Nucleosynthesis in AGB stars traced by oxygen isotopic ratios

Size: px
Start display at page:

Download "Nucleosynthesis in AGB stars traced by oxygen isotopic ratios"

Transcription

1 Nucleosynthesis in AGB stars traced by oxygen isotopic ratios Rutger DE NUTTE1 L. Decin1,4, H. Olofsson2, S. Ramstedt3, A. de Koter1,4 1 Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Belgium Onsala Space Observatory, Dept. of Earth and Space Sciences, Chalmers University of Technology, Sweden 2 Department of Physics and Astronomy, Uppsala University, Sweden 3 4 Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands

2 Introduction Oxygen rare isotopes as tracers

3 Dredge-up (DU) events 5M Busso et al. 1999, ARA&A 37, 239 1M 1/14

4 Dredge-up (DU) events: FDU During first red giant branch ascend Convective envelope penetrates partial H-burning shell RESULT (surface composition): O/17O 16 O/18O 17 O/18O 16 t t 1/14

5 Dredge-up (DU) events: SDU For M* > 4-5M (dependent on composition) During formation of degenerate CO core RESULT (surface composition): O/17O 16 O/18O 17 O/18O 16 t t 1/14

6 Dredge-up (DU) events: TDU Following He shell flash (1M < M* < 4M ) M (C/O<1) C (C/O>1) Multiple cycles (thermal pulses TP's): yr RESULT (surface composition):? O/17O 16 O/18O 17 O/18O 16 t t 1/14

7 Extra mixing? Karakas et al. 2010, ApJ 713, 374 2/14

8 Extra mixing? Really necessary on AGB? (e.g. Karakas et al. 2010, Busso et al. 2010, Charbonnel & Lagarde 2010, etc.) 2/14

9 Extra mixing? Really necessary on AGB? (e.g. Karakas et al. 2010, Busso et al. 2010, Charbonnel & Lagarde 2010, etc.) Possibilities: Rotational mixing Magnetic buoyancy Gravity waves (Thermohaline mixing) Talk by R.J Stancliffe 2/14

10 Extra mixing? Really necessary on AGB? (e.g. Karakas et al. 2010, Busso et al. 2010, Charbonnel & Lagarde 2010, etc.) Possibilities: Rotational mixing Magnetic buoyancy Gravity waves (Thermohaline mixing)??? Talk by R.J Stancliffe 2/14

11 Extra mixing? Really necessary on AGB? (e.g. Karakas et al. 2010, Busso et al. 2010, Charbonnel & Lagarde 2010, etc.) Possibilities: Rotational mixing Magnetic buoyancy Gravity waves (Thermohaline mixing) } Predict different isotopic ratios, testable from observations! O-isotopes! 2/14

12 Observational selection effects Observations of the extended circumstellar envelope (CSE)

13 Observations Study effect of nucleosynthesis and DUs (+extra mixing) by means of isotopic ratios 3/14

14 Observations Study effect of nucleosynthesis and DUs by means of isotopic ratios -> Possibilities: Interstellar gas measurements (e.g. Wannier et al. 1976, Penzias 1981, etc.) 3/14

15 Observations Study effect of nucleosynthesis and DUs by means of isotopic ratios -> Possibilities: Interstellar gas measurements: Molded by generations of stars of various types ( no relevance to single star evolution models, measured 17O/18O values very constant ~5x smaller than those already obtained in AGB CSEs; e.g. Penzias 1981) 3/14

16 Observations Study effect of nucleosynthesis and DUs by means of isotopic ratios -> Possibilities: Interstellar gas measurements Presolar grains: (e.g. Nittler et al. 1997, etc.) 3/14

17 Observations Study effect of nucleosynthesis and DUs by means of isotopic ratios -> Possibilities: Interstellar gas measurements Presolar grains: Thought to retain isotopic compositions of stellar gases from which they condensed BUT: also reflects complex interplay of galactic chemical evolution (spallation) + lab pollution + hard to differentiate origin of grain 3/14

18 Observations: presolar grains Nittler et al. 1997, ApJ 483, 475 3/14

19 Observations Study effect of nucleosynthesis and DUs by means of isotopic ratios -> Possibilities: Interstellar gas measurements (Presolar grains) Outer layers of stellar atmosphere 3/14

20 Observations Study effect of nucleosynthesis and DUs by means of isotopic ratios -> Possibilities: Interstellar gas measurements (Presolar grains) Outer layers of stellar atmosphere: Obscured by wind (little to no information), only possible for low mass-loss rates (incomplete sample) 3/14

21 Observations Study effect of nucleosynthesis and DUs by means of isotopic ratios -> Possibilities: Interstellar gas measurements (Presolar grains) (Outer layers of stellar atmosphere) Teneous extended CSE (best effort so far: Kahane et al (4)! C-rich envelopes) 3/14

22 AGB extended CSE Adapted from Habing & Olofsson, /14

23 AGB extended CSE Adapted from Habing & Olofsson, /14

24 AGB extended CSE Adapted from Habing & Olofsson, /14

25 Carbon monoxide Highly abundant (both in C- as M-type stars) 5/14

26 Carbon monoxide Highly abundant (both in C- as M-type stars) Exceptionally stable: non-reactive to dust and not easily photodissociated 5/14

27 Carbon monoxide Highly abundant (both in C- as M-type stars) Exceptionally stable: non-reactive to dust and not easily photodissociated Easily interpreted spectrum: 5/14

28 Long wavelength astronomy IRAM 30m (Pico Veleta) GHz J = 1->0 J = 2->1 J = 3->2 HPBW: 2460 / f [GHz] Photo courtesy of Institut de RadioAstronomie Millimétrique 6/14

