Chapter 6. The Tidal Force

Size: px
Start display at page:

Download "Chapter 6. The Tidal Force"

Transcription

1 Chapter 6. The Tidal Force The so-called tidal force is not a separate force from gravity it is simply the differential gravitational force. That is, if two parts of an object have different distances from some mass (e.g. the side of the Earth facing the Moon is somewhat closer to it that the other side of the Earth) then they feel a different force. The part further away feels less force. This leads to a differential force across the body that can stretch it out of shape or, in extreme cases, even shatter and destroy it. There are many interesting effects of this Tidal force throughout astronomy and here we touch on the basics and some examples. The tidal force is normally defined as the difference between the force acting at some point on an object due to some external object and the force from that external object acting on the center of mass. Hence, F tidal = F x,y,z F centerofmass 1. Differential Gravitational Force Consider a point mass M that is exerting a gravitational force on another (initially spherical) mass m whose radius is r. Note that we need to consider the finite radius of at least one of the objects because for two point masses there is no tidal force all locations within the point mass are exactly the same distance from the other mass! If M and the center of m are separated by a distance d, then the magnitude of the force between their centers of mass is F = GMm d 2. Taking the derivative along the direction between their centers of mass we have df dd = 2GMm d 3 so along this line, that is the rate at which the tidal force grows with distance from the center of mass. The magnitude of the tidal force at the surface of the object of radius r along the line between the two objects, would be (as long as r<<d) F tidal = 2GMmr d 3 Notice that the tidal force falls off much more rapidly with distance than does the gravitational force i.e. it goes as d 3, not d 2. This means that even relatively small mass objects can have a large tidal impact if they are very close to you. For example, the Moon

2 2 dominates the tides on Earth, even though the Sun is so much more massive. Essentially, this is because opposite sides of the Earth do not have a very great difference (percentage wise) in terms of their distance to the Sun, whereas they have a much greater percentage difference in terms of their distance to the Moon. It is important to note also that the tidal force, like all forces, is a vector quantity and the equation of the first paragraph defining it is a vector equation (hence the bold-face type). When one subtracts two vectors of different magnitude, pointing in the same direction, one can end up with a vector pointing the other direction. A common example is two cars headed down the highway in the same direction. As seen from one, the other may seem to be going backwards because of the vector subtraction. When one calculates the direction of the tidal force acting on the surface it is towards the perturbing object for points closer to it and away from the perturbing object for points further away than the center of mass. This leads to tidal stretching and the existence of tidal bulges on opposite sides of the perturbed object (see diagrams from class presentation). A second effect of the vector subtraction is that for points that are not along the line between the centers of mass of the two objects there is a net force that points towards the center of mass. There is a sort of squeezing of the object, as if someone had it in a vice grip and was squeezing down on the poles (again see diagram used in class). This is sometimes called the toothpaste effect it is like squeezing a tube of toothpaste it compresses in at one location and bulges out at another. 2. Tides on Earth The Moon is the main tidal perturber on the Earth but the Sun has an effect also, at about one-third of the amplitude of the Moon, due to its much greater distance. Basically, the Earth has two tidal bulges at any one time, one more or less facing the Moon and one on the other side. As the Earth rotates, the tidal bulges slide around the surface. Since water responds better than land to the tidal force, being more malleable, the tides are noticed most at the coasts where the water rises much more than the land. Since there are two tidal bulges on the Earth there are about two high tides each day...not exactly two because the Moon and Earth also orbit each other so during one day there alignment changes. The effect of the Sun is to either add to or subtract from the effect of the Moon. When the Sun and moon act at along the same line (i.e. at new moon or full moon) the high tide is higher than usual and the low tide lower than usual meaning the tidal range is greater. These are referred to as Spring Tides. During the quarter phases of the Moon,

