The Development of Solar Prominence on 4 th September 2015 and the Solar Burst Type III and IV

Size: px
Start display at page:

Download "The Development of Solar Prominence on 4 th September 2015 and the Solar Burst Type III and IV"

Transcription

1 Available online at WSN 45(2) (2016) EISSN The Development of Solar Prominence on 4 th September 2015 and the Solar Burst Type III and IV N. A. Norsham 1, Z. S. Hamidi 1, *, Muzamir Mazlan 2, N. N. M. Shariff 3, N. S. Yusofl 1, A. I. Jafni 1, N. M. F. Khalib 1, M. N. Hamdan 1, Farahana Kamaruddin 4, Muhammad Redzuan Tahar 4, C. Monstein 5 1 School of Physics and Material Sciences, Faculty of Sciences, MARA University of Technology, 40450, Shah Alam, Selangor, Malaysia 2 Kompleks Baitul Hilal Telok Kemang, Lot 4506 Batu 8, Jalan Pantai, 5, Tanjung Tanah Merah, 71050, Port Dickson, Negeri Sembilan, Malaysia 3 Academy of Contemporary Islamic Studies (ACIS), MARA University of Technology, 40450, Shah Alam, Selangor, Malaysia 4 Langkawi National Observatory, National Space Agency, (ANGKASA), Empangan Bukit Malut 07000, Langkawi, Kedah, Malaysia 5 Institute of Astronomy, Wolfgang-Pauli-Strasse 27, Building HIT, Floor J, CH-8093 Zurich, Switzerland * address: zetysh@salam.uitm.edu.my ABSTRACT This article will focus on the solar prominences that occur during the 4 th September On that day, there were two sunspots on the surface of the sun, which were AR2409 and AR2410. These two active regions did not produce any threat for strong flare and thus the solar activity was very low. The prominences that will be focused were both occurred at 0353 UT and 0427 UT respectively. There were minor (G1) geomagnetic storm observed on that day. For solar prominences that occurred at 0353 UT, solar radio burst type (SRBT) IV was detected by CALLISTO spectrometer. From the CALLISTO, two bursts at low intensities with the duration of about 7 minutes for the first burst of MHz and 6 minutes for the second burst of MHz were observed. For the first burst, energy calculated was between x J and 2.12 x J with the drift rate of MHz/s. For second burst, the energy obtained was between x J and x J with the drift

2 rate of MHz/s. At 0427 UT, SRBT III was recorded with a frequency of MHz with the energy which was obtained between x J and x J. The drift rate of this type of burst was 0.61 MHz/s. During this event, the solar wind value was km/sec with the proton density of 15.1 protons/cm 3. Keywords: Solar prominences; active region (AR); solar burst; type III; type IV; e CALLISTO 1. INTRODUCTION The Sun is a star in our solar system has 16 million K of its core temperature and has a distance of 1 AU from the Earth [1]. Sun is located at the main sequence region where we can see it in the Hertzsprung-Russell Diagram which converts hydrogen to helium in its energy supply [2]. Solar prominence or filaments are formed above the chromosphere, which is a cool structure embedded in the corona. Prominences can be formed from active and quiet sun regions over filament channels [3-5]. Quiescent prominences are found in the coronal cavities [6-10] and formed from cool and dense plage concentrations far from active regions eg. [5,11,12]. They can persist for a few months and usually disappear by eruption [13]. There are a few parameters of quiescent prominences (lecture notes by K. Petrovay) which may form i) in active region (less common), ii) between two active regions or iii) over polar crown neutral line near the expanding AR. The magnetic forces to support them against gravity. The quiescent prominences have a height (above the chromosphere) in the range of Mm, a length of Mm, a width of 5-15 Mm, a pressure of dyn/cm 2, cm -3 of average electron density, a temperature of K, 4-20 G of magnetic strength [14-16]. Larger-scale structure of quiescent prominences remain the same while the fine structure changes rapidly [17]. Prominences can be attached to active regions or hang above the quiet chromosphere. Moreover, for this type of prominences, the polar (polar crown) filaments and low-latitude (sunspot) filaments can be distinguished. Polar filaments are the one with quietest prominences, largest and lasts longest where the low-latitude filaments can end in sunspots. There are smaller, shorter lived filaments which lasts for less than one day, have stronger magnetic fields of G and also has a flow of v < 60 km/s along the filament which is called as plage filaments [18]. Solar flares can excite plasma oscillations which are classified by five types which are type I, II, III, IV and V [19, 20]. In this sub-section, we are going to focus on type III and IV. Solar radio burst type III was first introduced by Wild in 1963 [21] with the frequency range of MHz [22-24]. This burst can be characterized by rapid drifting of the radiation from high to low frequencies. The drift rate (df/dt) can be determined using the formula of: Drift rate (df/dt) = ( f e f s ) / ( t e t s ) [Unit: MHz/s] (1) Drift rate is a peak displacement in frequency per unit time. It can be calculated by using the value of the end frequency (f e ) subtract the value of the start frequency (f s ) divided by the value of the end time (t e ) subtract the value of the start time (t s ) of the solar burst. According to [25], the rate for this type III is about 100 MHz s -1 in metric range which is 100 times larger than in type II burst. Besides that, type III bursts are formed from the beams of electron that flow outwards from the corona into interplanetary (IP) space along the -265-