29 Long wavelength astronomy APEX Atacama Pathfinder EXperiment (12m) GHz J = 2->1 J = 3->2 J = 4->3 Photo courtesy of Atacama Pathfinder EXperiment HPBW: 6240 / f [GHz] 6/14

30 Long wavelength astronomy Herschel PACS/HIFI Heterodyne Instrument for the Far Infrared HIFI: GHz Photometer Array Camera and Spectrometer PACS: GHz Photo courtesy of European Space Agency 6/14

31 Observations: Current sample ~220 h observing time 8 sources for which we can already perform a 17O/18O study (5 C, 2 M, 1 S) +1 APEX run ongoing +1 APEX run starting next period 7/14

32 From lines to ratios 8/14

33 From lines to ratios O/18O 17 8/14

34 From lines to ratios Full non-lte radiative transfer O/18O 17 8/14

35 From lines to ratios 8/14

36 From lines to ratios I(C17O)/I(C18O) corr. for Einstein A (~ν-2) [C17O]/[C18O] Frequencies relatively close 9/14

37 From lines to ratios I(C17O)/I(C18O) corr. for Einstein A (~ν-2) [C17O]/[C18O] Frequencies relatively close Line excitation mainly collisional 9/14

38 From lines to ratios I(C17O)/I(C18O) corr. for Einstein A (~ν-2) [C17O]/[C18O] Frequencies relatively close Line excitation mainly collisional Optically thin Same line forming regions (for low J) 9/14

39 From lines to ratios I(C17O)/I(C18O) corr. for Einstein A (~ν-2) [C17O]/[C18O] Frequencies relatively close Line excitation mainly collisional (for low J) Optically thin } readily checked Same line forming regions With non-lte radiative transfer code (GASTRoNOom: Decin et al. 2006) 9/14

40 Line forming regions 9/14

41 From lines to ratios I(C17O)/I(C18O) corr. for Einstein A (~ν-2) [C17O]/[C18O] Frequencies relatively close Line excitation mainly collisional Optically thin Same line forming regions (for low J) 9/14

42 From lines to ratios [C17O]/[C18O] [17O]/[18O] Chemical fractionation vs. Selective photodissociation 10/14

43 From lines to ratios [C17O]/[C18O] [17O]/[18O] Chemical fractionation vs. Selective photodissociation (See e.g. Mamon et al. 1988) 10/14

44 Results Isotopic abundances

45 N 17 O/18O 11/14

46 N 17 O/18O 11/14

47 Link with stellar evolution Combine with 12C/13C (Ramstedt & Olofsson 2014) Talk by H. Olofsson Confront with stellar evolution models (FRANEC code Cristallo et al. 2009) Karakas et al. 2010, ApJ 713, /14

48 Concluding remarks and future work Summary

49 Summary Oxygen isotopes = excellent tracers for the efficiency of nucleosynthetic and DU processes CSE observations most probably best option Extremely weak lines make getting an adequate sample a long and tedious process Quick and easy line ratio study possible, BUT need full non-lte radiative transfer combined with high-j lines for definitive results 13/14

50 Future work Increase sample size Combine with 12C/13C (Ramstedt & Olofsson 2014) Full non-lte radiative transfer +PACS/HIFI (GASTRoNOoM Decin et al. 2006) Beyond IRC ALMA 14/14

51 References Boothroyd et al. 1999, ApJ 510, 232 Kahane et al. 1992, A&A 256, 235 Busso et al. 2010, ApJ 717, L47 Kahane et al. 2000, A&A 357, 669 Charbonnel & Lagarde 2010, A&A 522, A10 Karakas et al. 2010, ApJ 713, 374 Cristallo et al. 2009, ApJ 696, 797 Maeder 1992, A&A 264, 105 Decin et al. 2006, A&A 456, 549 Mamon et al. 1988, ApJ 328, 797 Decin 2010c, Nature, 467, 64 Nittler et al. 1997, NuPhA 621, 113 Duari et al. 1999, A&A 341, L47 Nittler et al. 2003, E&PSL 209, 259 Gaidos et al. 2009, ApJ 705, L163 Nittler et al. 2009, PASA 26, 271 Glassgold 1996, ARA&A 34, 241 Smith & Lambert 1986, ApJ 311, 853 Harris & Lambert 1984, ApJ 285, 674 Harris & Lambert 1985, ApJ 299, 375 Harris et al. 1987, ApJ 316, 294

52 1. Introduction Contents i. Dredge-up events ii. Extra mixing? 2. Observations i. Possibilities ii. Extended CSE iii.carbon monoxide iv.long wavelength astronomy v. Current sample: from lines to ratios 3. Results 4. Conclusions and future work

Oxygen in AGB stars and the relevance of planetary nebulae to mapping oxygen in the Universe

Oxygen in AGB stars and the relevance of planetary nebulae to mapping oxygen in the Universe Oxygen in AGB stars and the relevance of planetary nebulae to mapping oxygen in the Universe Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory, Australia Introduction

More information

Wind beyond the tip of the AGB and its relevance to stardust grain data

Wind beyond the tip of the AGB and its relevance to stardust grain data Wind beyond the tip of the AGB and its relevance to stardust grain data Centre for Stellar and Planetary Astrophysics Monash University, Victoria, Australia E-mail: Joelene.Buntain@monash.edu M. Lugaro

More information

Understanding the chemistry of AGB circumstellar envelopes through the study of IRC

Understanding the chemistry of AGB circumstellar envelopes through the study of IRC Understanding the chemistry of AGB circumstellar envelopes through the study of IRC +10216 Marcelino Agúndez LUTH, Observatoire de Paris 28 janvier 2010 1 1.65 m 2MASS PART I. INTRODUCTION: - Interest