3 3 the direction to the Sun and Moon is roughly a right angle so the tidal effect of the two bodies is counter to each other. This results in a reduced tidal range. This is called Neap Tides. If a hurricane hits a coastal area during full or new moon its effect can be more devastating because the tidal range is already higher then. The details of how tides appear at any coastal location on Earth or even when, exactly, high tide occurs, depend on the details of the coast and how water flows. In some places, like the Bay of Fundi in Canada, there can be a long funnel that basically channels water into it and causes a huge tidal range. In other places the effect is more muted. But tides do occur constantly on Earth and they can even be a source of energy if tapped as is done in a few locations around the Earth. 3. Tidal Locking The tidal force affects the rotation of an object because rotation carries the tidal bulges past the line connecting the centers of the interacting objects. This results in a net retarding force (torque) which acts to slow down the rotation of the object. The Moon, for example, has already become tidally locked to the Earth. It rotates with the same period that it orbits the Earth, therefore keeping one side always facing the Earth. The Earth is gradually slowing its spin such that the length of a sidereal day (spin period of Earth) is growing at the rate of about 1 second/century. This gives rise to the phenomenon of the leap second, a second or fraction of a second that is added to the civil clock every once in awhile, normally on New Year s Eve, to keep the Earth and civil time in step. Eventually (billions of years in the future) the Earth will also have one side of it that will face the Moon perpetually and the other side will face away from the Moon. The phenomenon of tidal locking is wide spread in astronomy. Many close binary stars are tidally locked so that they orbit and spin at the same rate keeping one face perpetually towards the other and one face perpetually away. Many moons are also tidally locked to their planets. In addition to our Moon, Phobos and Deimos (both moons of Mars) are tidally locked as are the four Galilean moons of Jupiter (Io, Europa, Ganymede and Callisto). Mercury is in a 3:2 tidal resonance with the Sun it makes 3 spins for every 2 orbits. It is in this resonance rather than 1:1 because its orbit is highly elliptical so the tidal force is strongest when the planet is at perihelion. It therefore got locked into the spin rate that matches its orbital rate when at perihelion. This is faster than the average spin rate, leading to its making an extra half turn each orbit how cool is that??! Some stars in highly elliptical orbits become pseudo-synchronized in this way. They

4 4 end up in some kind of resonance, such as 3:1 or 4:1, rather than 1:1. They make extra spins while near apastron and are locked to their orbital rates near periastron. 4. Distance to the Moon As a reaction to the force on the tidal bulge that is slowing the Earth s rotation, there is an acceleration of the Moon in its orbit, that is causing it to spiral away from the Earth (very slowly!). Refer to the diagram shown on class lecture notes to understand this more fully. The distance to the Moon can be measured extremely accurately (cm) using the laser mirror built at Wesleyan and placed on the Moon during an Apollo mission. Measurements over the years have confirmed that indeed the Moon is moving away from the Earth at several cm per year due to the tidal interaction. Eventually (billions of years in the future) the Earth will be tidally locked to the Moon so that a day on Earth (i.e. one spin) will be equal to a month (synodic period of Moon) but that month will be many times longer than the current month. Eventually we will be tidally locked to the Sun as well so that a day will equal a month will equal a year, simplifying our calendar enormously! 5. Tidal Destruction and the Roche Limit Sometimes the tidal force, which acts to stretch a body along the line to the perturbing object can be so strong that the tensile strength and/or self-gravity of the object cannot hold it together. When this happens, a large object can be shattered into smaller pieces which experience less tidal force (being smaller) and can survive. Comet Shoemaker-Levy, which collided with Jupiter back in the 1990 s provided a beautiful example of this happening. During an earlier passage of Jupiter the comet was broken by the tidal stress into about 23 pieces which became separate little comets all on about the same orbits. You can see pictures of this on our Web page or elsewhere on the Web by Googling it. The individual pieces of the comet then slammed into Jupiter leaving a series of black eyes where they hit vast disturbances in Jupiter s atmosphere caused by the comet piece hitting, with the explosive force of all of the Earth s thermonuclear weapons being detonated at once. One can calculate how close a moon or other large object can come to a planet before it is destroyed by the tidal force. Such a calculation was done by Roche and is referred to as the Roche limit. Check out the Wikipedia page for some nice images and a calculation of the size of the Roche limit. Note that the rings of Saturn are within the planet s Roche limit, so they may well be the remnants of a moon that wandered in too close. Of course,

