Transition Disk Chemistry in the Eye of ALMA

Size: px
Start display at page:

Download "Transition Disk Chemistry in the Eye of ALMA"

Transcription

1 COURTESY NASA/JPL-CALTECH Spectroscopy2011 January 16, 2011 Transition Disk Chemistry in the Eye of ALMA Ilse Cleeves Univ. of Michigan ADVISOR: Edwin Bergin

2 Outline I. Transition Disks: Introduction II. Model Framework III. First Results Using CB 26: Test Case Disk IV. Chemical Results: Implications V. Observables - The Power of ALMA COURTESY NASA/JPL-CALTECH

3 I. Circumstellar Disks in Transition H-Band Circumstellar disks observed sites of planet formation. Once a protoplanet is massive enough it can dynamically alter the disk gaps, holes, etc. The initial stages of planet formation involves grain growth and reduction of opacity Disks with gaps are called Transition Disks. Disk chemistry will respond to the change in physical conditions set initial chemical conditions at the point of planet formation. Prediction: The clearing of the inner-disk directly reveals the dense (and normally cold) gas rich midplane to the star. Thalmann et al. 2010: imaging the wall in LkCa 15; consistent with SED disk models the result of forming protoplanets? Is this an observable effect? Must first be able to resolve this... ALMA has the power to resolve the gap can directly probe evolving region.

4 Courtesy Kevin Jardine Top-down view of the Galactic Plane in the Gould Belt region. Molecular Clouds HII Regions Star Clusters Nearest SFR: Resolving the Gap

5 Courtesy Kevin Jardine ORION TAURUS- AURIGA PERSEUS 20 AU 50 AU 100 AU CHAMELEON OPHIUCHUS Maximal resolving power today ~500m Baseline Nearest SFR: CO 2-1: 230 GHz Resolving the Gap

6 Courtesy Kevin Jardine ORION TAURUS- AURIGA PERSEUS 1 AU 5 AU CHAMELEON OPHIUCHUS Full ALMA: 12km Baseline Nearest SFR: CO 2-1: 230 GHz Resolving the Gap

7 III. Chemical Model Recipe hν hot surface cold midplane DISK PHYSICS Size, Mass Disk Structure: e.g. D Alessio disks (along with many other SED motivated models). DISK CHEMISTRY Dust (e.g. Weingartner & Draine), composition and settling. Shape of the UV field, continuum and line (Bethell), stellar and ISRF. Relevant chemical network (Fogel et al. 2011): ~6000 Reactions, ~600 Species. END PRODUCTS: Observables? Can calculate resulting line emission: LIME (Brinch et al. 2010).

8 log(flux erg/cm 2 /s/a) III. UV-Field: Continuum UV Monte Carlo Calculation UV drives the chemistry through processes such as photodissociation and photodesorption. z (AU) Dependent on dust composition (opacity) and dust settling many young disks highly settled. Transition disks structurally evolved require full M.C. radiative transfer treatment. Ly α R (AU) τuv >> 1 Include a separate treatment for Ly α photons which behave differently (Bethell & Bergin 2011; Fogel et al. 2011). TW Hydra Wavelength (A)

9 IV. CB 26: An Overview Disk at the edge of a Bok Globule CB 26, 10 North of Taurus/Auriga dark cloud, D 140 pc. Circumstellar disk - edge on. R 200AU 2 Rgap 45AU 2 Mdisk 0.1 Msol 1 L* > 0.5 Lsol 3 M* 0.5 ± 0.1 Msol 1 Mdust 3e-3 Msol 2 Specific model but typical T Tauri parameters used for model calculation can generalize results. Sauter et al Launhardt & Sargent 2001; 2 Sauter et al. 2009; 3 Stecklum et al. 2004

10 IV. CB 26 Model Sauter et al used spatially resolved maps in the NIR and mm along with the object s SED to create a consistent physical model for the system. Midplane illuminated by star α = 2.2 ± 0.1 β = 1.4 ± 0.1 { ~ Pluto s orbit.