More information

Rubidium, zirconium, and lithium production in massive AGB stars

Rubidium, zirconium, and lithium production in massive AGB stars Rubidium, zirconium, and lithium production in massive AGB stars Sterrekundig Instituut, University of Utrecht, Postbus 80000, 3508 TA Utrecht, The Netherlands E-mail: m.a.vanraai@students.uu.nl M. Lugaro

More information

Evolution and nucleosynthesis of AGB stars

Evolution and nucleosynthesis of AGB stars Evolution and nucleosynthesis of AGB stars Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory Lecture Outline 1. Introduction to AGB stars; evolution prior to the AGB

More information

Atmospheric Dynamics & Winds of AGB stars: A Theorist's View. Susanne Höfner Department of Physics and Astronomy Uppsala University

Atmospheric Dynamics & Winds of AGB stars: A Theorist's View. Susanne Höfner Department of Physics and Astronomy Uppsala University Atmospheric Dynamics & Winds of AGB stars: A Theorist's View Susanne Höfner Department of Physics and Astronomy Uppsala University Overview Dynamical atmospheres convection, pulsation, extended structures

More information

Evolution and nucleosynthesis prior to the AGB phase

Evolution and nucleosynthesis prior to the AGB phase Evolution and nucleosynthesis prior to the AGB phase Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory Lecture Outline 1. Introduction to AGB stars, and the evolution

More information

The Monash Chemical Yields Project

The Monash Chemical Yields Project The Monash Chemical Yields Project Carolyn Doherty (Konkoly Observatory) George Angelou Simon W. Campbell Ross Church Thomas Constantino Sergio Cristallo Pilar Gil Pons Amanda Karakas John Lattanzio Maria

More information

Radio/mm/sub-mm Observations of AGB and RSG stars. Hans Olofsson Dept. of Earth and Space Sciences, Chalmers

Radio/mm/sub-mm Observations of AGB and RSG stars. Hans Olofsson Dept. of Earth and Space Sciences, Chalmers Radio/mm/sub-mm Observations of AGB and RSG stars Hans Olofsson Dept. of Earth and Space Sciences, Chalmers Outline I will cover the following topics:! The central stars! Chemistry: Spectral scans Source

More information

Nitrogen isotopic ratios in Galactic AGB carbon stars of different spectral types

Nitrogen isotopic ratios in Galactic AGB carbon stars of different spectral types Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and

More information

Evolution of Intermediate-Mass Stars

Evolution of Intermediate-Mass Stars Evolution of Intermediate-Mass Stars General properties: mass range: 2.5 < M/M < 8 early evolution differs from M/M < 1.3 stars; for 1.3 < M/M < 2.5 properties of both mass ranges MS: convective core and

More information

Chalmers Publication Library

Chalmers Publication Library Chalmers Publication Library The wind of W Hydrae as seen by Herschel I. The CO envelope This document has been downloaded from Chalmers Publication Library (CPL). It is the author s version of a work

More information

Determining the forsterite abundance of the dust around Asymptotic Giant Branch stars

Determining the forsterite abundance of the dust around Asymptotic Giant Branch stars Astronomy & Astrophysics manuscript no. 1388 c ESO 21 March 17, 21 Determining the forsterite abundance of the dust around Asymptotic Giant Branch stars B.L. de Vries 1,2, M. Min 2, L.B.F.M. Waters 2,1,

More information

Introduction to nucleosynthesis in asymptotic giant branch stars

Introduction to nucleosynthesis in asymptotic giant branch stars Introduction to nucleosynthesis in asymptotic giant branch stars Amanda Karakas 1 and John Lattanzio 2 1) Research School of Astronomy & Astrophysics Mt. Stromlo Observatory 2) School of Mathematical Sciences,

More information

Modeling the Li abundances of RGB and AGB stars with a new estimate for the 7 Be half-life time

Modeling the Li abundances of RGB and AGB stars with a new estimate for the 7 Be half-life time Modeling the Li abundances of RGB and AGB stars with a new estimate for the Be half-life time Palmerini S. Departamento de Física Teórica y del Cosmos, Universidad de Granada, Spain E-mail: sarapalmerini@ugr.es

More information

arxiv: v1 [astro-ph.sr] 19 Nov 2016

arxiv: v1 [astro-ph.sr] 19 Nov 2016 Astronomy& Astrophysics manuscript no. ox2 c ESO 218 August 27, 218 The puzzle of the CNO isotope ratios in AGB carbon stars C. Abia 1, R. P. Hedrosa 2, I. Domínguez 1, and O. Straniero 3 1 Dpto. Física

More information

arxiv:astro-ph/ v1 13 Nov 2002

arxiv:astro-ph/ v1 13 Nov 2002 Cool bottom processes on the thermally-pulsing AGB and the isotopic composition of circumstellar dust grains Kenneth M. Nollett MC 130-33, California Institute of Technology, Pasadena, CA 91125 arxiv:astro-ph/0211271v1

More information

arxiv:astro-ph/ v1 17 May 2000

arxiv:astro-ph/ v1 17 May 2000 A&A manuscript no. (will be inserted by hand later) Your thesaurus codes are: 06(08.01.1; 08.16.4; 08.03.1; 08.03.4; 08.12.1) ASTRONOMY AND ASTROPHYSICS The 12 C/ 13 C-ratio in cool carbon stars F. L.