5 5 nothing can actually accrete into a moon at that location so they could also be the building blocks of a moon that never got itself together. 6. Tidal Tails Galaxies interact tidally when they collide with each other and sometimes leave spectacular results in the form of tidal tails that stretch in curved fashion away from the interacting pair. An excellent example is provided by the antennae galaxy and can be seen in Web images. Of course, the time scale for interactions and motions of galaxies is millions of years, so we do not see any motions from year to year. We see merely a snapshot in time of the interaction. Computer simulations can show how this looked in the past and how it will look in the future. Another example of tidal tails that is important in astronomy is collisions between our own Milky Way galaxy and nearby companions, such as the Sagittarius galaxy and the Magellanic Clouds. These companions are tidally distorted and disrupted by the Milky Way and as they orbit they leave tidal tails of stars behind them. These stars are part of streams of stars in our Milky Way that come from the other galaxies. Basically, our own galaxy is disrupting and absorbing these other systems. This is a common process in building a galaxy, any galaxy. We can do galactic archaeology by finding these stellar streams in our own galaxy and then inferring, with the help of computer simulations, what the past interactions of the Milky Way and its companions has been. Cool!

Course evaluations. Go to the Physics and Astronomy Department website. Click on Online Course Evaluation link

Course evaluations. Go to the Physics and Astronomy Department website.  Click on Online Course Evaluation link Course evaluations. Go to the Physics and Astronomy Department website. www.pa.uky.edu Click on Online Course Evaluation link Link is open now. Do it soon. The nearest stars to the Sun. Barnard s Star

More information

Tides and Lagrange Points

Tides and Lagrange Points Ast111, Lecture 3a Tides and Lagrange Points Arial view of Tidal surge in Alaska (S. Sharnoff) Tides Tidal disruption Lagrange Points Tadpole Orbits and Trojans Tidal Bulges Tides Tidal Force The force

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 28. Search for life on jovian moons. March

More information

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,

More information

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU Lecture 23: Jupiter Solar System Jupiter s Orbit The semi-major axis of Jupiter s orbit is a = 5.2 AU Jupiter Sun a Kepler s third law relates the semi-major axis to the orbital period 1 Jupiter s Orbit

More information

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity 2014 Pearson Education, Inc. Making Sense of the Universe: Understanding

More information

Understanding Motion, Energy & Gravity

Understanding Motion, Energy & Gravity Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity

More information

Understanding Motion, Energy & Gravity

Understanding Motion, Energy & Gravity Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity

More information

Isaac Newton and the Laws of Motion and Gravitation 2

Isaac Newton and the Laws of Motion and Gravitation 2 Isaac Newton and the Laws of Motion and Gravitation 2 ASTR 101 3/21/2018 Center of Mass motion Oblate shape of planets due to rotation Tidal forces and tidal locking Discovery of Neptune 1 Center of Mass

More information

Lecture 38. The Jovian Planets; Kuiper Belt. Tides; Roche Limit; Rings Jupiter System Saturn, Uranus, Neptune rings Plutinos and KBO's

Lecture 38. The Jovian Planets; Kuiper Belt. Tides; Roche Limit; Rings Jupiter System Saturn, Uranus, Neptune rings Plutinos and KBO's Lecture 38 The Jovian Planets; Kuiper Belt Tides; Roche Limit; Rings Jupiter System Saturn, Uranus, Neptune rings Plutinos and KBO's Apr 26, 2006 Astro 100 Lecture 38 1 Jovian System Jovian System Solar

More information

Introduction To Modern Astronomy I

Introduction To Modern Astronomy I ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

More information

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central Everything in Orbit Orbital Velocity Orbital velocity is the speed at which a planetary body moves in its orbit around another body. If orbits were circular, this velocity would be constant. However, from

More information

The Jovian Planets. Why do we expect planets like this in the outer reaches of the solar system?(lc)

The Jovian Planets. Why do we expect planets like this in the outer reaches of the solar system?(lc) The Jovian Planets Beyond Mars and the Asteroid belt are the Jovian or Gas Giant Planets that are totally different than the terrestrial planets: They are composed almost entirely of gas They do not have

More information

Please pick up your midterms from front of class

Please pick up your midterms from front of class Please pick up your midterms from front of class Average: 70 % Test % score distribution: Top grade: 92 % Make sure you go through your test and the solutions carefully to understand where you went wrong.