3 open magnetic field lines. Type III burst is found when there is an active region on the visible side of the sun and indicates the increased in solar activity. It can occur singly, group or even in a storm where they are formed from relatively low energy electron beams of kinetic energy approximately 30 kev with a speed of about c/3 [26-28]. The speed is said to be dangerous to space weather and so does the Earth climate where it can extends to 1 AU [29]. This type of burst also produced from energetic particles that released through open magnetic field lines [19]. Type IV bursts give rapid varying fine structures and broad continuum emission [19]. This burst s type shows that there is formation of a new active region [30, 31]. A type IV event that is fully developed is very complex. This type is known to occur from type II burst. Solar radio burst type IV has two categories which are (i) broadband radio pulsations (BBP) and (ii) zebra patterns (ZP). Besides that, in the low corona, the flare plasma are being diagnosed of the fine structures (FS) of solar type IV [32]. BBP source occurs near the active region and decays away from it [33]. The motion follows the magnetic field direction where the apparent speed is a fraction of the speed of light. BBPs and ZPs are usually observed a few days before solar flare and coronal mass ejection (CME) event occur [19, 34]. 2. METHODOLOGY There are two types of instruments used to obtain the data which were Lunt Solar 100 mm H-Alpha telescope and CALLISTO spectrometer. The observation was carried out at Telok Kemang Solar Observatory, Port Dickson, Malaysia with coordinate of N and E Lunt Solar with hydrogen alpha filter was used to get the optical data of the solar prominences. A CCD camera, ZWO ASI120MM with a 2x Barlow lens were attached to the Lunt Solar 100mm H-Alpha telescope and linked to a software to see the images of the sun. The ZWO CCD is a monochrome camera which has a proper filtration when observed the sun where the 2x Barlow lens was used to increase the magnification of the eyepiece so that the sun can be seen clearly. A setting of the camera was set in the software such as the frame number and color setting. Then, searched for the desired image, for example the solar flares, sunspots, filaments or solar prominences and started capturing the images. The captured images, then will be edited by using AutoStakert, RegiStax and Adobe Photoshop to get the best image result of the sun. After the images were processed, all the data of the solar prominences was collected (sunspot number, solar wind, etc.). Then, the images of solar prominences by using an optical telescope was compared with the radio telescope images of the type of burst produced. CALLISTO spectrometer is a programmable receiver built to observe or detect solar radio burst that occur at a particular time and location. This program is applied to observed solar radio burst and Radio Frequency Interference (RFI) that is used to monitor for astronomical science, education and others. CALLISTO operates between frequencies of 45 to 870 MHz using a modern, commercially available broadband cable TV tuner having a frequency resolution of 63.5 KHz. There are a lot of CALLISTO instruments have been deployed in Malaysia, Indonesia, Australia, Switzerland, Russia, South Africa and many more

4 Figure 1. Solar Telescope at Teluk Kemang Solar Observatory (Credited to: Teluk Kemang Solar Observatory, Malaysia) Figure 2. CALLISTO Sytem (Credit: e CALLISTO) -267-

5 3. RESULTS AND ANALYSIS From Figure 3, two sunspots can be detected on 4 th September These two sunspots were AR2409 and AR2410. The prominences that occurred on that day were shown in Figure 4 and Figure 5 on 0353 UT and 0427 UT respectively. Based on Figure 6 of e- CALLISTO spectrometry, the structure of the Type IV radio burst was presented with two low intensities of solar burst. This event occurred at a starting frequency of 280 MHz of 03:45 [UT] and end frequency of 320 MHz of 03:52 [UT]. The other intensity start at 360 MHz on 03:53 [UT] and end frequency of 430 MHz on 03:59 [UT]. The energy minimum for starting frequency of 280 MHz was x J while the energy maximum was 2.12 x J and have a drift rate of MHz/s. For the other intensity with starting frequency 360 MHz, the energy minimum obtained was x J and its energy maximum was x J with the drift rate of MHz/s. Figure 3. The location of AR2409 and AR2410 on 4 th September 2015 (Credited to: SDO/HMI) The event was recorded by the e-callisto using RCAG antenna located in Mongolia. The solar wind recorded during this event was km/sec with the proton density of 15.1 protons/cm 3. The data were updated for every 10 minutes from the Space Weather website. They were obtained from real-time information transmitted to Earth from Advanced Composition Explorer (ACE) spacecraft located between the Earth and the Sun which enables -268-

6 it to give a one hour advance warning of impending geomagnetic activity and reported by NOAA Space Environment Center. Figure 4. The prominence that occurred at 0353 UT (Credited to: Telok Kemang Solar Observatory, Malaysia) Figure 5. The prominences that occurred at 0427 UT (Credited to : Telok Kemang Solar Observatory, Malaysia) -269-

7 Figure 6. Details of e-callisto spectrometry on 0353 UT (Credit: e CALLISTO) Figure 6. Solar Radio Burst Type IV

8 Figure 7. Details of e-callisto spectrometry on 0427 UT (Credit: e CALLISTO) Figure 7. Solar Radio Burst Type IV and III

9 From Figure 7 of e-callisto spectrometry, structure of Type III radio burst was observed with low intensity of solar burst. The starting frequency of this event was 240 MHz of 04:15 [UT] and end frequency of 350 MHz of 04:18 [UT]. This event was recorded by e- CALLISTO using RCAG antenna. The solar wind recorded for this event was km/sec and 15.1 protons/cm 3 of proton density. The minimum energy obtained was x J and energy maximum was x J. Both prominences were detected as quiescent prominences as they were not produced from the AR2409 and AR2410 on 4 th September Table 1. The condition of the sun on 4 th September 2015 (Credit: Space Weather). Parameter Radio sun X-ray Solar flare Planetary K- index Interplanetary Magnetic Field Value 10.7 cm flux: 87 sfu 6-hr max : B UT Sep04 24-hr : B UT Sep04 Now : Kp = 2 quiet 24-hr max : Kp = 5 storm B total = 6.2 nt B z = 0.7 nt north 4. CONCLUSIONS Solar radio burst type III is a fast drift burst which can occur singly, in groups or even storms. This radio emission is caused by flare accelerated electron beams that propagates with high velocity through the corona. Based on the analysis, the duration of the formation of the burst was 3 minutes with the drift rate of MHz/s. The minimum energy obtained was x J and maximum energy of x J for the frequency of 240 MHz to 350 MHz. For solar radio burst type IV, the burst shows a broadband continuum with fine structure characteristics. The analysis showed that there were two bursts at low intensities with the duration of about 7 minutes for the first burst ( MHz) and 6 minutes for the second burst ( MHz). The drift rate was MHz/s for the first burst while for the second burst, the drift rate was MHz/s. The energy calculated was between x J and 2.12 x J for frequency of 280 MHz and 320 MHz. The other intensity of frequency 360 MHz and 430 MHz, the energy calculated was between x J and x J. ACKNOWLEDGMENT We are grateful to CALLISTO network, STEREO, LASCO, SDO/AIA, NOAA, SOHO, SolarMonitor and SWPC make their data available online. This work was partially supported by the 600-RMI/FRGS 5/3 (135/2014) and 600-RMI/RAGS 5/3 (121/2014) UiTM grants and Kementerian Pengajian Tinggi Malaysia