More information

AGB stars as laboratories for nuclear physics

AGB stars as laboratories for nuclear physics AGB stars as laboratories for nuclear physics John Lattanzio with Amanda Karakas 1, Lisa Elliott, Simon Campbell, Maria Lugaro 2, Carolyn Doherty Centre for Stellar and Planetary Astrophysics, Monash University,Australia

More information

Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models

Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models, ab R. Gallino, b F. Käppeler, c M. Wiescher, d and C. Travaglio a a INAF - Astronomical Observatory Turin, Turin, Italy b University

More information

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg"

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg" Spectroscopy of (cool) giants and supergiants! Maria Bergemann MPIA Heidelberg" Outline! Motivation why do spectroscopy of giant

More information

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence Lecture 9: Post-main sequence evolution of stars Lifetime on the main sequence Shell burning and the red giant phase Helium burning - the horizontal branch and the asymptotic giant branch The death of

More information

Mixing, Nucleosynthesis, and Stellar Yields in Intermediate Mass AGB stars

Mixing, Nucleosynthesis, and Stellar Yields in Intermediate Mass AGB stars Cat's Eye Nebula, APOD 4 Sep 02, Corradi & Goncalves Mixing, Nucleosynthesis, and Stellar Yields in Intermediate Mass AGB stars Falk Herwig Los Alamos National Laboratory, New Mexico, USA Theoretical Astrophysics

More information

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars.

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar evolution during the main-sequence life-time, and during the post-main-sequence

More information

BRANCHINGS, NEUTRON SOURCES AND POISONS: EVIDENCE FOR STELLAR NUCLEOSYNTHESIS

BRANCHINGS, NEUTRON SOURCES AND POISONS: EVIDENCE FOR STELLAR NUCLEOSYNTHESIS BRANCHINGS, NEUTRON SOURCES AND POISONS: EVIDENCE FOR STELLAR NUCLEOSYNTHESIS MARIA LUGARO ASTRONOMICAL INSTITUTE UNIVERSITY OF UTRECHT (NL) STRUCTURE OF THE TALK 1. Evidence for neutron sources in AGB

More information

The death throes of massive stars

The death throes of massive stars The death throes of massive stars SOFIA WALLSTRÖM Collaborators: S. Muller, J. H. Black, E. Lagadec, C. Biscaro, A. Tielens, I. Cherchneff, J. Rho, R. Oudmaijer, H. Olofsson, A. Zijlstra, and others Seminar,

More information

arxiv: v1 [astro-ph.sr] 15 Sep 2014

arxiv: v1 [astro-ph.sr] 15 Sep 2014 Astronomy& Astrophysics manuscript no. maercker c ESO 8 July 3, 8 The detached dust shells around the carbon AGB stars R Scl and V644 Sco M. Maercker,, S. Ramstedt 3 M. L. Leal-Ferreira, G. Olofsson 4,

More information

E-ELT METIS * AND MATISSE: PROSPECTS FOR AGB-STARS

E-ELT METIS * AND MATISSE: PROSPECTS FOR AGB-STARS E-ELT METIS * AND MATISSE: PROSPECTS FOR AGB-STARS J. Hron 1, J. Blommaert 2, L. Decin 2, T. Lebzelter 1, C. Paladini 3,1, H. Van Winckel 2 and the METIS and MATISSE teams (1) Universitätssternwarte Wien,

More information

The Ṁass- loss of Red Supergiants

The Ṁass- loss of Red Supergiants The Ṁass- loss of Red Supergiants Dr. Donald F. Figer Director, Center for Detectors Speaker: Yuanhao (Harry) Zhang RIT 9/12/13 1 9/12/13 2 Outline IntroducJon MoJvaJon Objects Method Need for SOFIA/FORCAST

More information

The importance of non-lte chemical processes in a dynamical region ABSTRACT

The importance of non-lte chemical processes in a dynamical region ABSTRACT A&A 53, A83 (211) DI: 1.151/4-6361/21116597 c ES 211 Astronomy & Astrophysics A chemical inventory of the S-type AGB star χ Cygni based on Herschel/HIFI observations of circumstellar line emission The

More information

INDEX OF SUBJECTS 6, 14, 23, 50, 95, 191 4, 191, 234

INDEX OF SUBJECTS 6, 14, 23, 50, 95, 191 4, 191, 234 INDEX OF SUBJECTS Abundances, elemental Abundances, ionic AGB stars (see Stars, AGB) Age, nebulae Asymptotic Giant Branch (AGB) Be stars (see Stars, Be) Bipolar structure, nebulae Carbon stars Carbon stars,

More information

Studies of the S-type AGB star W Aquilae:

Studies of the S-type AGB star W Aquilae: THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING Studies of the S-type AGB star W Aquilae: The circumstellar envelope and the faint companion TAÏSSA DANILOVICH Department of Earth and Space Sciences

More information

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission Gamma-ray nucleosynthesis N. Mowlavi Geneva Observatory Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission 1 I. Predictions 2 300 250 200 150 100 50 10 6

More information

arxiv: v1 [astro-ph.sr] 12 Apr 2018

arxiv: v1 [astro-ph.sr] 12 Apr 2018 Astronomy & Astrophysics manuscript no. 32929 c ESO 218 September 26, 218 Letter to the Editor Rotation of the asymptotic giant branch star R Doradus W. H. T. Vlemmings 1,, T. Khouri 1, E. De Beck 1, H.

