct stronger warming in the tropical tropopause layer during 2001-2010 using GPS radio occultation: Association with minor volcanic eruptions Sanjay Kumar Mehta 1*, Masatomo Fujiwara 2, and Toshitaka

More information

3. Climate Change. 3.1 Observations 3.2 Theory of Climate Change 3.3 Climate Change Prediction 3.4 The IPCC Process

3. Climate Change. 3.1 Observations 3.2 Theory of Climate Change 3.3 Climate Change Prediction 3.4 The IPCC Process 3. Climate Change 3.1 Observations 3.2 Theory of Climate Change 3.3 Climate Change Prediction 3.4 The IPCC Process 3.1 Observations Need to consider: Instrumental climate record of the last century or

More information

Forecast system development: what next?

Forecast system development: what next? Forecast system development: what next? Doug Smith, Adam Scaife, Nick Dunstone, Leon Hermanson, Rosie Eade, Vikki Thompson, Martin Andrews, Jeff Knight, Craig MacLachlan, and many others Improved models

More information

The Oceans in a Warming World

The Oceans in a Warming World The Oceans in a Warming World John Marshall Earth, Atmospheric and Planetary Sciences 1. Review global observations of warming trends. Ocean temperature trends key part of the puzzle. 2. Discuss timing

More information

Evolution not Revolution: Charting a realistic path forward?

Evolution not Revolution: Charting a realistic path forward? May 16 2018 Evolution not Revolution: Charting a realistic path forward? Gavin Schmidt, NASA GISS Wouldn t it be great if there was an overarching theory that predicted climate sensitivity from first principles?

More information

DETECTION AND ATTRIBUTION

DETECTION AND ATTRIBUTION DETECTION AND ATTRIBUTION Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260, USA rls@email.unc.edu 41st Winter Conference in Statistics

More information

Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis

Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis 4636 JOURNAL OF CLIMATE Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis QIANG FU ANDCELESTE M. JOHANSON Department of Atmospheric Sciences, University of

More information

Stratospheric Influences on MSU-Derived Tropospheric Temperature. Trends: A Direct Error Analysis

Stratospheric Influences on MSU-Derived Tropospheric Temperature. Trends: A Direct Error Analysis Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis Qiang Fu and Celeste M. Johanson Department of Atmospheric Sciences, University of Washington, Seattle,

More information

Monsoon Activities in China Tianjun ZHOU

Monsoon Activities in China Tianjun ZHOU Monsoon Activities in China Tianjun ZHOU Email: zhoutj@lasg.iap.ac.cn CLIVAR AAMP10, Busan,, Korea 18-19 19 June 2010 Outline Variability of EASM -- Interdecadal variability -- Interannual variability

More information

Level 3 Earth and Space Science, 2014

Level 3 Earth and Space Science, 2014 91414 914140 3SUPERVISOR S Level 3 Earth and Space Science, 2014 91414 Demonstrate understanding of processes in the atmosphere system 2.00 pm Tuesday 2 December 2014 Credits: Four Achievement Achievement

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: Linkage between global sea surface temperature and hydroclimatology of a major river basin of India before and after 1980 P. Sonali, Ravi S. Nanjundiah, & D. Nagesh Kumar

More information

Recent Climate History - The Instrumental Era.

Recent Climate History - The Instrumental Era. 2002 Recent Climate History - The Instrumental Era. Figure 1. Reconstructed surface temperature record. Strong warming in the first and late part of the century. El Ninos and major volcanic eruptions are

More information

Atmospheric Chemistry III

Atmospheric Chemistry III Atmospheric Chemistry III Chapman chemistry, catalytic cycles: reminder Source of catalysts, transport to stratosphere: reminder Effect of major (O 2 ) and minor (N 2 O, CH 4 ) biogenic gases on [O 3 ]:

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D05105, doi: /2007jd008864, 2008

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D05105, doi: /2007jd008864, 2008 Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jd008864, 2008 Using limited time period trends as a means to determine attribution of discrepancies in microwave

More information

Identification of anthropogenic climate change using a second-generation reanalysis

Identification of anthropogenic climate change using a second-generation reanalysis JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2004jd005075, 2004 Identification of anthropogenic climate change using a second-generation reanalysis Benjamin D. Santer, 1 Tom M. L. Wigley, 2

More information

The strength of the tropical inversion and its response to climate change in 18 CMIP5 models

The strength of the tropical inversion and its response to climate change in 18 CMIP5 models The strength of the tropical inversion and its response to climate change in 18 CMIP5 models Xin Qu and Alex Hall Department of Atmospheric and Oceanic Sciences University of California at Los Angeles

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Intensification of Northern Hemisphere Subtropical Highs in a Warming Climate Wenhong Li, Laifang Li, Mingfang Ting, and Yimin Liu 1. Data and Methods The data used in this study consists of the atmospheric

More information

Centennial-scale Climate Change from Decadally-paced Explosive Volcanism

Centennial-scale Climate Change from Decadally-paced Explosive Volcanism Centennial-scale Climate Change from Decadally-paced Explosive Volcanism Yafang Zhong and Gifford Miller INSTAAR, University of Colorado at Boulder, USA Bette Otto-Bliesner, Caspar Ammann, Marika Holland,

More information

Specifications for a Reference Radiosonde for the GCOS Reference. Upper-Air Network (GRUAN)

Specifications for a Reference Radiosonde for the GCOS Reference. Upper-Air Network (GRUAN) Specifications for a Reference Radiosonde for the GCOS Reference Upper-Air Network (GRUAN) By the Working Group on Atmospheric Reference Observations (WG-ARO) Final Version, October 2008 1. Introduction

More information

Assessing the consistency between short-term global temperature trends in

Assessing the consistency between short-term global temperature trends in 1 2 Assessing the consistency between short-term global temperature trends in observations and climate model projections 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

More information

Stratospheric variability and trends in models used for the IPCC AR4

Stratospheric variability and trends in models used for the IPCC AR4 Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Stratospheric variability and trends in models used for the IPCC AR4 E. C. Cordero 1 and P. M.