10 Special thanks to the National Space Agency and the National Space Centre for giving us a site to set up this project and support this project. Solar burst monitoring is a project of cooperation between the Institute of Astronomy, ETH Zurich, and FHNW Windisch, Switzerland, Universiti Teknologi MARA and University of Malaya. This paper also used NOAA Space Weather Prediction Centre (SWPC) for the sunspot, radio flux and solar flare data for comparison purpose. The research has made use of the National Space Centre Facility and a part of an initiative of the International Space Weather Initiative (ISWI) program. We are also thanks to the Langkawi National Observatory, National Space Agency, (ANGKASA), Empangan Bukit Malut Langkawi, Kedah, Malaysia, for giving us the facility to book and use the discussion room to complete this paper. References [1] Aschwanden, M., Physics of the Corona, An Introduction. 2004, New York: Springer. [2] Stix, M., The sun: an introduction. 2012: Springer Science & Business Media. [3] Gaizauskas, V., et al., Formation of a solar filament channel. The Astrophysical Journal, (1): p [4] Mackay, D.H., V. Gaizauskas, and A.R. Yeates, Where do solar filaments form?: Consequences for theoretical models. Solar Physics, (1): p [5] Martin, S.F., Conditions for the formation and maintenance of filaments (Invited Review). Solar Physics, (1): p [6] Hundhausen, J. and B. Low, Magnetostatic structures of the solar corona. 1: A model based on the Cauchy boundary value problem. The Astrophysical Journal, : p [7] Koutchmy, S., J. Picat, and M. Dantel, A polarimetric study of the solar corona observed during the total eclipse of June 30, 1973 by means of a radial neutral filter. Astronomy and Astrophysics, : p [8] Koutchmy, S., et al., Photometrical analysis of the June 30, 1973 solar corona. Astronomy and Astrophysics, : p [9] Pasachoff, J., et al., Fine structures in the white-light solar corona at the 2006 eclipse. The Astrophysical Journal, (1): p [10] Saito, K. and E. Tandberg-Hanssen, The arch systems, cavities and prominences in the helmet streamer observed at the solar eclipse, November 12, Solar Physics, (1): p [11] Tandberg-Hanssen, E. The nature of solar prominences. in Astrophysics and Space Science Library [12] Zirker, J., Quiescent prominences. Solar physics, (2): p [13] Pneuman, G., Temperature-density structure in coronal helmets: the quiescent prominence and coronal cavity. The Astrophysical Journal, : p [14] Bommier, V., et al., Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarizaton measurements in the HeI D3 and Hα lines. Solar Physics, (2): p

11 [15] Athay, R.G., et al., Vector magnetic fields in prominences. Solar physics, (1): p [16] Leroy, J., V. Bommier, and S. Sahal-Brechot, The magnetic field in the prominences of the polar crown. Solar Physics, (1): p [17] Heinzel, P., I. Dorotovič, and R.J. Rutten, The Physics of Chromospheric Plasmas: Proceedings of the Coimbra Solar Physics Meeting Held at the University of Coimbra, Coimbra, Portugal, 9-13 October, Vol : Astronomical Society of the pacific. [18] Hale, G.E., Solar Prominences, Solar Flares and Coronal Mass Ejections. 2007: p [19] McLean, D.J. and N.R. Labrum, Solar radiophysics: Studies of emission from the sun at metre wavelengths [20] Melrose, D., Plasma emission due to isotropic fast electrons, and types I, II, and V solar radio bursts. Solar Physics, (1): p [21] Wild, J., S. Smerd, and A. Weiss, Solar bursts. Annual Review of Astronomy and Astrophysics, : p [22] Hamidi, Z., et al., Theoretical Review of Solar Radio Burst III (SRBT III) Associated With of Solar Flare Phenomena. International Journal of Fundamental Physical Sciences, : p [23] Hamidi, Z. and N. Shariff, The Propagation of An Impulsive Coronal Mass Ejections (CMEs) due to the High Solar Flares and Moreton Waves. International Letters of Chemistry, Physics and Astronomy, (1): p [24] Hamidi, Z., N. Shariff, and C. Monstein, First Light Detection of A Single Solar Radio Burst Type III Due To Solar Flare Event. International Letters of Chemistry, Physics and Astronomy, (1): p. 51. [25] Suzuki, S. and G. Dulk, Solar Radiophysics, ed. 1985, DJ McLean & NR Labrum (Cambridge: Cambridge Univ. Press). [26] Dulk, G.A., Type III solar radio bursts at long wavelengths. Radio Astronomy at Long Wavelengths, 2000: p [27] Hamidi, Z.S., Probability of Solar Flares Turn Out to Form a Coronal Mass Ejections Events Due to the Characterization of Solar Radio Burst Type II and III. International Letters of Chemistry, Physics and Astronomy, : p. 2. [28] Melrose, D., On the theory of type II and type III solar radio bursts. II. Alternative model. Australian Journal of Physics, (5): p [29] Frank, L.A. and D.A. Gurnett, Direct observations of low-energy solar electrons associated with a type III solar radio burst. Solar Physics, (2): p [30] Hamidi, Z., et al., The Beginning Impulsive of Solar Burst Type IV Radio Emission Detection Associated with M Type Solar Flare. International Journal of Fundamental Physical Sciences, : p

12 [31] Hamidi, Z., N. Shariff, and C. Monstein, Disturbances of Solar Eruption From Active Region AR1613. International Letters of Chemistry, Physics and Astronomy, (1): p. 77. [32] Trottet, G. Coronal physics from radio and space observations. in Coronal Physics from Radio and Space Observations [33] Fokker, A., Type IV solar radio emission. Space Science Reviews, (1): p [34] Young, C., C. Spencer, and G. Moreton, JA and Roberts. Astrophys. J, ( Received 15 March 2016; accepted 31 March 2016 ) -275-