More information

arxiv: v1 [astro-ph.sr] 11 Sep 2015

arxiv: v1 [astro-ph.sr] 11 Sep 2015 Astronomy & Astrophysics manuscript no. lugaro c ESO 2018 August 14, 2018 Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars (Research Note) M. Lugaro 1,2, S. W. Campbell

More information

arxiv: v1 [astro-ph.sr] 1 Feb 2016

arxiv: v1 [astro-ph.sr] 1 Feb 2016 Astronomy & Astrophysics manuscript no. Sulphur c E018 September 27, 2018 Sulphur molecules in the circumstellar envelopes of M-type AGB stars T. Danilovich 1, E. De Beck 1, J. H. Black 1, H. Olofsson

More information

COOL BOTTOM PROCESSES ON THE THERMALLY PULSING ASYMPTOTIC GIANT BRANCH AND THE ISOTOPIC COMPOSITION OF CIRCUMSTELLAR DUST GRAINS Kenneth M.

COOL BOTTOM PROCESSES ON THE THERMALLY PULSING ASYMPTOTIC GIANT BRANCH AND THE ISOTOPIC COMPOSITION OF CIRCUMSTELLAR DUST GRAINS Kenneth M. The Astrophysical Journal, 582:1036 1058, 2003 January 10 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. COOL BOTTOM PROCESSES ON THE THERMALLY PULSING ASYMPTOTIC GIANT

More information

PoS(NIC XI)013. Nucleosynthesis and chemical evolution of intermediate-mass stars: results from planetary nebulae

PoS(NIC XI)013. Nucleosynthesis and chemical evolution of intermediate-mass stars: results from planetary nebulae Nucleosynthesis and chemical evolution of intermediate-mass stars: results from planetary nebulae E-mail: maciel@astro.iag.usp.br Roberto D. D. Costa E-mail: roberto@astro.iag.usp.br Thais E. P. Idiart

More information

CHAPTER 11 LATE EVOLUTION OF M< 8 MSUN

CHAPTER 11 LATE EVOLUTION OF M< 8 MSUN CHAPTER 11 LATE EVOLUTION OF M< 8 MSUN SUMMARY M> 2 SOL AR MASSES H-rich He-rich SUMMARY M> 2 SOL AR MASSES 1) evolution on thermal timescale from ~C to E: very fast : ~105-6 yr ``Hertzspung gap in H-R

More information

AGB stars and their environment. Michel Guélin (Presenter: Ka Tat Wong) Institut de Radioastronomie Millimétrique (IRAM) Grenoble, France

AGB stars and their environment. Michel Guélin (Presenter: Ka Tat Wong) Institut de Radioastronomie Millimétrique (IRAM) Grenoble, France AGB stars and their environment Michel Guélin (Presenter: Ka Tat Wong) Institut de Radioastronomie Millimétrique (IRAM) Grenoble, France 1. AGB stars and their winds: why, how? 2. New interferometric observations

More information

Paul Broberg Ast 4001 Dec. 10, 2007

Paul Broberg Ast 4001 Dec. 10, 2007 Paul Broberg Ast 4001 Dec. 10, 2007 What are W-R stars? How do we characterize them? What is the life of these stars like? Early stages Evolution Death What can we learn from them? Spectra Dust 1867: Charles

More information

arxiv: v1 [astro-ph.sr] 21 Sep 2016

arxiv: v1 [astro-ph.sr] 21 Sep 2016 SF2A 2016 L. Cambrésy, M. Deleuil, E. Pécontal, C. Reylé, J. Richard, L. Tresse and I. Vaughlin (eds) THE AXISYMMETRIC ENVELOPES OF RS CNC AND EP AQR T. Le Bertre 1, D. T. Hoai 1, 2, P. T. Nhung 1,2 and

More information

Does the main component of the s process in AGB stars constrain the neutron source in the 13C pocket?

Does the main component of the s process in AGB stars constrain the neutron source in the 13C pocket? Nuclei in the Cosmos Debrecen, Hungary 7-11 July, 2014 Does the main component of the s process in AGB stars constrain the neutron source in the 13C pocket? Oscar Trippella, Maurizio Busso, Enrico Maiorca,

More information

Research Note ASTRONOMY AND ASTROPHYSICS. 14 C in AGB stars: the case of IRC+10216

Research Note ASTRONOMY AND ASTROPHYSICS. 14 C in AGB stars: the case of IRC+10216 Astron. Astrophys. 317, 883 888 (1997) ASTRONOMY AND ASTROPHYSICS Research Note 14 C in AGB stars: the case of IRC+10216 M. Forestini 1,M.Guélin 2, and J. Cernicharo 3 1 Laboratoire d Astrophysique, Observatoire

More information

Time Variability of Molecular Line Emission in IRC+10216

Time Variability of Molecular Line Emission in IRC+10216 Time Variability of Molecular Line Emission in IRC+10216 David Teyssier, ESA-ESAC, Spain J. Cernicharo, G. Quintana-Lacaci, M. Agúndez, M. Barlow, E. de Beck, F. Daniel, L. Decin, P. GarciaLario, M. Groenewegen,

More information

UvA-DARE (Digital Academic Repository)

UvA-DARE (Digital Academic Repository) UvA-DARE (Digital Academic Repository) Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate

More information

Observations of s-process elements in stars. The Amazing Life of Stars: Celebrating ISTO A. Tornambè. Cefalú Sept 4-8, 2017

Observations of s-process elements in stars. The Amazing Life of Stars: Celebrating ISTO A. Tornambè. Cefalú Sept 4-8, 2017 Observations of s-process elements in stars C. Abia The Amazing Life of Stars: Celebrating ISTO A. Tornambè. Cefalú Sept 4-8, 2017 Outline: 1. The s-process 2. Observational constraints from stars - intrinsic

More information

arxiv: v1 [astro-ph.ga] 11 Oct 2010

arxiv: v1 [astro-ph.ga] 11 Oct 2010 Draft version June 22, 2018 Preprint typeset using L A TEX style emulateapj v. 08/22/09 PHOTOCHEMISTRY IN THE INNER LAYERS OF CLUMPY CIRCUMSTELLAR ENVELOPES: FORMATION OF WATER IN C-RICH OBJECTS AND OF

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The Later Evolution of Low Mass Stars (< 8 solar masses) http://apod.nasa.gov/apod/astropix.html The sun - past and future central density also rises though average density decreases During 10 billion

More information

Gas and dust pollution. from AGB stars.