More information

CORRELATION BETWEEN ATMOSPHERIC COMPOSITION AND VERTICAL STRUCTURE AS MEASURED BY THREE GENERATIONS OF HYPERSPECTRAL SOUNDERS IN SPACE

CORRELATION BETWEEN ATMOSPHERIC COMPOSITION AND VERTICAL STRUCTURE AS MEASURED BY THREE GENERATIONS OF HYPERSPECTRAL SOUNDERS IN SPACE CORRELATION BETWEEN ATMOSPHERIC COMPOSITION AND VERTICAL STRUCTURE AS MEASURED BY THREE GENERATIONS OF HYPERSPECTRAL SOUNDERS IN SPACE Nadia Smith 1, Elisabeth Weisz 1, and Allen Huang 1 1 Space Science

More information

Extended Summary of the Climate Dialogue on the (missing) tropical hot spot

Extended Summary of the Climate Dialogue on the (missing) tropical hot spot Extended Summary of the Climate Dialogue on the (missing) tropical hot spot Author: Marcel Crok with input from Bart Strengers (PBL) and Bart Verheggen October 2014 Climatedialogue.org (October 2014) 1

More information

Climate Change. April 21, 2009

Climate Change. April 21, 2009 Climate Change Chapter 16 April 21, 2009 Reconstructing Past Climates Techniques Glacial landscapes (fossils) CLIMAP (ocean sediment) Ice cores (layering of precipitation) p Otoliths (CaCO 3 in fish sensory

More information

Volcanoes drive climate variability by

Volcanoes drive climate variability by Volcanoes drive climate variability by 1. emitting ozone weeks before eruptions, 2. forming lower stratospheric aerosols that cool Earth, 3. causing sustained ozone depletion, surface warming, and lower

More information

10 years of stratospheric aerosol observadons from CALIPSO J.-P. Vernier, L.W. Thomason, T.D. Fairlie, J. Kar, M. Natarajan

10 years of stratospheric aerosol observadons from CALIPSO J.-P. Vernier, L.W. Thomason, T.D. Fairlie, J. Kar, M. Natarajan 10 years of stratospheric aerosol observadons from CALIPSO J.-P. Vernier, L.W. Thomason, T.D. Fairlie, J. Kar, M. Natarajan CALIPSO-Cloudsat 10th Anni versary workshop, June 2016, Paris Some important

More information

Climate Change 2007: The Physical Science Basis

Climate Change 2007: The Physical Science Basis Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC Chair and Bubu Jallow, WG 1 Vice Chair Nairobi, 6 February

More information

Update from the European Centre for Medium-Range Weather Forecasts

Update from the European Centre for Medium-Range Weather Forecasts JSC-34 Brasilia, May 2013 Update from the European Centre for Medium-Range Weather Forecasts Adrian Simmons Consultant, ECMWF First main message ECMWF has a continuing focus on a more seamless approach

More information

Chapter 6: Stratosphere-Troposphere Coupling

Chapter 6: Stratosphere-Troposphere Coupling Chapter 6: Stratosphere-Troposphere Coupling Lead Authors: Edwin Gerber and Yulia Zyulaeva Contributing authors: Mark Baldwin, Thomas Birner, Edith Botek, Simon Chabrillat, Alexey Karpechko, Kirstin Krueger,

More information

Attribution of polar warming to human influence

Attribution of polar warming to human influence Attribution of polar warming to human influence LETTERS NATHAN P. GILLETT *, DÁITHÍ A. STONE,, PETER A. STOTT, TORU NOZAWA, ALEXEY Y. KARPECHKO, GABRIELE C. HEGERL, MICHAEL F. WEHNER AND PHILIP D. JONES

More information

A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit

A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit 646 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 29 A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit STEPHEN PO-CHEDLEY

More information

Detecting and Attributing External Influences on the Climate System: A Review of Recent Advances

Detecting and Attributing External Influences on the Climate System: A Review of Recent Advances Detecting and Attributing External Influences on the Climate System: A Review of Recent Advances By The International ad hoc Detection and Attribution Group 1 To be submitted to J Climate 6 January 2004

More information

How does stratospheric polar vortex variability affect surface weather? Mark Baldwin and Tom Clemo

How does stratospheric polar vortex variability affect surface weather? Mark Baldwin and Tom Clemo How does stratospheric polar vortex variability affect surface weather? Mark Baldwin and Tom Clemo Mark P. Baldwin, University of Exeter Imperial College 12 December 2012 a Observed Average Surface Pressure

More information

Toward Elimination of the Warm Bias in Historic Radiosonde Temperature Records Some New Results from a Comprehensive Intercomparison of Upper-Air Data

Toward Elimination of the Warm Bias in Historic Radiosonde Temperature Records Some New Results from a Comprehensive Intercomparison of Upper-Air Data 15 SEPTEMBER 2008 H A I M B E R G E R E T A L. 4587 Toward Elimination of the Warm Bias in Historic Radiosonde Temperature Records Some New Results from a Comprehensive Intercomparison of Upper-Air Data

More information

EARLY ONLINE RELEASE

EARLY ONLINE RELEASE AMERICAN METEOROLOGICAL SOCIETY Journal of Atmospheric and Oceanic Technology EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for

More information