11 IV. CB 26 Model Sauter et al used spatially resolved maps in the NIR and mm along with the object s SED to create a consistent physical model for the system. Stellar heating Dense midplane normally cold (~15K) at large distances from star. Sublimation Temperature NH 3 CS HCN, H 2 CO N Pressure (bar) 10-6 CO Wall heated to T = 30-50K, species that would typically be frozen out at the midplane can be sufficiently heated desorb from grains

12 CO HCO+ HCN H2CO N2H+ H2O Chemical model results: gas phase molecules at the wall!

13 LIME Results: C 18 O: J=2-1 Pre-ALMA Res - 140pc with a 500m baseline i = π

14 LIME Results: C 18 O: J=2-1 ALMA-Era Res - 140pc with a 12km baseline i = π

15 C 18 O: J = 6-5 a=0.01 v = 658.6GHz D = 140pc Ideal (τdust << 1) observation. Actual observations will be dependent on inclination angle. Dust optically thick near the midplane. Edge on disk obs. at 0.5 mm with column R = 200AU, density ~ 1e14 g/cm -3 : τdust, 0.5mm > 1 for z < 15AU. However, only the case for nearly edge on systems. No significant dust obstruction for midplane emission for i ~ This corresponds to ~93% of disks observed on the sky.

16 Summary Observe gaps in dust... ALMA provides us with the ability to significantly increase the resolved sample size of planetforming disks. Will allow us to gain a full picture of the evolutionary process of disk dispersal and planet formation. High sensitivity allows us to go both deeper, and to use new tracers not previously employed due to sensitivity limitations. The future: warm molecular rings! Wall will distinctly light-up at high J states - can selectively probe the transition region. The interface between the inner gap and outer disk (the wall) in transition disks should be a chemically active and interesting region that sets the initial conditions for protoplanet chemistry.

Herschel Constraints on Ice Formation and Destruction in Protoplanetary Disks

Herschel Constraints on Ice Formation and Destruction in Protoplanetary Disks Herschel Constraints on Ice Formation and Destruction in Protoplanetary Disks Ilse Cleeves, University of Michigan Edwin Bergin, University of Michigan Karin Öberg, Harvard-Smithsonian CfA. Michiel Hogerheijde,

More information

Star Formation. Spitzer Key Contributions to Date

Star Formation. Spitzer Key Contributions to Date Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Observational Properties of Protoplanetary Disks

Observational Properties of Protoplanetary Disks Observational Properties of Protoplanetary Disks Leonardo Testi - ESO/Arcetri ltesti@eso.org; lt@arcetri.astro.it Today: Tracing water, deuteration and link with Solar System Complex Organic Molecule Transition

More information

PProbing New Planet Views Forming on Disks: INTRODUCTION! Contributions from Spitzer and Ground-based Facilities. Joan Najita (NOAO)

PProbing New Planet Views Forming on Disks: INTRODUCTION! Contributions from Spitzer and Ground-based Facilities. Joan Najita (NOAO) PProbing New Planet Views Forming on Disks: Gas Clues in the to the Planet Origins Formation of Planetary Region Systems! of Disks INTRODUCTION! Contributions from Spitzer and Ground-based Facilities Joan

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture11; November 1, 2016 Previously on Astro-1 Introduction to stars Measuring distances Inverse square law: luminosity vs brightness Colors and spectral types, the H-R diagram

More information

NRAO Instruments Provide Unique Windows On Star Formation

NRAO Instruments Provide Unique Windows On Star Formation NRAO Instruments Provide Unique Windows On Star Formation Crystal Brogan North American ALMA Science Center Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

More information

Revealing the evolution of disks at au from high-resolution IR spectroscopy

Revealing the evolution of disks at au from high-resolution IR spectroscopy Protoplanetary seen through the eyes of new-generation high-resolution instruments - Rome, June 6, 08 Revealing the evolution of at 0.0-0 au from high-resolution IR spectroscopy VLT IR interferometry (not

More information

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech A Tale of Star and Planet Formation Lynne Hillenbrand Caltech Vermeer s The Astronomer (1688) Mauna Kea (last week) photos by: Sarah Anderson and Bill Bates Context: Our Sun The Sun is a completely average

More information

Setting the stage for solar system formation

Setting the stage for solar system formation Setting the stage for solar system formation ALMA insights into the early years of young stars Jes Jørgensen! Niels Bohr Institute & Centre for Star and Planet Formation University of Copenhagen http://youngstars.nbi.dk

More information

Stellar Life Cycle in Giant Galactic Nebula NGC edited by David L. Alles Western Washington University

Stellar Life Cycle in Giant Galactic Nebula NGC edited by David L. Alles Western Washington University Stellar Life Cycle in Giant Galactic Nebula NGC 3603 edited by David L. Alles Western Washington University e-mail: alles@biol.wwu.edu Introduction NGC 3603 is a giant HII region in the Carina spiral arm

More information

The Physics of the Interstellar Medium

The Physics of the Interstellar Medium The Physics of the Interstellar Medium Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se www.astro.uu.se Matter between stars Average distance between stars in solar neighbourhood: 1 pc = 3 x 1013 km,