Gas and dust pollution. from AGB stars. Osservatorio Astronomico di Roma Gas and dust pollution from AGB stars. Marcella Di Criscienzo INAF-Osservatorio Astronomico di Roma Collaborators: P. Ventura, F. Dell Agli, F. D Antona, A. Karakas, A.

More information

From the VLT to ALMA and to the E-ELT

From the VLT to ALMA and to the E-ELT From the VLT to ALMA and to the E-ELT Mission Develop and operate world-class observing facilities for astronomical research Organize collaborations in astronomy Intergovernmental treaty-level organization

More information

arxiv: v1 [astro-ph.sr] 19 Dec 2012

arxiv: v1 [astro-ph.sr] 19 Dec 2012 Late Stages of Stellar Evolution - Herschel s contributions arxiv:1212.4861v1 [astro-ph.sr] 19 Dec 2012 Leen Decin Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001

More information

Lithium abundances and metallicities: trends from metal-poor and AGB/RGB stars

Lithium abundances and metallicities: trends from metal-poor and AGB/RGB stars Mem. S.A.It. Suppl. Vol. 22, 103 c SAIt 2012 Memorie della Supplementi Lithium abundances and metallicities: trends from metal-poor and AGB/RGB stars W. J. Maciel and R. D. D. Costa Astronomy Department

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

1. The AGB dust budget in nearby galaxies

1. The AGB dust budget in nearby galaxies **Volume Title** ASP Conference Series, Vol. **Volume Number** **Author** c **Copyright Year** Astronomical Society of the Pacific Identifying the chemistry of the dust around AGB stars in nearby galaxies

More information

Stellar structure and evolution

Stellar structure and evolution Stellar structure and evolution Ulrike Heiter Uppsala University July 2012, Nordic-Baltic Summer School Outline 1. The lives of stars Overview of stellar evolution 2. Physics of stellar evolution Stellar

More information

arxiv: v1 [astro-ph.sr] 7 Jul 2010

arxiv: v1 [astro-ph.sr] 7 Jul 2010 Astronomy & Astrophysics manuscript no. 15069 c ESO 014 January 6, 014 Letter to the Editor Water content and wind acceleration in the envelope around the oxygen-rich AGB star IK Tau as seen by Herschel/HIFI

More information

The MonKey Project. An Update on Stellar Yields

The MonKey Project. An Update on Stellar Yields The MonKey Project An Update on Stellar Yields Current State of the Art Yields The most boring part of stellar evolution? Or is it isochrone construction? Run lots of models and collect numbers Well its

More information

arxiv: v1 [astro-ph.sr] 2 Nov 2016

arxiv: v1 [astro-ph.sr] 2 Nov 2016 Astronomy & Astrophysics manuscript no. oiso_3 c ESO 218 November 1, 218 The impact of the revised 17 O(p, α) 14 N reaction rate on 17 O stellar abundances and yields O. Straniero 1, 2, C.G.Bruno 5, M.

More information

arxiv: v1 [astro-ph.sr] 20 Sep 2013

arxiv: v1 [astro-ph.sr] 20 Sep 2013 Astronomy & Astrophysics manuscript no. DeBeck_1349 c ESO 017 December 11, 017 PO and PN in the wind of the oxygen-rich AGB star IK Tau E. De Beck 1,, T. Kamiński 1, N. A. Patel 3, K. H. Young 3, C. A.

More information

Comparing the Period-Luminosity relationships in variable stars

Comparing the Period-Luminosity relationships in variable stars Comparing the Period-Luminosity relationships in variable stars Daniela Romero Uppsala Universitet daniela.romero1230@gmail.com June 201 Abstract There are four Period Luminosity relations from three sources,

More information

arxiv: v1 [astro-ph.ga] 30 Nov 2015

arxiv: v1 [astro-ph.ga] 30 Nov 2015 Astronomy in Focus, Volume 15 XXIXth IAU General Assembly, August 2015 Kwok & Bergin, eds. c 2015 International Astronomical Union DOI: 00.0000/X000000000000000X Water in the interstellar media of galaxies

More information

Titel der Magisterarbeit. ,,The Determination of Element Abundances in Cool Giants. Häufigkeitsbestimmung in kühlen Riesen.

Titel der Magisterarbeit. ,,The Determination of Element Abundances in Cool Giants. Häufigkeitsbestimmung in kühlen Riesen. MAGISTERARBEIT Titel der Magisterarbeit,,The Determination of Element Abundances in Cool Giants. Häufigkeitsbestimmung in kühlen Riesen. Verfasser Bernhard Wenzel Ing. Bakk.rer.nat. angestrebter akademischer

More information

Astronomy. Astrophysics. The 12 CO/ 13 CO ratio in AGB stars of different chemical type

Astronomy. Astrophysics. The 12 CO/ 13 CO ratio in AGB stars of different chemical type A&A 566, A45 (24) DOI:.5/4-636/242372 c ESO 24 Astronomy & Astrophysics The 2 CO/ 3 CO ratio in AGB stars of different chemical type Connection to the 2 C/ 3 C ratio and the evolution along the AGB S.