More information

Jupiter: Giant of the Solar System

Jupiter: Giant of the Solar System Jupiter: Giant of the Solar System Jupiter s Red spot : A huge storm that has raged for over 300 years that is ~2x size of the Earth. Gas Giant is really a Liquid Giant! Pictures over ~7 years from Hubble

More information

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in Name: Date: 1. Some scientists study the revolution of the Moon very closely and have recently suggested that the Moon is gradually moving away from Earth. Which statement below would be a prediction of

More information

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 30 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects.

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects. The Solar System Sun Center of the solar system About 150,000,000 km from the Earth An averaged sized, yellow star Spherical in shape due to gravity Made of about ¾ hydrogen and ¼ helium, both of which

More information

A100H Exploring the Universe: Evolution of Galaxies. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Evolution of Galaxies. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: Evolution of Galaxies Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 12, 2016 Read: Chaps 20, 21 04/12/16 slide 1 Remainder of the semester: Chaps.

More information

12-Feb-18. Newton's Laws. Newton's Laws. Prelude to Newton's Laws

12-Feb-18. Newton's Laws. Newton's Laws. Prelude to Newton's Laws Newton's Laws Newton's Laws Before Isaac Newton There were facts and laws about the way the physical world worked, but no explanations After Newton There was a unified system that explained those facts

More information

Solar vs. Lunar Tides

Solar vs. Lunar Tides 1 2 3 4 Solar vs. Lunar Tides In the force equations M is the mass of the tide-causing object, r is the separation between the two objects. dr is the size of the object on which the tides are being raised.

More information

A100 Exploring the Universe: Evolution of Galaxies. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Evolution of Galaxies. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: Evolution of Galaxies Martin D. Weinberg UMass Astronomy weinberg@astro.umass.edu November 29, 2012 Read: Chaps 21, 22 11/29/12 slide 1 Exam #3: Thu 6 Dec (last class) Final

More information

Page Tides ANIMATION. Tidal forces

Page Tides ANIMATION. Tidal forces Page 194 7.5 Tides ANIMATION Tidal forces Anyone who has spent even a few hours by the sea knows that the ocean's level rises and falls during the day. A blanket set on the sand 10 feet from the water's

More information

Tides. Gm 1 m2. F gravity=

Tides. Gm 1 m2. F gravity= 1 Tides Newton's gravitational force law says that the force of gravitation attraction depends strongly on the separation between two objects. The same applies to different portions of an extended object

More information

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 31 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

Newton's Laws. Before Isaac Newton

Newton's Laws. Before Isaac Newton Newton's Laws Before Isaac Newton Newton's Laws There were facts and laws about the way the physical world worked, but no explanations After Newton There was a unified system that explained those facts

More information

Please pick up your midterms from front of class

Please pick up your midterms from front of class Please pick up your midterms from front of class Average: 70 % Test % score distribution: Top grade: 92 % Make sure you go through your test and the solutions carefully to understand where you went wrong.

More information

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity 9/13/17 Lecture Outline 4.1 Describing Motion: Examples from Everyday Life Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity Our goals for learning: How do we describe motion?

More information

The Solar System 6/23

The Solar System 6/23 6/23 The Solar System I. Earth A. Earth is the prototype terrestrial planet 1. Only planet in the solar system (we know of so far) with life 2. Temperature 290 K B. Physical Characteristics 1. Mass: 6

More information

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 11 Astronomy Today 8th Edition Chaisson/McMillan Chapter 11 Jupiter Units of Chapter 11 11.1 Orbital and Physical Properties 11.2 Jupiter s Atmosphere Discovery 11.1 A Cometary

More information

13-Feb-19. Newton's Laws. Newton's Laws. Prelude to Newton's Laws

13-Feb-19. Newton's Laws. Newton's Laws. Prelude to Newton's Laws Newton's Laws 1 Newton's Laws Before Isaac Newton There were facts and laws about the way the physical world worked, but no explanations After Newton There was a unified system that explained those facts

More information

A100 Exploring the Universe: Evolution of Galaxies. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Evolution of Galaxies. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: Evolution of Galaxies Martin D. Weinberg UMass Astronomy weinberg@astro.umass.edu November 20, 2014 Read: Chaps 20, 21 11/20/14 slide 1 3 more presentations Yes, class meets

More information

Today: --- Chapter 9 (Gravity) -- Looking ahead: there s a midterm on Oct 11. If you haven t started studying already, you should now!!