More information

Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers. Corona Australis molecular cloud: Andrew Oreshko

Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers. Corona Australis molecular cloud: Andrew Oreshko Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers Corona Australis molecular cloud: Andrew Oreshko Classification of Young Stellar Objects (YSOs) Spectral Index Hartmann: Accretion

More information

Lecture 19 CO Observations of Molecular Clouds

Lecture 19 CO Observations of Molecular Clouds Lecture 9 CO Observations of Molecular Clouds. CO Surveys 2. Nearby molecular clouds 3. Antenna temperature and radiative transfer 4. Determining cloud conditions from CO References Tielens, Ch. 0 Myers,

More information

Probing the embedded phase of star formation with JWST spectroscopy

Probing the embedded phase of star formation with JWST spectroscopy Probing the embedded phase of star formation with JWST spectroscopy NIRSPEC Spitzer NGC 1333 Low mass Herschel Cygnus X High mass Jorgensen et al. Gutermuth et al. 10 10 Motte, Henneman et al. E.F. van

More information

Th. Henning, J. Bouwman, J. Rodmann MPI for Astronomy (MPIA), Heidelberg. Grain Growth in Protoplanetary Disks From Infrared to Millimetre Wavelengths

Th. Henning, J. Bouwman, J. Rodmann MPI for Astronomy (MPIA), Heidelberg. Grain Growth in Protoplanetary Disks From Infrared to Millimetre Wavelengths Th. Henning, J. Bouwman, J. Rodmann MPI for Astronomy (MPIA), Heidelberg Grain Growth in Protoplanetary Disks From Infrared to Millimetre Wavelengths Cumber01.ppt 30.5.2001 Motivation From molecular cloud

More information

Chapter 11 The Formation of Stars

Chapter 11 The Formation of Stars Chapter 11 The Formation of Stars A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful objects in the sky.

More information

The Interstellar Medium

The Interstellar Medium The Interstellar Medium Fall 2014 Lecturer: Dr. Paul van der Werf Oortgebouw 565, ext 5883 pvdwerf@strw.leidenuniv.nl Assistant: Kirstin Doney Huygenslaboratorium 528 doney@strw.leidenuniv.nl Class Schedule

More information

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Properties of Nearby Stars Most in orbit with the Sun around Galactic Center Stellar Kinematics Reveal Groups of Stars with Common Space Motion (Moving

More information

arxiv:astro-ph/ v1 1 Nov 2002

arxiv:astro-ph/ v1 1 Nov 2002 Astronomy & Astrophysics manuscript no. ms2545 November 1, 2002 (DOI: will be inserted by hand later) Axi-symmetric models of ultraviolet radiative transfer with applications to circumstellar disk chemistry

More information

protoplanetary transition disks

protoplanetary transition disks protoplanetary transition disks (Harvard-CfA) 1. disk evolution and planets why does disk dispersal matter? 40 AU orbit 2. transition disks definitions and observational signatures SMA 880 microns 3. resolved

More information

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10 Lecture 13 : The Interstellar Medium and Cosmic Recycling Midterm Results A2020 Prof. Tom Megeath The Milky Way in the Infrared View from the Earth: Edge On Infrared light penetrates the clouds and shows

More information

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2 Next Generation Very Large Array Working Group 2 HI in M74: Walter+ 08 CO in M51: Schinnerer+ 13 Continuum in M82: Marvil & Owen Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of

More information

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)? How Long do Stars Live (as Main Sequence Stars)? A star on Main Sequence has fusion of H to He in its core. How fast depends on mass of H available and rate of fusion. Mass of H in core depends on mass

More information

Setting the Stage for Planet Formation: Grain Growth in Circumstellar Disks

Setting the Stage for Planet Formation: Grain Growth in Circumstellar Disks Setting the Stage for Planet Formation: Grain Growth in Circumstellar Disks Leonardo Testi (European Southern Observatory) Disk Evolution From Grains to Pebbles Do we understand what we observe? Wish List

More information

Chemical evolution in low-mass star formation. Kyung Hee University Jeong-Eun Lee

Chemical evolution in low-mass star formation. Kyung Hee University Jeong-Eun Lee Chemical evolution in low-mass star formation Kyung Hee University Jeong-Eun Lee Introduction Chemo-dynamical model Two applications: Standard accretion model Episodic accretion model Summary Contents