Comparison of the Optical Image of the Solar Prominence with the Formation of Solar Radio Burst Type III on 3 rd September 2015

Comparison of the Optical Image of the Solar Prominence with the Formation of Solar Radio Burst Type III on 3 rd September 2015 Available online at www.worldscientificnews.com WSN 47(2) (2016) 230-240 EISSN 2392-2192 Comparison of the Optical Image of the Solar Prominence with the Formation of Solar Radio Burst Type III on 3 rd

More information

The Progression of Active Region with the Formation of Group and Complex Solar Radio Burst Type III on 31 st August 2015

The Progression of Active Region with the Formation of Group and Complex Solar Radio Burst Type III on 31 st August 2015 Available online at www.worldscientificnews.com WSN 49(2) (2016) 272-282 EISSN 2392-2192 The Progression of Active Region with the Formation of Group and Complex Solar Radio Burst Type III on 31 st August

More information

An X-ray Observations of A Gradual Coronal Mass Ejections (CMEs) on 15th April 2012

An X-ray Observations of A Gradual Coronal Mass Ejections (CMEs) on 15th April 2012 International Letters of Chemistry, Physics and Astronomy Online: 2014-02-06 ISSN: 2299-3843, Vol. 27, pp 13-19 doi:10.18052/www.scipress.com/ilcpa.27.13 2014 SciPress Ltd., Switzerland An X-ray Observations

More information

The Evolution of Unstable 'Beta-Gamma' Magnetic Fields of Active Region AR 2222

The Evolution of Unstable 'Beta-Gamma' Magnetic Fields of Active Region AR 2222 International Letters of Chemistry, Physics and Astronomy Online: 2015-03-25 ISSN: 2299-3843, Vol. 48, pp 95-102 doi:10.18052/www.scipress.com/ilcpa.48.95 2015 SciPress Ltd., Switzerland The Evolution

More information

The Tendencies Group Type III Burst Form Type II Burst During Low activity

The Tendencies Group Type III Burst Form Type II Burst During Low activity Available online at www.worldscientificnews.com WSN 34 (2016) 121-134 EISSN 2392-2192 The Tendencies Group Type III Burst Form Type II Burst During Low activity Z. S. Hamidi 1, *, Fatin Nabila Mokthtar

More information

Emergence of an Impulsive CMEs Related To Solar Radio Burst Type III Due To Magnetic Filament Eruption

Emergence of an Impulsive CMEs Related To Solar Radio Burst Type III Due To Magnetic Filament Eruption Available online at www.worldscientificnews.com WSN 37 (2016) 168-178 EISSN 2392-2192 Emergence of an Impulsive CMEs Related To Solar Radio Burst Type III Due To Magnetic Filament Eruption M. Omar Ali

More information

Investigation of Drift Rate of Solar Radio Burst Type II Due To Coronal Mass Ejections Phenomenon

Investigation of Drift Rate of Solar Radio Burst Type II Due To Coronal Mass Ejections Phenomenon International Letters of Chemistry, Physics and Astronomy Online: 2015-03-25 ISSN: 2299-3843, Vol. 48, pp 146-154 doi:10.18052/www.scipress.com/ilcpa.48.146 2015 SciPress Ltd., Switzerland Investigation

More information

Type II Solar Radio Burst with a Split and Herring Bones During a Minimum Solar Activity

Type II Solar Radio Burst with a Split and Herring Bones During a Minimum Solar Activity Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 13(2) (2014) 104-111 ISSN 2299-3843 Type II Solar Radio Burst with a Split and Herring Bones During a Minimum

More information

Investigation of Coronal Mass Ejections Related to Solar Flare Event and The Formation of The Small Geomagnetic Storm

Investigation of Coronal Mass Ejections Related to Solar Flare Event and The Formation of The Small Geomagnetic Storm International Letters of Chemistry, Physics and Astronomy Online: 2015-05-03 ISSN: 2299-3843, Vol. 50, pp 26-34 doi:10.18052/www.scipress.com/ilcpa.50.26 2015 SciPress Ltd., Switzerland Investigation of

More information

40450, Shah Alam, Selangor, Malaysia. Alam, Selangor, Malaysia. CH-8093 Zurich, Switzerland address: 1

40450, Shah Alam, Selangor, Malaysia. Alam, Selangor, Malaysia. CH-8093 Zurich, Switzerland  address: 1 International Letters of Chemistry, Physics and Astronomy Online: 2015-05-15 ISSN: 2299-3843, Vol. 51, pp 26-33 doi:10.18052/www.scipress.com/ilcpa.51.26 2015 SciPress Ltd., Switzerland Preliminary Analysis

More information

Available online at International Letters of Chemistry, Physics and Astronomy 11(2) (2014) ISSN

Available online at  International Letters of Chemistry, Physics and Astronomy 11(2) (2014) ISSN Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 11(2) (2014) 135-145 ISSN 2299-3843 Evaluation of Spectral Overview and Radio Frequency (RFI) Sources at Four

More information

Determination of Flux Density of the Solar Radio Burst Event by Using Log Periodic Dipole Antenna (LPDA)

Determination of Flux Density of the Solar Radio Burst Event by Using Log Periodic Dipole Antenna (LPDA) International Letters of Chemistry, Physics and Astronomy Online: 2014-01-24 ISSN: 2299-3843, Vol. 26, pp 21-29 doi:10.18052/www.scipress.com/ilcpa.26.21 2014 SciPress Ltd., Switzerland Determination of

More information

Fundamental and Second Harmonic Bands of Solar Radio Burst Type II Caused by X1.8 - Class Solar Flares

Fundamental and Second Harmonic Bands of Solar Radio Burst Type II Caused by X1.8 - Class Solar Flares International Letters of Chemistry, Physics and Astronomy Online: 2014-05-11 ISSN: 2299-3843, Vol. 33, pp 208-217 doi:10.18052/www.scipress.com/ilcpa.33.208 2014 SciPress Ltd., Switzerland Fundamental

More information

Nonlinear Behavior of the Radio Frequency Interference (RFI) Sources at Faculty of Applied Sciences, MARA University of Technology