Today: --- Chapter 9 (Gravity) -- Looking ahead: there s a midterm on Oct 11. If you haven t started studying already, you should now!! Today: --- Chapter 9 (Gravity) -- Looking ahead: there s a midterm on Oct 11 If you haven t started studying already, you should now!! Chapter 9: Gravity Newton: made revolutionary connection between the

More information

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n) When a planets orbit around the Sun looks like an oval, it s called a(n) - ellipse - circle - axis - rotation Which of the following planets are all made up of gas? - Venus, Mars, Saturn and Pluto - Jupiter,

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Earth-Moon System Fun with Gravity Sarazin. Sizes of Earth and Moon

Earth-Moon System Fun with Gravity Sarazin. Sizes of Earth and Moon Earth-Moon System Fun with Gravity Sarazin Sizes of Earth and Moon Earth-Moon System Fun with Gravity Sarazin Sizes of Earth and Moon Precession: Gravity not parallel to rotation axis rotation axis gravity

More information

Astronomy 1140 Quiz 4 Review

Astronomy 1140 Quiz 4 Review Astronomy 1140 Quiz 4 Review Anil Pradhan November 16, 2017 I Jupiter 1. How do Jupiter s mass, size, day and year compare to Earth s? Mass: 318 Earth masses (or about 1/1000th the mass of the Sun). Radius:

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

Observational Astronomy - Lecture 5 The Motion of the Earth and Moon Time, Precession, Eclipses, Tides

Observational Astronomy - Lecture 5 The Motion of the Earth and Moon Time, Precession, Eclipses, Tides Observational Astronomy - Lecture 5 The Motion of the Earth and Moon Time, Precession, Eclipses, Tides Craig Lage New York University - Department of Physics craig.lage@nyu.edu March 2, 2014 1 / 29 Geosynchronous

More information

Sun Mercury Venus. Earth Mars Jupiter

Sun Mercury Venus. Earth Mars Jupiter Sun Mercury Venus Earth Mars Jupiter Venus is the hottest planet in our solar system. The thick clouds on Venus hold the heat in. The sun s lights reflect off Venus s clouds making it look like the brightest

More information

Time, Seasons, and Tides

Time, Seasons, and Tides Time, Seasons, and Tides Celestial Sphere Imagine the sky as a great, hollow, sphere surrounding the Earth. The stars are attached to this sphere--- some bigger and brighter than others--- which rotates

More information

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If

More information

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION 0.1. Accretion If a particle of mass m falls from infinity and comes to rest on the surface of a star of mass

More information

Astronomy 1140 Quiz 3 Review

Astronomy 1140 Quiz 3 Review Astronomy 1140 Quiz 3 Review Anil Pradhan October 26, 2016 I The Inner Planets 1. What are the terrestrial planets? What do they have in common? Terrestrial planets: Mercury, Venus, Earth, Mars. Theses

More information

4.1 Describing Motion

4.1 Describing Motion Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury Lecture 19: The Moon & Mercury The Moon & Mercury The Moon and Mercury are similar in some ways They both have: Heavily cratered Dark colored surfaces No atmosphere No water They also have some interesting

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy Have you ever wondered what is out there in space besides Earth? As you see the stars and moon, many questions come up with the universe, possibility of living on another planet

More information

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves $ speed = distance!#"units

More information

D. most intense and of longest duration C. D.

D. most intense and of longest duration C. D. Astronomy Take Home Test Answer on a separate sheet of paper In complete sentences justify your answer Name: 1. The Moon s cycle of phases can be observed from Earth because the Moon 4. The accompanying

More information

Evolution of High Mass stars

Evolution of High Mass stars Evolution of High Mass stars Neutron Stars A supernova explosion of a M > 8 M Sun star blows away its outer layers. The central core will collapse into a compact object of ~ a few M Sun. Pressure becomes