More information

Components of Galaxies Gas The Importance of Gas

Components of Galaxies Gas The Importance of Gas Components of Galaxies Gas The Importance of Gas Fuel for star formation (H 2 ) Tracer of galaxy kinematics/mass (HI) Tracer of dynamical history of interaction between galaxies (HI) The Two-Level Atom

More information

Searching for protoplanets. Sebastian Wolf Kiel University, Germany

Searching for protoplanets. Sebastian Wolf Kiel University, Germany Searching for protoplanets Sebastian Wolf Kiel University, Germany 2013 Rocks! Hawaii April 11, 2013 [Wolf & D Angelo 2005] 2 Constraints on the late stages of planet formation Disk physics 3 Early stages

More information

A World of Dust. Bare-Eye Nebula: Orion. Interstellar Medium

A World of Dust. Bare-Eye Nebula: Orion. Interstellar Medium Interstellar Medium Physics 113 Goderya Chapter(s): 10 Learning Outcomes: A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of

More information

The Interstellar Medium

The Interstellar Medium http://www.strw.leidenuniv.nl/~pvdwerf/teaching/ The Interstellar Medium Lecturer: Dr. Paul van der Werf Fall 2014 Oortgebouw 565, ext 5883 pvdwerf@strw.leidenuniv.nl Assistant: Kirstin Doney Huygenslaboratorium

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

New ALMA Long Baseline Observations of the Transitional Disk around TW Hya

New ALMA Long Baseline Observations of the Transitional Disk around TW Hya New ALMA Long Baseline Observations of the Transitional Disk around TW Hya Takashi Tsukagoshi (Ibaraki University, Japan) H. Nomura, T. Muto, R. Kawabe, D. Ishimoto, K. D. Kanagawa, S. Okuzumi, S. Ida,

More information

Astrochemistry the summary

Astrochemistry the summary Astrochemistry the summary Astro 736 Nienke van der Marel April 27th 2017 Astrochemistry When the first interstellar molecules were discovered, chemists were very surprised. Why? Conditions in space are

More information

Challenges for the Study of Hot Cores with ALMA: NGC 6334I

Challenges for the Study of Hot Cores with ALMA: NGC 6334I Challenges for the Study of Hot Cores with ALMA: NGC 6334I Crystal Brogan (NRAO/North American ALMA Science Center) Collaborators: Todd Hunter (NRAO) Remy Indebetouw (UVa/NRAO), Ken (Taco) Young (CfA),

More information

Spectroscopy and Molecular Emission. Fundamental Probes of Cold Gas

Spectroscopy and Molecular Emission. Fundamental Probes of Cold Gas Spectroscopy and Molecular Emission Fundamental Probes of Cold Gas Atomic Lines Few atoms have fine structure transitions at low enough energy levels to emit at radiofrequencies Important exceptions HI

More information

Chapter 10 The Interstellar Medium

Chapter 10 The Interstellar Medium Chapter 10 The Interstellar Medium Guidepost You have begun your study of the sun and other stars, but now it is time to study the thin gas and dust that drifts through space between the stars. This chapter

More information

ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association

ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association Based on Barenfeld et al. (2016) Image Credit: ESO/L. Calçada Scott Barenfeld (Caltech) with John Carpenter, Luca Ricci, and

More information

Stellar Life Cycle in Giant Galactic Nebula NGC 3603

Stellar Life Cycle in Giant Galactic Nebula NGC 3603 Stellar Life Cycle in Giant Galactic Nebula NGC 3603 edited by David L. Alles Western Washington University e-mail: alles@biol.wwu.edu Last Updated 2009-11-20 Note: In PDF format most of the images in

More information

Constraining the Evolution of Molecular Gas in Weak-Line T-Tauri Stars. 1. Motivation

Constraining the Evolution of Molecular Gas in Weak-Line T-Tauri Stars. 1. Motivation Constraining the Evolution of Molecular Gas in Weak-Line T-Tauri Stars 1. Motivation The formation of planets from protoplanetary disks is greatly influenced by the presence or absence of gas in these

More information

PART 3 Galaxies. Gas, Stars and stellar motion in the Milky Way

PART 3 Galaxies. Gas, Stars and stellar motion in the Milky Way PART 3 Galaxies Gas, Stars and stellar motion in the Milky Way The Interstellar Medium The Sombrero Galaxy Space is far from empty! Clouds of cold gas Clouds of dust In a galaxy, gravity pulls the dust