Nonlinear Behavior of the Radio Frequency Interference (RFI) Sources at Faculty of Applied Sciences, MARA University of Technology Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 15 (2014) 39-47 ISSN 2299-3843 Nonlinear Behavior of the Radio Frequency Interference (RFI) Sources at Faculty

More information

Understanding Climate Changes in Malaysia Through Space Weather Study

Understanding Climate Changes in Malaysia Through Space Weather Study International Letters of Natural Sciences Online: 2014-04-12 ISSN: 2300-9675, Vol. 13, pp 9-16 doi:10.18052/www.scipress.com/ilns.13.9 2014 SciPress Ltd., Switzerland Understanding Climate Changes in Malaysia

More information

Coronal Signatures of a Flare Generated Type-II Solar Radio Burst

Coronal Signatures of a Flare Generated Type-II Solar Radio Burst 8th East-Asia School and Workshop on Laboratory, Space, and Astrophysical Plasmas July 30 (Mon), 2018 ~ August 03 (Fri), 2018 Coronal Signatures of a Flare Generated Type-II Solar Radio Burst V. Vasanth

More information

Space Weather: The Significance of e-callisto (Malaysia) As One of Contributor of Solar Radio Burst Due To Solar Activity

Space Weather: The Significance of e-callisto (Malaysia) As One of Contributor of Solar Radio Burst Due To Solar Activity Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 7 (2014) 37-44 ISSN 2299-3843 Space Weather: The Significance of e-callisto (Malaysia) As One of Contributor of

More information

1.3j describe how astronomers observe the Sun at different wavelengths

1.3j describe how astronomers observe the Sun at different wavelengths 1.3j describe how astronomers observe the Sun at different wavelengths 1.3k demonstrate an understanding of the appearance of the Sun at different wavelengths of the electromagnetic spectrum, including

More information

Radio Observations and Space Weather Research

Radio Observations and Space Weather Research Radio Observations and Space Weather Research Jasmina Magdalenić Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium What is space weather and why is it important? Eruptive processes:

More information

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!!

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!! The Sun Introduction We will meet in class for a brief discussion and review of background material. We will then go outside for approximately 1 hour of telescope observing. The telescopes will already

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

Solar Flare Durations

Solar Flare Durations Solar Flare Durations Whitham D. Reeve 1. Introduction Scientific investigation of solar flares is an ongoing pursuit by researchers around the world. Flares are described by their intensity, duration

More information

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

High energy particles from the Sun. Arto Sandroos Sun-Earth connections High energy particles from the Sun Arto Sandroos Sun-Earth connections 25.1.2006 Background In addition to the solar wind, there are also particles with higher energies emerging from the Sun. First observations

More information

RADIO PULSATIONS IN THE m dm BAND: CASE STUDIES

RADIO PULSATIONS IN THE m dm BAND: CASE STUDIES RADIO PULSATIONS IN THE m dm BAND: CASE STUDIES M. Messerotti, P. Zlobec, A. Veronig, and A. Hanslmeier Abstract Radio pulsations are observed during several type IV bursts in the metric and decimetric

More information

HELIOSTAT III - THE SOLAR CHROMOSPHERE

HELIOSTAT III - THE SOLAR CHROMOSPHERE HELIOSTAT III - THE SOLAR CHROMOSPHERE SYNOPSIS: In this lab you will observe, identify, and sketch features that appear in the solar chromosphere. With luck, you may have the opportunity to watch a solar

More information

Solar Activity during the Rising Phase of Solar Cycle 24

Solar Activity during the Rising Phase of Solar Cycle 24 International Journal of Astronomy and Astrophysics, 213, 3, 212-216 http://dx.doi.org/1.4236/ijaa.213.3325 Published Online September 213 (http://www.scirp.org/journal/ijaa) Solar Activity during the

More information

Imaging Spectroscopy of a Type II solar radio burst observed by LOFAR

Imaging Spectroscopy of a Type II solar radio burst observed by LOFAR Imaging Spectroscopy of a Type II solar radio burst observed by LOFAR Nicolina Chrysaphi and Eduard P. Kontar School of Physics and Astronomy University of Glasgow, UK The Broad Impact of Low Frequency

More information

The Structure of the Sun. CESAR s Booklet

The Structure of the Sun. CESAR s Booklet How stars work In order to have a stable star, the energy it emits must be the same as it can produce. There must be an equilibrium. The main source of energy of a star it is nuclear fusion, especially

More information

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 1 11 Jun 07 UA/NSO Summer School 1 If the sun didn't have a magnetic field, then it would be as boring a star as most astronomers think it is. -- Robert Leighton 11 Jun 07 UA/NSO

More information

SOLAR RADIO EMISSIONS

SOLAR RADIO EMISSIONS SOLAR RADIO EMISSIONS G. A. Dulk Abstract This general review covers the principal observational and theoretical interpretation of radio emissions from the Sun: 1) Streams of fast electrons and shock waves

More information

10:10-10 :35 P.K.Manoharan National Centre for Radio Astrophysics

10:10-10 :35 P.K.Manoharan National Centre for Radio Astrophysics 23 rd November, 2011 10:10-10 :35 P.K.Manoharan National Centre for Radio Astrophysics Radio observations, combined with the groundbased optical observations and spacebased data can provide a crossreferenced

More information

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C.

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C. The Sun 1 The Sun A. Solar Atmosphere 2 B. Phenomena (Sunspots) Dr. Bill Pezzaglia C. Interior Updated 2014Feb08 A. The Solar Atmosphere 1. Photosphere 2. Chromosphere 3. Corona 4. Solar Wind & earthly

More information

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C.