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

Describe the lifecycle of a star in chronological order and explain the main stages, relating the stellar evolution to initial mass

Describe the lifecycle of a star in chronological order and explain the main stages, relating the stellar evolution to initial mass Learning Objectives At the end of this unit you should be able to; Explain the major events in the evolution of the universe according to the Big Bang Theory, in chronological order, backing up your arguments

More information

Overview of Solar System

Overview of Solar System Overview of Solar System The solar system is a disk Rotation of sun, orbits of planets all in same direction. Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions). Angular momentum

More information

SAMPLE First Midterm Exam

SAMPLE First Midterm Exam Astronomy 1000 Dr C. Barnbaum SAMPLE First Midterm Exam Note: This is a sample exam. It is NOT the exam you will take. I give out sample exams so that you will have an understanding of the depth of knowledge

More information

Most of the time during full and new phases, the Moon lies above or below the Sun in the sky.

Most of the time during full and new phases, the Moon lies above or below the Sun in the sky. 6/16 Eclipses: We don t have eclipses every month because the plane of the Moon s orbit about the Earth is different from the plane the ecliptic, the Earth s orbital plane about the Sun. The planes of

More information

What is out there? 25/01/2016 cgrahamphysics.com Book page Syllabus

What is out there? 25/01/2016 cgrahamphysics.com Book page Syllabus What is out there? Book page 49 55 Syllabus 1.32 1.36 Starter How many stars are there in the solar system? What is the solar system made up of? What is the Universe made up off? Whenever life gets you

More information

The escape speed for an object leaving the surface of any celestial body of mass M and radius d is

The escape speed for an object leaving the surface of any celestial body of mass M and radius d is 8-3 Escape Speed Vocabulary Escape Speed: The minimum speed an object must possess in order to escape from the gravitational pull of a body. In Chapter 6, you worked with gravitational potential energy

More information

GET-WISE Presentation on Collisions in the Solar System Dr. Jeffrey Morgenthaler

GET-WISE Presentation on Collisions in the Solar System Dr. Jeffrey Morgenthaler When Worlds Collide GET-WISE Presentation on Collisions in the Solar System Dr. Jeffrey Morgenthaler Copyright, 1996 Dale Carnegie & Associates, Inc. Introduction This talk is about impacts between objects

More information

Tidal Forces. Effects of Tidal Forces. The Roche Distance: Tidal Breakup

Tidal Forces. Effects of Tidal Forces. The Roche Distance: Tidal Breakup Reading:, Chap. 4, Sect. 4.6 (Tides); Chap. 12 (all) Homework #8: On website, due in recitation on Friday/Monday, Oct. 27/30 Exam 2 - Two weeks from Today (November 6) Last time: The Gas and Ice Giant

More information

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition.

More information

ASTR Midterm 2 Phil Armitage, Bruce Ferguson

ASTR Midterm 2 Phil Armitage, Bruce Ferguson ASTR 1120-001 Midterm 2 Phil Armitage, Bruce Ferguson SECOND MID-TERM EXAM MARCH 21 st 2006: Closed books and notes, 1 hour. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

1 The Solar System. 1.1 a journey into our galaxy

1 The Solar System. 1.1 a journey into our galaxy 1 The Solar System Though Pluto, and the far-flung depths of the Solar System, is the focus of this book, it is essential that Pluto is placed in the context of the planetary system that it inhabits our

More information

The Main Point. Phases and Motions of the Moon. Lecture #5: Earth, Moon, & Sky II. Lunar Phases and Motions. Tides. Eclipses.

The Main Point. Phases and Motions of the Moon. Lecture #5: Earth, Moon, & Sky II. Lunar Phases and Motions. Tides. Eclipses. Lecture #5: Earth, Moon, & Sky II Lunar Phases and Motions. Tides. Eclipses. The Main Point The Moon s size and orbit lead to many interesting phenomena: changing phases, tides, and eclipses. Astro 102/104

More information

Where do objects get their energy?