More information

Polarization simulations of cloud cores

Polarization simulations of cloud cores Polarization simulations of cloud cores Veli-Matti Pelkonen 1 Contents 1. Introduction 2. Grain alignment by radiative torques (RATs) 3. Observational evidence for RATs 4. Radiative transfer modelling,

More information

HOPS + MALT90 + HiGAL

HOPS + MALT90 + HiGAL HOPS + MALT90 + HiGAL Probing star formation on a Galactic scale through mm molecular line and far-ir Galactic plane surveys Steve Longmore (ESO ALMA Fellow) John Bally, Leonardo Testi, Jill Rathborne,

More information

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or The Interstellar Medium About 99% of the material between the stars is in the form of a gas The remaining 1% exists as interstellar grains or interstellar dust If all the interstellar gas were spread evenly,

More information

The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry

The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry Thomas Preibisch, Stefan Kraus, Keiichi Ohnaka Max Planck Institute for Radio Astronomy, Bonn

More information

arxiv: v1 [astro-ph.sr] 4 May 2017

arxiv: v1 [astro-ph.sr] 4 May 2017 Astronomy & Astrophysics manuscript no. berichttc c ESO 217 November 1, 217 Spread of the dust temperature distribution in circumstellar disks S. Heese 1, S. Wolf 1, A. Dutrey 2, and S. Guilloteau 2 1

More information

Probing the Chemistry of Luminous IR Galaxies

Probing the Chemistry of Luminous IR Galaxies Probing the Chemistry of Luminous IR Galaxies, Susanne Aalto Onsala Space Observatory, Sweden Talk Outline Luminous IR galaxies Chemistry as a tool Observations in NGC 4418 Conclusions Luminous IR Galaxies

More information

Chapter 9. The Formation and Structure of Stars

Chapter 9. The Formation and Structure of Stars Chapter 9 The Formation and Structure of Stars The Interstellar Medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

STARLESS CORES. Mario Tafalla. (Observatorio Astronómico Nacional, Spain)

STARLESS CORES. Mario Tafalla. (Observatorio Astronómico Nacional, Spain) STARLESS CORES Mario Tafalla (Observatorio Astronómico Nacional, Spain) Outline: 1. Internal Structure a. Introduction b. How to characterize the internal strcuture of starless cores c. L1498 & L1517B:

More information

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy 18. Stellar Birth Star observations & theories aid understanding Interstellar gas & dust in our galaxy Protostars form in cold, dark nebulae Protostars evolve into main-sequence stars Protostars both gain

More information

An Introduction to Galaxies and Cosmology

An Introduction to Galaxies and Cosmology An Introduction to Galaxies and Cosmology 1.1 Introduction Milky Way (our galaxy - Galaxy) Fig. 1.1 A photograph of one hemisphere of the night sky. (D.di Cicco, Sky Publishing Corp.) 1011 stars 1012

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

How Shadowing and Illumination in Disks Affect Planet Formation

How Shadowing and Illumination in Disks Affect Planet Formation From Disks to Planets March 10, 2005 How Shadowing and Illumination in Disks Affect Planet Formation Hannah Jang-Condell Carnegie Institution of Washington, DTM Dimitar D. Sasselov (CfA) Overview Analytic

More information

Beyond the Visible -- Exploring the Infrared Universe

Beyond the Visible -- Exploring the Infrared Universe Beyond the Visible -- Exploring the Infrared Universe Prof. T. Jarrett (UCT) Infrared Window Telescopes ISM -- Galaxies Infrared Window Near-infrared: 1 to 5 µm Mid-infrared: 5 to 50 µm

More information

The Galaxy. (The Milky Way Galaxy)

The Galaxy. (The Milky Way Galaxy) The Galaxy (The Milky Way Galaxy) Which is a picture of the Milky Way? A A is what we see from Earth inside the Milky Way while B is what the Milky Way might look like if we were far away looking back

More information

The Milky Way Galaxy

The Milky Way Galaxy 1/5/011 The Milky Way Galaxy Distribution of Globular Clusters around a Point in Sagittarius About 00 globular clusters are distributed in random directions around the center of our galaxy. 1 1/5/011 Structure

More information

arxiv: v1 [astro-ph.sr] 21 Oct 2016

arxiv: v1 [astro-ph.sr] 21 Oct 2016 Astronomy & Astrophysics manuscript no. N2H+_paper_Oct18 c ESO 2016 October 24, 2016 Robustness of N 2 H + as tracer of the M.L.R. van t Hoff 1, C. Walsh 1, 2, M. Kama 1, 3, S. Facchini 4, and E.F. van