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C. The Sun 1 The Sun A. Solar Atmosphere 2 B. Phenomena (Sunspots) Dr. Bill Pezzaglia C. Interior Updated 2006Sep18 A. The Solar Atmosphere 1. Photosphere 2. Chromosphere 3. Corona 4. Solar Wind 3 1a. The

More information

Frequency Dependence of Polarization of Zebra Pattern in. Type-IV Solar Radio Bursts

Frequency Dependence of Polarization of Zebra Pattern in. Type-IV Solar Radio Bursts Frequency Dependence of Polarization of Zebra Pattern in Type-IV Solar Radio Bursts Short title: Frequency-dependent zebra-pattern polarization Kazutaka Kaneda 1, H. Misawa 1, K. Iwai 2, F. Tsuchiya 1,

More information

Geomagnetic Disturbances (GMDs) History and Prediction

Geomagnetic Disturbances (GMDs) History and Prediction Geomagnetic Disturbances (GMDs) History and Prediction J. Patrick Donohoe, Ph.D., P.E. Dept. of Electrical and Computer Engineering Mississippi State University Box 9571 Miss. State, MS 39762 donohoe@ece.msstate.edu

More information

Alexey Kuznetsov. Armagh Observatory

Alexey Kuznetsov. Armagh Observatory Alexey Kuznetsov Armagh Observatory Outline of the talk Solar radio emission History Instruments and methods Results of observations Radio emission of planets Overview / history / instruments Radio emission

More information

OUTLINE: P. Kotrč (1), P. Heinzel (1) and O. Procházka (2)

OUTLINE: P. Kotrč (1), P. Heinzel (1) and O. Procházka (2) On measurements of continuum flux in solar flares. Instrument and first results. P. Kotrč (1), P. Heinzel (1) and O. Procházka (2) (1) - Astronomical Institute, AS CR, v.v.i. Ondřejov, Czech Republic (2)

More information

The Sun s Dynamic Atmosphere

The Sun s Dynamic Atmosphere Lecture 16 The Sun s Dynamic Atmosphere Jiong Qiu, MSU Physics Department Guiding Questions 1. What is the temperature and density structure of the Sun s atmosphere? Does the atmosphere cool off farther

More information

CORONAL AND INTERPLANETARY TYPE II RADIO EMISSIONS

CORONAL AND INTERPLANETARY TYPE II RADIO EMISSIONS CORONAL AND INTERPLANETARY TYPE II RADIO EMISSIONS H. V. Cane and W. C. Erickson Bruny Island Radio Spectrometer ABSTRACT It is well established that type II radio bursts are caused by shocks that are

More information

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He Our sole source of light and heat in the solar system A common star: a glowing ball of plasma held together by its own gravity and powered by nuclear fusion at its center. Nuclear fusion: Combining of

More information

michele piana dipartimento di matematica, universita di genova cnr spin, genova

michele piana dipartimento di matematica, universita di genova cnr spin, genova michele piana dipartimento di matematica, universita di genova cnr spin, genova first question why so many space instruments since we may have telescopes on earth? atmospheric blurring if you want to

More information

Space Weather and Satellite System Interaction

Space Weather and Satellite System Interaction Space Engineering International Course, Kyutech, 4 th Quarter Semester 2017 Space Weather and Satellite System Interaction Lecture 2: Space Weather Concept, Reporting and Forecasting Assoc. Prof. Ir. Dr.

More information

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned.

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Next homework due Oct 24 th. I will not be here on Wednesday, but Paul Ricker will present the lecture! My Tuesday

More information

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere. Chapter 29 and 30 Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere. Explain how sunspots are related to powerful magnetic fields on the sun.

More information

Solar Radio Bursts Observed at Anchorage, Alaska in the High Frequency Band Whitham D. Reeve

Solar Radio Bursts Observed at Anchorage, Alaska in the High Frequency Band Whitham D. Reeve Solar Radio Bursts Observed at Anchorage, Alaska in the High Frequency Band Whitham D. Reeve 1. Introduction Solar radio emissions have three distinct components: 1) Quiet Sun; 2) Bright regions; and 3)

More information

1. Solar Atmosphere Surface Features and Magnetic Fields

1. Solar Atmosphere Surface Features and Magnetic Fields 1. Solar Atmosphere Surface Features and Magnetic Fields Sunspots, Granulation, Filaments and Prominences, Coronal Loops 2. Solar Cycle: Observations The Sun: applying black-body radiation laws Radius

More information

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary Earth Space Systems Semester 1 Exam Astronomy Vocabulary Astronomical Unit- Aurora- Big Bang- Black Hole- 1AU is the average distance between the Earth and the Sun (93 million miles). This unit of measurement

More information

Acceleration of the Solar Wind

Acceleration of the Solar Wind From Sun to Mud: Solar and Space Physics for the UG Classroom Acceleration of the Andrew Jordan All images from SOHO spacecraft This presentation helps introductory physics students apply their skills

More information

Chapter 8 The Sun Our Star

Chapter 8 The Sun Our Star Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 8 The Sun

More information

Space Weather Effects of Coronal Mass Ejection

Space Weather Effects of Coronal Mass Ejection J. Astrophys. Astr. (2006) 27, 219 226 Space Weather Effects of Coronal Mass Ejection K. N. Iyer 1,, R. M. Jadav 1, A. K. Jadeja 1, P. K. Manoharan 2, Som Sharma 3 and Hari Om Vats 3 1 Department of Physics,

More information

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky The Sun as Our Star Last class we talked about how the Sun compares to other stars in the sky Today's lecture will concentrate on the different layers of the Sun's interior and its atmosphere We will also

More information

STCE Newsletter. 7 Dec Dec 2015

STCE Newsletter. 7 Dec Dec 2015 Published by the STCE - this issue : 18 Dec 2015. Available online at http://www.stce.be/newsletter/. The Solar-Terrestrial Centre of Excellence (STCE) is a collaborative network of the Belgian Institute

More information

Space Weather: The Role of Solar Radio Monitoring in Malaysia and Implications of Sun Activities to the Earth

Space Weather: The Role of Solar Radio Monitoring in Malaysia and Implications of Sun Activities to the Earth \ Fundamental Journals International Journal of Fundamental Physical Sciences (), Vol 3, No 4, pp 57-63, Dec, 2013 DOI:10.14331/ijfps.2013.330056 http://dx.doi.org/10.14331/ijfps.2013.330056 ISSN:2231-8186

More information

Coronal Mass Ejections in the Heliosphere

Coronal Mass Ejections in the Heliosphere Coronal Mass Ejections in the Heliosphere N. Gopalswamy (NASA GSFC) http://cdaw.gsfc.nasa.gov/publications Plan General Properties Rate & Solar Cycle Variability Relation to Polarity Reversal CMEs and