More information

Discovery of Terahertz Water Masers with SOFIA/GREAT

Discovery of Terahertz Water Masers with SOFIA/GREAT Discovery of Terahertz Water Masers with SOFIA/GREAT 1 Outline Motivation for studying water masers Physics of maser amplification Discovery of Terahertz masers with SOFIA 2 Water masers First detection

More information

UvA-DARE (Digital Academic Repository)

UvA-DARE (Digital Academic Repository) UvA-DARE (Digital Academic Repository) H2O vapor excitation in dusty AGB envelopes. A PACS view of OH 127.8+0.0 Lombaert, R.; Decin, L.K.E.; de Koter, A.; Blommaert, J.A.D.L.; Royer, P.; De Beck, E.; de

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

Citation for published version (APA): Bernard Salas, J. (2003). Physics and chemistry of gas in planetary nebulae Groningen: s.n.

Citation for published version (APA): Bernard Salas, J. (2003). Physics and chemistry of gas in planetary nebulae Groningen: s.n. University of Groningen Physics and chemistry of gas in planetary nebulae Bernard Salas, Jeronimo IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite

More information

Stellar Evolution of low and intermediate mass stars

Stellar Evolution of low and intermediate mass stars PRECISION SPECTROSCOPY 2016 Stellar Evolution and Nucleosynthesis Stellar Evolution of low and intermediate mass stars Alejandra Romero Universidade Federal do Rio Grande do Sul Porto Alegre, Setember

More information

This document is provided by JAXA.

This document is provided by JAXA. The Institute of Space and Astronautical Science Report SP No.14, December 2000 Water Vapor in AGB Stars Λ By Mikako Matsuura zx, Issei Yamamura z ; Hiroshi Murakami z, and Takashi Onaka x (November 1,

More information

other Galactic science Jane Greaves St Andrews

other Galactic science Jane Greaves St Andrews other Galactic science Jane Greaves St Andrews JCMT examples Sgr A*: massive black hole Evolved stars: dust and molecules Shell stars: violent mass-loss Shaping PNe: breaking spherical symmetry Pulsars:

More information

Thermal SiO radio line emission towards M-type AGB stars: A probe of circumstellar dust formation and dynamics

Thermal SiO radio line emission towards M-type AGB stars: A probe of circumstellar dust formation and dynamics A&A 411, 123 147 (2003) DOI: 10.1051/0004-6361:20031068 c ESO 2003 Astronomy & Astrophysics Thermal SiO radio line emission towards M-type AGB stars: A probe of circumstellar dust formation and dynamics

More information

Oxygen-rich Stardust Grains from Novae

Oxygen-rich Stardust Grains from Novae Oxygen-rich Stardust Grains from Novae Frank Gyngard 1 Department of Terrestrial Magnetism, Carnegie Institution of Washington 5241 Broad Branch Road NW, Washington, DC 20015, USA E-mail: fgyngard@dtm.ciw.edu

More information

Physics and Chemistry of the Interstellar Medium

Physics and Chemistry of the Interstellar Medium Physics and Chemistry of the Interstellar Medium Sun Kwok The University of Hong Kong UNIVERSITY SCIENCE BOOKS Sausalito, California * Preface xi The Interstellar Medium.1.1 States of Matter in the ISM

More information

Spectral Line Surveys of Evolved Stars

Spectral Line Surveys of Evolved Stars See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231927140 Spectral Line Surveys of Evolved Stars Article in Proceedings of the International

More information

Astronomy. Astrophysics. Herschel/HIFI observations of O-rich AGB stars: molecular inventory,

Astronomy. Astrophysics. Herschel/HIFI observations of O-rich AGB stars: molecular inventory, A&A 537, A44 (22) DOI:.5/4-636/27524 c ESO 22 Astronomy & Astrophysics Herschel/HIFI observations of O-rich AGB stars: molecular inventory, K. Justtanont, T. Khouri 2, M. Maercker 3,6,J.Alcolea 4,L.Decin

More information

Super-AGB Stars Understood, Unknown and Uncertain Physics

Super-AGB Stars Understood, Unknown and Uncertain Physics Super-AGB Stars Understood, Unknown and Uncertain Physics Richard J. Stancliffe University of Cambridge R.A.S. meeting, 8th February 2008 Page 1 Outline The Understood: overview of stellar evolution The

More information

The chemistry of extragalactic carbon stars

The chemistry of extragalactic carbon stars University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2012 The chemistry of extragalactic carbon stars Paul M.

More information

arxiv:astro-ph/ v1 8 Mar 2006

arxiv:astro-ph/ v1 8 Mar 2006 Astronomy & Astrophysics manuscript no. Hl121 September 11, 2018 (DOI: will be inserted by hand later) Chemical Self-Enrichment of HII Regions by the Wolf-Rayet Phase of an 85M star D. Kröger 1, G. Hensler

More information

Origin of Li Anomaly in K giants. Planet engulfment scenario plays role? Bharat Kumar Yerra. Lunch Talk, 22nd October 2014

Origin of Li Anomaly in K giants. Planet engulfment scenario plays role? Bharat Kumar Yerra. Lunch Talk, 22nd October 2014 : Planet engulfment scenario plays role? Stellar Abundances & Galactic Evolution Group NAOC, Beijing Lunch Talk, 22nd October 2014 Collaborators: Dr. B. Eswar Reddy (IIAP, Bangalore, India) Dr. David L.