More information

Probing silicates in disks around T Tauri stars with Spitzer IRS

Probing silicates in disks around T Tauri stars with Spitzer IRS Probing silicates in disks around T Tauri stars with Spitzer IRS Jacqueline Kessler-Silacci, Spitzer Fellow, Univ. of Texas the c2d IRS team: Jean-Charles Augereau, Vincent Geers, Adwin Boogert, Geoff

More information

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs Energy mosquito lands on your arm = 1 erg Firecracker = 5 x 10 9 ergs 1 stick of dynamite = 2 x 10 13 ergs 1 ton of TNT = 4 x 10 16 ergs 1 atomic bomb = 1 x 10 21 ergs Magnitude 8 earthquake = 1 x 10 26

More information

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Aim Review the characteristics of regions of ionized gas within young massive star forming regions. Will focus the discussion

More information

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas Photodissociation Regions Radiative Transfer Dr. Thomas G. Bisbas tbisbas@ufl.edu Interstellar Radiation Field In the solar neighbourhood, the ISRF is dominated by six components Schematic sketch of the

More information

Lecture 2: Introduction to stellar evolution and the interstellar medium. Stars and their evolution

Lecture 2: Introduction to stellar evolution and the interstellar medium. Stars and their evolution Lecture 2: Introduction to stellar evolution and the interstellar medium Stars and their evolution The Hertzsprung-Russell (HR) Diagram (Color-Magnitude Diagram) Apparent and Absolute Magnitudes; Dust

More information

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!!

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!! Reminders! Website: http://starsarestellar.blogspot.com/ Lectures 1-15 are available for download as study aids. Reading: You should have Chapters 1-14 read. Read Chapters 15-17 by the end of the week.

More information

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium Galaxies and the Universe Our Galaxy - The Milky Way The Interstellar Medium Our view of the Milky Way The Radio Sky COBE Image of our Galaxy The Milky Way Galaxy - The Galaxy By Visual Observation

More information

Deflection of a Protostellar Outflow: The Bent Story of NGC 1333 IRAS 4A. NGC 1333 Cluster Forming Region. Driving Source. IRAS 4A Protobinary System

Deflection of a Protostellar Outflow: The Bent Story of NGC 1333 IRAS 4A. NGC 1333 Cluster Forming Region. Driving Source. IRAS 4A Protobinary System Deflection of a Protostellar Outflow: The Bent Story of NGC 1333 IRAS 4A SNU Colloquium 2006. 3. 22. Minho Choi Evolutionary Scenario of Low-Mass Young Stellar Objects Classification Spectral Energy Distribution

More information

Chemical Evolution in Protoplanetary Disks

Chemical Evolution in Protoplanetary Disks Chemical Evolution in Protoplanetary Disks by Jeffrey K. J. Fogel A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomy and Astrophysics)

More information

AST Section 2: Test 2

AST Section 2: Test 2 AST1002 - Section 2: Test 2 Date: 11/05/2009 Name: Equations: E = m c 2 Question 1: The Sun is a stable star because 1. gravity balances forces from pressure. (!) Miniquiz 7, Q3 2. the rate of fusion equals

More information

THE STAR FORMATION NEWSLETTER No February /5/29

THE STAR FORMATION NEWSLETTER No February /5/29 THE STAR FORMATION NEWSLETTER No.266-12 February 2015 2015/5/29 46-50 Understanding star formation in molecular clouds II. Signatures of gravitational collapse of IRDCs to Cloud-cloud collision as a trigger

More information

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at 10150 AU using PDI Henning Avenhaus Institute for Astronomy, ETH Zürich 2013 ROCKS! Conference, Hawaii Sascha Quanz, Hans Martin Schmid,

More information

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany Circumstellar disks The MIDI view Sebastian Wolf Kiel University, Germany MPIA MIDI SG concluding meeting May 5, 2014 Overview Circumstellar disks: Potential of IR long-baseline interferometry MIDI: Exemplary

More information

INITIAL CONDITIONS. Paola Caselli. School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES. Protoplanetary disks

INITIAL CONDITIONS. Paola Caselli. School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES. Protoplanetary disks Paola Caselli School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Protoplanetary disks INITIAL CONDITIONS Boley 2009 Quiescent molecular clouds High-mass star forming regions Pre-stellar

More information

Atoms and Star Formation

Atoms and Star Formation Atoms and Star Formation What are the characteristics of an atom? Atoms have a nucleus of protons and neutrons about which electrons orbit. neutrons protons electrons 0 charge +1 charge 1 charge 1.67 x