More information

Science with Facilities at ARIES

Science with Facilities at ARIES Science with Facilities at ARIES Wahab Uddin Aryabhatta Research Institute of Observational Sciences(ARIES), Nainital ARIES Science Goals with ARIES Solar Observations: [1] Ground based observations of

More information

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Solar-terrestrial relation and space weather Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Planets Comets Solar wind Interplanetary magnetic field Cosmic rays Satellites Astronauts HELIOSPHERE

More information

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity ! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun The Sun & Solar Activity The Sun in Perspective Planck s Law for Black Body Radiation ν = c / λ

More information

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Announcements - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Review for Test #2 Oct 11 Topics: The Solar System and its Formation The Earth and our Moon

More information

Using This Flip Chart

Using This Flip Chart Using This Flip Chart Sunspots are the first indicators that a storm from the Sun is a possibility. However, not all sunspots cause problems for Earth. By following the steps in this flip chart you will

More information

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature: The Sun Basic Properties Radius: Mass: 5 R Sun = 6.96 km 9 R M Sun 5 30 = 1.99 kg 3.33 M ρ Sun = 1.41g cm 3 Luminosity: L Sun = 3.86 26 W Effective Temperature: L Sun 2 4 = 4πRSunσTe Te 5770 K The Sun

More information

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of Overview Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy source

More information

STCE Newsletter. 9 Jun Jun 2014

STCE Newsletter. 9 Jun Jun 2014 Published by the STCE - this issue : 19 Jun 2014. Available online at http://www.stce.be/newsletter/. The Solar-Terrestrial Centre of Excellence (STCE) is a collaborative network of the Belgian Institute

More information

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Babita Chandel Sri Sai University Palampur, Himachal Pradesh, India Abstract: Space weather activity CMEs, and solar energetic

More information

Hydrogen Lines. What can we learn from light? Spectral Classification. Visible Hydrogen Spectrum Lines: Series. Actual Spectrum from SDSS

Hydrogen Lines. What can we learn from light? Spectral Classification. Visible Hydrogen Spectrum Lines: Series. Actual Spectrum from SDSS What can we learn from light? Hydrogen Lines Temperature Energy Chemical Composition Speed towards or away from us All from the! Lower E, Lower f, λ Visible! Higher E, Higher f, λ Visible Hydrogen Spectrum

More information

ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission

ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission SOLI INVICTO ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission Andrei Zhukov Principal Investigator of PROBA-3/ASPIICS Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium

More information

1-4-1A. Sun Structure

1-4-1A. Sun Structure Sun Structure A cross section of the Sun reveals its various layers. The Core is the hottest part of the internal sun and is the location of nuclear fusion. The heat and energy produced in the core is

More information

The Sun sends the Earth:

The Sun sends the Earth: The Sun sends the Earth: Solar Radiation - peak wavelength.visible light - Travels at the speed of light..takes 8 minutes to reach Earth Solar Wind, Solar flares, and Coronal Mass Ejections of Plasma (ionized

More information

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere.

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere. Guidepost The Sun is the source of light an warmth in our solar system, so it is a natural object to human curiosity. It is also the star most easily visible from Earth, and therefore the most studied.

More information

Solar Dynamics Affecting Skywave Communications

Solar Dynamics Affecting Skywave Communications Solar Dynamics Affecting Skywave Communications Ken Larson KJ6RZ October 2010 1 Page Subject 3 1.0 Introduction 3 2.0 Structure of the Sun 3 2.1 Core 3 2.2 Radiation Zone 4 2.3 Convection Zone 4 2.4 Photosphere

More information

The General Properties of the Sun

The General Properties of the Sun Notes: The General Properties of the Sun The sun is an average star with average brightness. It only looks bright because it s so close. It contains 99% of the mass of the solar system. It is made of entirely

More information

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6 The Sun the main show in the solar system 99.8% of the mass 99.9999...% of the energy 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Homework due next time - will count best 5 of 6 The

More information

LANGKAWI NATIONAL OBSERVATORY An Eye to Space

LANGKAWI NATIONAL OBSERVATORY An Eye to Space LANGKAWI NATIONAL OBSERVATORY An Eye to Space ASILLAM M.F, ISMAIL.R, KAMARUDIN. F NATIONAL SPACE AGENCY OF MALAYSIA (ANGKASA) ASIA-OCEANIA SPACE WEATHER ALLIANCE (AOSWA) 22 24 FEBRUARY 2012 Chiang Mai,

More information

PTYS/ASTR 206. The Sun 3/1/07

PTYS/ASTR 206. The Sun 3/1/07 The Announcements Reading Assignment Review and finish reading Chapter 18 Optional reading March 2006 Scientific American: article by Gene Parker titled Shielding Space Travelers http://en.wikipedia.org/wiki/solar_variability

More information

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun The Sun The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x 10 33 g = 330,000 M Earth = 1 M Sun Radius of Sun = 7 x 10 5 km = 109 R Earth = 1 R Sun Luminosity of Sun =

More information

(Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms

(Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms (Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms Schedule for the next week Office hours: Mon 5:00 6:20pm = Baker; Thu 3:20 4:40 = Lindner + Sections A, B, F = Baker; Sections

More information

Solar Astrophysics with ALMA. Sujin Kim KASI/EA-ARC

Solar Astrophysics with ALMA. Sujin Kim KASI/EA-ARC Solar Astrophysics with ALMA Sujin Kim KASI/EA-ARC Contents 1. The Sun 2. ALMA science targets 3. ALMA capabilities for solar observation 4. Recent science results with ALMA 5. Summary 2 1. The Sun Dynamic

More information

Geomagnetic Disturbance Report Reeve Observatory

Geomagnetic Disturbance Report Reeve Observatory Event type: Various geomagnetic disturbances including coronal hole high-speed stream, coronal mass ejection, sudden impulse and reverse shock effects Background: This background section defines the various

More information

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest.