More information

Lecture 18 - Photon Dominated Regions

Lecture 18 - Photon Dominated Regions Lecture 18 - Photon Dominated Regions 1. What is a PDR? 2. Physical and Chemical Concepts 3. Molecules in Diffuse Clouds 4. Galactic and Extragalactic PDRs References Tielens, Ch. 9 Hollenbach & Tielens,

More information

Exercise: A Toy Model for Dust-driven Winds

Exercise: A Toy Model for Dust-driven Winds Astrofysikalisk dynamik, VT 00 Exercise: A Toy Model for Dust-driven Winds Susanne Höfner Department of Physics and Astronomy, Uppsala University Cool luminous giants stars, in particular pulsating AGB

More information

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae I Outline of scenarios for neutron capture nucleosynthesis (Red Giants, Supernovae) and implications for laboratory

More information

arxiv: v1 [astro-ph.sr] 25 May 2010

arxiv: v1 [astro-ph.sr] 25 May 2010 Astronomy & Astrophysics manuscript no. 14562 c ESO 2018 October 30, 2018 Letter to the Editor arxiv:1005.4675v1 [astro-ph.sr] 25 May 2010 Silicon in the dust formation zone of IRC +10216 as observed with

More information

CN Variations in Globular Clusters

CN Variations in Globular Clusters CN Variations in Globular Clusters Jason Smolinski originally presented 08/11/2010 encore presentation 08/25/2010 Outline I. What Are We Talking About? a) Cluster Environment b) Expectations from Theory

More information

NIR Silicate features and Statistics from IRAS data

NIR Silicate features and Statistics from IRAS data NIR Silicate features and Statistics from IRAS data Ranjan Gupta Inter University Center for Astronomy and Astrophysics Pune-411007, India NIR Silicate features and Statistics from IRAS data p.1/46 Abstract

More information

First studies for cold stars under the hyphotesis of TE : Russell (1934) Fujita (1939, 1940, 1941)

First studies for cold stars under the hyphotesis of TE : Russell (1934) Fujita (1939, 1940, 1941) First studies for cold stars under the hyphotesis of TE : Russell (1934) Fujita (1939, 1940, 1941) These models were able to predict the abundances of the most conspicous diatomic molecules detected in

More information

2 The Brightest Carbon Stars { dredge-up alters the evolution of the star by cooling the intershell region and changing the core-mass (e.g. VW93). { o

2 The Brightest Carbon Stars { dredge-up alters the evolution of the star by cooling the intershell region and changing the core-mass (e.g. VW93). { o A&A manuscript no. (will be inserted by hand later) Your thesaurus codes are: 08.01.1;08.03.1;08.03.2;08.05.3;08.16.4 ASTRONOMY AND ASTROPHYSICS 8.10.1997 The Brightest Carbon Stars C. A. Frost 1;2, R.

More information

Asymptotic Giant Branch stars

Asymptotic Giant Branch stars Asymptotic Giant Branch stars Falk Herwig Los Alamos National Laboratory Theoretical Astrophysics Group LA Neutron Science Center Falk Herwig, May 8, 2006, 1 Introduction: AGB evolution NGC 6826 (Balick

More information

Lithium production by thermohaline mixing in low-mass, low-metallicity asymptotic giant branch stars

Lithium production by thermohaline mixing in low-mass, low-metallicity asymptotic giant branch stars Light elements in the Universe Proceedings IAU Symposium No. 268, 2010 C. Charbonnel, M. Tosi, F. Primas & C. Chiappini, eds. c 2010 International Astronomical Union DOI: 00.0000/X000000000000000X Lithium

More information

Infrared spectra of carbon stars observed by the ISO SWS

Infrared spectra of carbon stars observed by the ISO SWS Astron. Astrophys. 350, 945 954 (1999) ASTRONOMY AND ASTROPHYSICS Infrared spectra of carbon stars observed by the ISO SWS II. HCN and C 2 H 2 bands at 14 µm W. Aoki 1,2, T. Tsuji 3, and K. Ohnaka 3,4

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The sun - past and future The Later Evolution of Low Mass Stars (< 8 solar masses) During 10 billion years the suns luminosity changes only by about a factor of two. After that though, changes become rapid

More information

Probing Stellar Structure with Pressure & Gravity modes the Sun and Red Giants. Yvonne Elsworth. Science on the Sphere 14/15 July 2014

Probing Stellar Structure with Pressure & Gravity modes the Sun and Red Giants. Yvonne Elsworth. Science on the Sphere 14/15 July 2014 Probing Stellar Structure with Pressure & Gravity modes the Sun and Red Giants Yvonne Elsworth Science on the Sphere 14/15 July 2014 Evolving stars are building blocks of the galaxy and their cores are

More information

C+ and Methylidyne CH+ Mapping with HIFI

C+ and Methylidyne CH+ Mapping with HIFI C and H Reactives in Orion KL C+ and Methylidyne CH+ Mapping with HIFI Pat Morris, NHSC (IPAC/Caltech) J. Pearson, D. Lis, T. Phillips and the HEXOS team and HIFI Calibration team Outline Orion KL nebula

More information

Molecular Abundances in AGB Circumstellar Envelopes

Molecular Abundances in AGB Circumstellar Envelopes Astrochemistry: Recent Successes and Current Challenges Proceedings IAU Symposium No. 231, 2005 D.C. Lis, G.A. Blake & E. Herbst, eds. c 2006 International Astronomical Union doi:10.1017/s1743921306007526

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

arxiv:astro-ph/ v1 10 Sep 2004

arxiv:astro-ph/ v1 10 Sep 2004 The scientific promise of the SKA SKA Workshop Oxford, 2003 Kramer & Rawlings Late stages of stellar evolution with the Square Kilometer Array arxiv:astro-ph/0409242v1 10 Sep 2004 Albert A. Zijlstra UMIST,

More information