Where do objects get their energy? Where do objects get their energy? Energy makes matter move. Energy is always 'conserved' Conservation of Energy Energy can neither be created nor destroyed The total energy content of the universe was

More information

Jupiter is the most massive object in the Solar System (300x bigger than the Earth). It actually weighs as much as all the other

Jupiter is the most massive object in the Solar System (300x bigger than the Earth). It actually weighs as much as all the other Chapter 8 Part 1 The Giants: Jupiter and Saturn 5th Planet: Jupiter the Massive Jupiter is the most massive object in the Solar System (300x bigger than the Earth). It actually weighs as much as all the

More information

If your plan is for one year, plant rice. If your plan is for 100 years, educate children. Confucius

If your plan is for one year, plant rice. If your plan is for 100 years, educate children. Confucius If your plan is for one year, plant rice. If your plan is for 100 years, educate children. Confucius Test 1 on Wednesday Feb. 20. Sample test and review are On the course web page now. Grades are there

More information

Which of the following statements best describes the general pattern of composition among the four jovian

Which of the following statements best describes the general pattern of composition among the four jovian Part A Which of the following statements best describes the general pattern of composition among the four jovian planets? Hint A.1 Major categories of ingredients in planetary composition The following

More information

Neutron Stars. Properties of Neutron Stars. Formation of Neutron Stars. Chapter 14. Neutron Stars and Black Holes. Topics for Today s Class

Neutron Stars. Properties of Neutron Stars. Formation of Neutron Stars. Chapter 14. Neutron Stars and Black Holes. Topics for Today s Class Foundations of Astronomy 13e Seeds Phys1403 Introductory Astronomy Instructor: Dr. Goderya Chapter 14 Neutron Stars and Black Holes Cengage Learning 2016 Topics for Today s Class Neutron Stars What is

More information

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus Fall 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

More information

A Survey of the Planets Earth Mercury Moon Venus

A Survey of the Planets Earth Mercury Moon Venus A Survey of the Planets [Slides] Mercury Difficult to observe - never more than 28 degree angle from the Sun. Mariner 10 flyby (1974) Found cratered terrain. Messenger Orbiter (Launch 2004; Orbit 2009)

More information

Unit 2. Galaxies, Stars and the Solar System

Unit 2. Galaxies, Stars and the Solar System Strand K Astrophysics Unit 2 Galaxies, Stars and the Solar System Contents Page The Early Universe 2 The Life Cycle of Stars 4 Features of the Solar System 7 K21 The Early Universe Running the current

More information

Lunar Eclipse. Solar Eclipse

Lunar Eclipse. Solar Eclipse Lunar Eclipse SUN Moon Solar Eclipse SUN SUN Moon Total solar eclipse Partial solar eclipse Moon Phases What does the moon look like from at each position? G H F A E B D C SUNLIGHT Refracting Telescopes

More information

What Objects Are Part of the Solar System?

What Objects Are Part of the Solar System? What Objects Are Part of the Solar System? Lesson 1 Quiz Josleen divided some of the planets into two main groups. The table below shows how she grouped them. Paul created a poster showing the solar system.

More information

Chapter 8 Part 1 The Giants: Jupiter and Saturn

Chapter 8 Part 1 The Giants: Jupiter and Saturn 5th Planet: Jupiter the Massive Chapter 8 Part 1 The Giants: Jupiter and Saturn Jupiter is the most massive object in the Solar System (300x bigger than the Earth). It actually weighs as much as all the

More information

Agenda Announce: 4.1 Describing Motion. Tests. How do we describe motion?

Agenda Announce: 4.1 Describing Motion. Tests. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Agenda Announce: Stony Brook talk this Friday on Precision Cosmology Project Part I due in one week before class: one paragraph

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 8. The scale of time and nature of worlds (Page

More information

Introduction to the Universe. What makes up the Universe?