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest. Overview: The Sun Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy

More information

British Astronomical Association Radio Astronomy Group

British Astronomical Association Radio Astronomy Group Hello all, This is an informal note of some of the activities happening in the RAG world at the moment, well, at least the ones that I m aware of. I d like to produce something like this on a regular basis

More information

Astronomy 150: Killer Skies. Lecture 18, March 1

Astronomy 150: Killer Skies. Lecture 18, March 1 Assignments: Astronomy 150: Killer Skies HW6 due next Friday at start of class HW5 and Computer Lab 1 due Night Observing continues next week Lecture 18, March 1 Computer Lab 1 due next Friday Guest Lecturer:

More information

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered The Sun Visible Image of the Sun Our sole source of light and heat in the solar system A very common star: a glowing g ball of gas held together by its own gravity and powered by nuclear fusion at its

More information

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Announcements Lab Observing Trip Next week: Tues (9/28) & Thurs (9/30) let me know ASAP if you have an official conflict (class, work) - website: http://astro.physics.uiowa.edu/~clang/sgu_fall10/observing_trip.html

More information

Solar Radio Observation using Callisto Spectrometer at Sumedang West Java Indonesia: Current Status and Future Development Plan in Indonesia

Solar Radio Observation using Callisto Spectrometer at Sumedang West Java Indonesia: Current Status and Future Development Plan in Indonesia Ground-based Solar Observations in the Space Instrumentation Era ASP Conference Series, Vol. 504 Ivan Dorotovič, Catherine E. Fischer, and Manuela Temmer, eds. c 2016 Astronomical Society of the Pacific

More information

Solar Observation Class Project

Solar Observation Class Project Name: School: Grade or Level: Lesson Plan #: Date: Object Solar Observation Class Project The object of this classroom exercise to involve as individuals or as teams, students in the actual astronomical

More information

Spring 2001: The Sun. Equipment:! This write-up, calculator, lab notebook! Data you downloaded from the SOHO website

Spring 2001: The Sun. Equipment:! This write-up, calculator, lab notebook! Data you downloaded from the SOHO website Our Sun is a middle-aged, medium sized star, big enough to hold a million Earths. The ancient Greeks thought that the Sun was a perfect sphere of fire. Today we know that the Sun is a variable star that

More information

Solar Transients P.K. Manoharan

Solar Transients P.K. Manoharan Solar Transients P.K. Manoharan Radio Astronomy Centre National Centre for Radio Astrophysics Tata Institute of Fundamental Research Ooty 643001, India 1 Solar Flares and associated Coronal Mass Ejections

More information

Ooty Radio Telescope Space Weather

Ooty Radio Telescope Space Weather Ooty Radio Telescope Space Weather P.K. Manoharan Radio Astronomy Centre National Centre for Radio Astrophysics Tata Institute of Fundamental Research Ooty 643001, India mano@ncra.tifr.res.in Panel Meeting

More information

Stars and Galaxies. Content Outline for Teaching

Stars and Galaxies. Content Outline for Teaching Section 1 Stars A. Patterns of stars - constellations 1. Ancient cultures used mythology or everyday items to name constellations 2. Modern astronomy studies 88 constellations 3. Some constellations are

More information

Sun Earth Connection Missions

Sun Earth Connection Missions Sun Earth Connection Missions ACE Advanced Composition Explorer The Earth is constantly bombarded with a stream of accelerated particles arriving not only from the Sun, but also from interstellar and galactic

More information

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons AST 100 General Astronomy: Stars & Galaxies 5. What s inside the Sun? From the Center Outwards Core: Hydrogen ANNOUNCEMENTS Midterm I on Tue, Sept. 29 it will cover class material up to today (included)

More information

Lecture 17 The Sun October 31, 2018

Lecture 17 The Sun October 31, 2018 Lecture 17 The Sun October 31, 2018 1 2 Exam 2 Information Bring a #2 pencil! Bring a calculator. No cell phones or tablets allowed! Contents: Free response problems (2 questions, 10 points) True/False

More information

Understanding Solar Indices

Understanding Solar Indices Understanding Solar Indices By Ken Larson KJ6RZ Long distance HF radio communications is made possible by a region of charged particles in the Earth s upper atmosphere, 30 to 200 miles above the Earth

More information

Astronomy 404 October 18, 2013

Astronomy 404 October 18, 2013 Astronomy 404 October 18, 2013 Parker Wind Model Assumes an isothermal corona, simplified HSE Why does this model fail? Dynamic mass flow of particles from the corona, the system is not closed Re-write

More information

Multi-wavelength VLA and Spacecraft Observations of Evolving Coronal Structures Outside Flares

Multi-wavelength VLA and Spacecraft Observations of Evolving Coronal Structures Outside Flares Multi-Wavelength Investigations of Solar Activity Proceedings of IAU Symposium No. 223, 2004 A.V. Stepanov, E.E. Benevolenskaya & A.G. Kosovichev, eds. Multi-wavelength VLA and Spacecraft Observations

More information

Astronomy Ch 16 The Sun. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch 16 The Sun. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch 16 The Sun MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The light we see from the Sun comes from which layer?

More information

Physics 343 Lecture # 5: Sun, Stars, and Planets; Bayesian analysis

Physics 343 Lecture # 5: Sun, Stars, and Planets; Bayesian analysis Physics 343 Lecture # 5: Sun, Stars, and Planets; Bayesian analysis Schedule for the next week Office hours: Thu 5:00 6:20pm = Deshpande; Fri 10:20 11:40 = Baker + on call Sections A, C = Baker; Sections

More information

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc.

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc. Chapter 14 Lecture Chapter 14: Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE?

More information

CONTENT EXPECTATIONS

CONTENT EXPECTATIONS THE SUN & THE STARS CONTENT EXPECTATIONS STARS What are stars? Are they all the same? What makes them different? What is our nearest star? THE SUN Why is it important? provides heat and light that we need

More information

Geomagnetic Disturbance Report Reeve Observatory

Geomagnetic Disturbance Report Reeve Observatory Event type: Geomagnetic disturbances due to recurrent coronal hole high-speed stream Background: This background section defines the events covered. A coronal hole is a large dark region of less dense

More information

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA IAU340 1-day School, Saturday 24th February 2018 Jaipur India CMEs & their Consequences

More information