More information

Gas at the inner disk edge

Gas at the inner disk edge Star-Disk Interaction in Young Stars Proceedings IAU Symposium No. 243, 2007 J. Bouvier & I. Appenzeller, eds. c 2007 International Astronomical Union DOI: 00.0000/X000000000000000X Gas at the inner disk

More information

RADIO SPECTRAL LINES. Nissim Kanekar National Centre for Radio Astrophysics, Pune

RADIO SPECTRAL LINES. Nissim Kanekar National Centre for Radio Astrophysics, Pune RADIO SPECTRAL LINES Nissim Kanekar National Centre for Radio Astrophysics, Pune OUTLINE The importance of radio spectral lines. Equilibrium issues: kinetic, excitation, brightness temperatures. The equation

More information

Driving hot and cold gas flows with AGN feedback in galaxy clusters Credit: ESO

Driving hot and cold gas flows with AGN feedback in galaxy clusters Credit: ESO Driving hot and cold gas flows with AGN feedback in galaxy clusters Credit: ESO Helen Russell (Cambridge) Brian McNamara (Waterloo), Andy Fabian (Cambridge), Paul Nulsen (CfA), Michael McDonald (MIT),

More information

The Promise of HIFI. Xander Tielens (HIFI project scientist) on behalf of the HIFI consortium

The Promise of HIFI. Xander Tielens (HIFI project scientist) on behalf of the HIFI consortium The Promise of HIFI Xander Tielens (HIFI project scientist) on behalf of the HIFI consortium HIFI science HIFI is a versatile instrument Wide spectral coverage and high spectral resolution Physical conditions

More information

ALMA Science Verification Program. Martin Zwaan ALMA Regional Centre ESO, Garching

ALMA Science Verification Program. Martin Zwaan ALMA Regional Centre ESO, Garching ALMA Science Verification Program Martin Zwaan ALMA Regional Centre ESO, Garching Science Verification The process by which ALMA demonstrates that it is capable of producing data of the required quality

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/20396 holds various files of this Leiden University dissertation. Author: Bast, Jeanette Elisabeth Title: Hot chemistry and physics in the planet-forming

More information

Observational signatures of proto brown dwarf formation in protostellar disks

Observational signatures of proto brown dwarf formation in protostellar disks Mem. S.A.It. Vol. 84, 88 c SAIt 213 Memorie della Observational signatures of proto brown dwarf formation in protostellar disks O. V. Zakhozhay 1, E. I. Vorobyov 2,3, and M. M. Dunham 4 1 Main Astronomical

More information

Radiative MHD. in Massive Star Formation and Accretion Disks. Rolf Kuiper, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning

Radiative MHD. in Massive Star Formation and Accretion Disks. Rolf Kuiper, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning Radiative MHD in Massive Star Formation and Accretion Disks, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning, Radiative MHD with Makemake and Pluto : We developed a fast 3D frequency-dependent

More information

Lecture 23 Internal Structure of Molecular Clouds

Lecture 23 Internal Structure of Molecular Clouds Lecture 23 Internal Structure of Molecular Clouds 1. Location of the Molecular Gas 2. The Atomic Hydrogen Content 3. Formation of Clouds 4. Clouds, Clumps and Cores 5. Observing Molecular Cloud Cores References

More information

AST 6336, Interstellar Medium, Spring 2015

AST 6336, Interstellar Medium, Spring 2015 AST 6336, Interstellar Medium, Spring 2015 Young stellar clusters (lectures by Nicola Da Rio ndario@ufl.edu) January 2, 4, 2015 Star formation A molecular cloud may become unsupported gas pressure + magnetic

More information

University of Groningen. Water in protoplanetary disks Antonellini, Stefano

University of Groningen. Water in protoplanetary disks Antonellini, Stefano University of Groningen Water in protoplanetary disks Antonellini, Stefano IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check

More information

Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis

Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis Johan E. Lindberg Astrochemistry Laboratory NASA Goddard Space Flight

More information

Lecture 26 Low-Mass Young Stellar Objects

Lecture 26 Low-Mass Young Stellar Objects Lecture 26 Low-Mass Young Stellar Objects 1. Nearby Star Formation 2. General Properties of Young Stars 3. T Tauri Stars 4. Herbig Ae/Be Stars References Adams, Lizano & Shu ARAA 25 231987 Lada OSPS 1999

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Mid-IR and Far-IR Spectroscopic Measurements & Variability. Kate Su (University of Arizona)