Introduction to the Universe. What makes up the Universe? Introduction to the Universe What makes up the Universe? Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy) - understanding

More information

AST Section 2: Test 2

AST Section 2: Test 2 AST1002 - Section 2: Test 2 Date: 11/05/2009 Name: Equations: E = m c 2 Question 1: The Sun is a stable star because 1. gravity balances forces from pressure. (!) Miniquiz 7, Q3 2. the rate of fusion equals

More information

Nibiru Is Not Here Yet

Nibiru Is Not Here Yet Nibiru Is Not Here Yet The title says it all. Do not be fooled, any photos of the sun that show a bright object near to the sun is either a lens artifact caused by internal reflection of light in the camera

More information

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: Stellar Remnants Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu October 28, 2014 Read: S3, Chap 18 10/28/14 slide 1 Exam #2: November 04 One week from today!

More information

The Big Bang Theory (page 854)

The Big Bang Theory (page 854) Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Sep. 11, 2002 1) Introduction 2) Angular Momentum 3) Formation of the Solar System 4) Cowboy Astronomer Review Kepler s Laws empirical description of planetary motion Newton

More information

Astronomy Ch. 22 Neutron Stars and Black Holes. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 22 Neutron Stars and Black Holes. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 22 Neutron Stars and Black Holes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In a neutron star, the core

More information

Chapter 2 Case Studies and Study Guide: Energy Sources of Earth Processes and Disasters

Chapter 2 Case Studies and Study Guide: Energy Sources of Earth Processes and Disasters Chapter 2 Case Studies and Study Guide: Energy Sources of Earth Processes and Disasters Key Concepts The four principal types of energy relevant to natural disasters are kinetic, potential, rotational

More information

RING DISCOVERED AROUND DWARF PLANET

RING DISCOVERED AROUND DWARF PLANET RING DISCOVERED AROUND DWARF PLANET Haumea, a dwarf planet in the Kuiper Belt was just found to have a ring. Why? Hint: what causes the Jovian planet rings? Artist's conception, not a real photo RING DISCOVERED

More information

Chapter 19: Our Galaxy

Chapter 19: Our Galaxy Chapter 19 Lecture Chapter 19: Our Galaxy Our Galaxy 19.1 The Milky Way Revealed Our goals for learning: What does our galaxy look like? How do stars orbit in our galaxy? What does our galaxy look like?

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

Astronomy 1001/1005 Midterm (200 points) Name:

Astronomy 1001/1005 Midterm (200 points) Name: Astronomy 1001/1005 Midterm (00 points) Name: Instructions: Mark your answers on this test AND your bubble sheet You will NOT get your bubble sheet back One page of notes and calculators are allowed Use

More information

Introduction to the Universe

Introduction to the Universe What makes up the Universe? Introduction to the Universe Book page 642-644 Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy)

More information

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: Stellar Remnants Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu March 24, 2015 Read: S3, Chap 18 03/24/15 slide 1 Exam #2: March 31 One week from today!

More information

Guided Notes Astronomy. Earth s Moon Formation Orbit Craters Motions Phases Tides Eclipses

Guided Notes Astronomy. Earth s Moon Formation Orbit Craters Motions Phases Tides Eclipses Guided Notes Astronomy Earth s Moon Formation Orbit Craters Motions Phases Tides Eclipses K. Coder 2015 1. What is the Moon? The Moon: the Earth's only natural satellite. See ESRT page 15 for data on Earth

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc.

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc. Review Clickers The Cosmic Perspective Seventh Edition Jovian Planet Systems If Jupiter was the size of a basketball, Earth would be the size of a(n) a) bacterium. b) grain of rice. c) marble. d) orange.

More information

? 1. How old is Earth and the Moon? Warm-Up 145. The Moon: Earth s Traveling Companion Name:

? 1. How old is Earth and the Moon? Warm-Up 145. The Moon: Earth s Traveling Companion Name: The Moon: Earth s Traveling Companion Warm-Up 145 What is the Moon? What is important about it? How did the Moon end up where it is? The Moon and Earth were formed at the same time. This happened about

More information

Chapter 3 The Cycles of the Moon

Chapter 3 The Cycles of the Moon Chapter 3 The Cycles of the Moon Goals: To understand the phases of the moon To understand how the moon affects tides To understand lunar and solar eclipses To learn some of the history associated with

More information

Motion of the planets

Motion of the planets Our Solar system Motion of the planets Our solar system is made up of the sun and the 9 planets that revolve around the sun Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto (maybe?)

More information

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 14 Neutron

More information