Mid-IR and Far-IR Spectroscopic Measurements & Variability. Kate Su (University of Arizona) Mid-IR and Far-IR Spectroscopic Measurements & Variability Kate Su (University of Arizona) Five Zones of Debris Dust edge-on view of the Fomalhaut planetary system distance, r 1500 K very hot dust 500

More information

What's in the brew? A study of the molecular environment of methanol masers and UCHII regions

What's in the brew? A study of the molecular environment of methanol masers and UCHII regions What's in the brew? A study of the molecular environment of methanol masers and UCHII regions Outline of talk Low vs high -mass star formation (SF) The SF menagerie UCHII regions, hot and cold cores, methanol

More information

HD Transition Disk Herbig Ae/Be stars 2014

HD Transition Disk Herbig Ae/Be stars 2014 a b HD142527 Transition Disk Herbig Ae/Be stars 2014 HD142527 ALMA results by Sebastián Pérez Simon Casassus Valentin Christiaens Francois Ménard also with Gerrit van der Plas, Pablo Román, Christian Flores,

More information

Galactic dust in the Herschel and Planck era. François Boulanger Institut d Astrophysique Spatiale

Galactic dust in the Herschel and Planck era. François Boulanger Institut d Astrophysique Spatiale Galactic dust in the Herschel and Planck era François Boulanger Institut d Astrophysique Spatiale Motivation Dust emission Dust models Dust life cycle Planck early results Dust polarisation Outline Dust

More information

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at 10150 AU using PDI Henning Avenhaus Institute for Astronomy, ETH Zürich 2013 ROCKS! Conference, Hawaii Sascha Quanz, Hans Martin Schmid,

More information

Recent advances in understanding planet formation

Recent advances in understanding planet formation Credit: ALMA (ESO/NAOJ/NRAO) Recent advances in understanding planet formation Misato Fukagawa Chile observatory (Mitaka), NAOJ Contents of this talk 1. Introduction: Exoplanets, what we want to know from

More information

Astrochemical Models. Eric Herbst Departments of Chemistry and Astronomy University of Virginia

Astrochemical Models. Eric Herbst Departments of Chemistry and Astronomy University of Virginia Astrochemical Models Eric Herbst Departments of Chemistry and Astronomy University of Virginia Chemical Models Gas-phase reactions 1000 s of reactions Grain-surface reactions Abundances, columns, spectra

More information

Resolving the hot atmospheres of evolved stars with ALMA LBs. Wouter Vlemmings, Chalmers Univ. of Technology w. Theo Khouri, Eamon O Gorman et al.

Resolving the hot atmospheres of evolved stars with ALMA LBs. Wouter Vlemmings, Chalmers Univ. of Technology w. Theo Khouri, Eamon O Gorman et al. Resolving the hot atmospheres of evolved stars with ALMA LBs Wouter Vlemmings, Chalmers Univ. of Technology w. Theo Khouri, Eamon O Gorman et al. AGB mass loss (before) dust formation Ballistic motions

More information

Lecture 30. The Galactic Center

Lecture 30. The Galactic Center Lecture 30 History of the Galaxy Populations and Enrichment Galactic Evolution Spiral Arms Galactic Types Apr 5, 2006 Astro 100 Lecture 30 1 The Galactic Center The nature of the center of the Galaxy is

More information

15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation

15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation 15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation Continuum Instrumentation 5120 bolometers (4 sub arrays x 1280 bolometers) at

More information

Millimetre Science with the AT

Millimetre Science with the AT Millimetre Science with the AT Astrochemistry with mm-wave Arrays G.A. Blake, Caltech 29Nov 2001 mm-arrays: Important Features - Spatial Filtering - Transform to image plane - Cross Correlation (Sub)Millimeter

More information

Galaxy Collisions & the Origin of Starburst Galaxies & Quasars. February 24, 2003 Hayden Planetarium

Galaxy Collisions & the Origin of Starburst Galaxies & Quasars. February 24, 2003 Hayden Planetarium Galaxy Collisions & the Origin of Starburst Galaxies & Quasars February 24, 2003 Hayden Planetarium Normal massive galaxy types elliptical & spiral galaxies Spiral Bulge of old stars Large black hole Very

More information

Modeling interactions between a debris disc and planet: which initial conditions?

Modeling interactions between a debris disc and planet: which initial conditions? Modeling interactions between a debris disc and planet: which initial conditions? Elodie Thilliez @ET_astro Supervisors : Prof Sarah Maddison (Swinburne) Prof Jarrod Hurley (Swinburne) Crédit : NASA/JPL-Caltech

More information