Origin of high-mass protostars in Cygnus-X

Size: px
Start display at page:

Download "Origin of high-mass protostars in Cygnus-X"

Transcription

1 T. Csengeri Service d Astrophysique, CEA-Saclay Supervisor: Co-advisor: Collaborators: S. Bontemps N. Schneider F. Motte F. Gueth P. Hennebelle S. Dib Ph. André 7. April From stars to Galaxies, Gainesville, Florida

2 Massive protostars: fundamental open issues Precursors of OB stars: How to collect such large mass? How to transform it into a star? slow (quasi-static) versus fast (dynamic) process Additional support needed to prevent fragmentation into M J objects (McKee & Tan 2003) high level of (isotropic) turbulence seeds for star-formation by gravo-turbulent fragmentation of the gas+competitive accretion (Bonnell & Bate 2006) dm/dt ~ c s 3 eff / G ~ M Sun /yr These processes can only be caught in the earliest phases of massive star and cluster formation Cygnus-X: Motte et al. (2007) revealed a complete sample of cores and clumps, many of them massive and young

3 Cygnus-X massive dense cores DR21 filament 6 IR-quiet massive dense cores (MDC) ten times more massive than in nearby regions M Sun ~ 0.1 pc prototypes of turbulence regulated cores We expect them to form massive stars, but how? turbulent line-widths tend to be small monolithic collapse to form a single massive star fragmentation into many M J objects Spitzer 8 micron image (Hora et al.) (McKee & Tan 2003) (Dobbs et al. 2005) PdBI follow-up at 1 and 3mm fragmentation + kinematics 1 ~ 1700 AU Bontemps, Motte, Csengeri and Schneider, 2009, arxiv:

4 Fragmentation of massive dense cores N3 N3 N12 N12 3mm continuum 1mm continuum N40 N M 10 M ~ AU N53 N pc N63 N63 ~0.2 pc N48 N48 Bontemps, Motte, Csengeri and Schneider, 2009, arxiv:

5 Fragmentation of massive dense cores CygX-N3 CygX-N48 84 M PdBI continuum 3.5 mm 3 arcsec res. (5000 AU) 8.1 M 6.3 M 197 M 10 M 7.0 M 0.1 pc 5000 AU CygX-N12 CygX-N53 86 M 85 M 22 M 11 M 13 M 14 M CygX-N40 CygX-N M 58 M 55 M ~0.2 pc PdBI - 3.5mm 0.2 pc PdBI - 1.3mm Bontemps 0.06 et pc al. (2009.) 5

6 Fragmentation of massive dense cores 84 M 8.1 M 6.3 M 197 M 10 M 7.0 M Fragments within MDCs masses: M SUN density: cm -3 self-gravitating objects 17 % 8.6 % 86 M 85 M 11 M 13 M 14 M 28 % 42 % 22 M a population of individual massive protostars IMF/SFE 30%: M max = 3.3 M (80 stars) In 3 cores: more than ~30% in 2 protostars not clear whether turbulent-core or gravoturbulent fragmentation + competitive accretion plays a role 106 M 58 M 55 M Kinematics at protostellar scales is essential! 1.) level of support 2.) level of dynamics (competitive accretion?) 95 % molecular line studies

7 Level of micro-turbulence Infall Rotation 3mm continuum overlay 0.2 pc 0.2 pc Red: HCO + Black: H 13 CO + Line position of H13 CO+ Large-scale global motions: contribution to the line-width Disentangle from large scale motions the get line-width due to microturbulence

8 Dense gas at high-resolution PdBI 3mm cont. SD+PdBI H13CO+ 3mm continuum + integrated intensity of H13CO Csengeri et al. (in prep.)

9 Turbulent support? We searched for support mechanism to stabilize MDCs line-width size relation ~0.03 pc turbulent support not enough on ~0.1 pc scales at smaller scales (~0.03 pc) even smaller line-widths...

10 Velocity field in MDCs reveal rich kinematics SD+PdBI H 13 CO + Velocity field map N3 Contribution from different spectral components reveal high level of dynamics Dynamic origin of the DR21 filament: Schneider, Csengeri et al arxiv: Diversity in fragmentation properties A large fraction of mass already in protostars MDCs in N63 high-density gas tracers seem to be very dynamic

11 Witnessing the birth of massive protostars Example: N53 Scale of protostars ~ 5000 AU (diameter) 1mm continuum 5000 AU Bontemps et al. (in prep.)

12 Summary Isolated massive dense cores MDCs are fragmented and show a diversity MDCs are biased towards massive fragments origin? Bontemps, Motte, Csengeri and Schneider (arxiv: ) Complex kinematics of dense gas at highresolution no evidence for turbulent support at smallscales indications for high level of dynamics Csengeri, Bontemps, Motte, and Schneider (in prep) Perspectives further investigations in Cygnus-X: magnetic field, deuterated lines and H 2 O lines with HIFI/Herschel (in progress) need to extend the sample to galactic scales ALMA will provide similar physical scales at larger distances DR21(OH)-clump Filament interacting with a subfilament The whole filament is in a global (large-scale) collapse Dynamical origin of the filament A cluster in formation with objects at different evolutionary state Velocity dispersion of individual protostars relative to the cluster? Line-widths of protostellar envelopes? progress Schneider, Csengeri et al. (arxiv: )...work in Thank you for your attention!

within entire molecular cloud complexes

within entire molecular cloud complexes The earliest phases of high-mass stars within entire molecular cloud complexes Frédérique Motte (CEA-Saclay, AIM) Collaborators: S. Bontemps (Obs Bordeaux), N. Schneider, J. Grac (CEA-Saclay), P. Schilke,

More information

Frédérique Motte (AIM Paris-Saclay)

Frédérique Motte (AIM Paris-Saclay) Clusters of high-mass protostars: From extreme clouds to minibursts of star formation Frédérique Motte (AIM Paris-Saclay) Special thanks to S. Bontemps, T. Csengeri, P. Didelon, M. Hennemann, T. Hill,

More information

Fragmentation and mass segregation in the massive dense cores of Cygnus X

Fragmentation and mass segregation in the massive dense cores of Cygnus X Astronomy & Astrophysics manuscript no. irquiet-frag c ESO 2018 April 14, 2018 Fragmentation and mass segregation in the massive dense cores of Cygnus X S. Bontemps, 1,2,3 F. Motte, 3 T. Csengeri, 3 N.

More information

Astronomy. Astrophysics. Fragmentation and mass segregation in the massive dense cores of Cygnus X

Astronomy. Astrophysics. Fragmentation and mass segregation in the massive dense cores of Cygnus X A&A 524, A18 (2010) DOI: 10.1051/0004-6361/200913286 c ESO 2010 Astronomy & Astrophysics Fragmentation and mass segregation in the massive dense cores of Cygnus X S. Bontemps 1,F.Motte 2,T.Csengeri 2,

More information

Early Phases of Star Formation

Early Phases of Star Formation Early Phases of Star Formation Philippe André, CEA/SAp Saclay Outline Introduction: The earliest stages of the star formation process Probing the formation and evolution of prestellar cores with Herschel

More information

Early Stages of (Low-Mass) Star Formation: The ALMA Promise

Early Stages of (Low-Mass) Star Formation: The ALMA Promise Early Stages of (Low-Mass) Star Formation: The ALMA Promise Philippe André, CEA/SAp Saclay Outline Introduction: Prestellar cores and the origin of the IMF Identifying proto-brown dwarfs Bate et al. 1995

More information

The formation of high-mass stars: new insights from Herschel, IRAM, and ALMA imaging

The formation of high-mass stars: new insights from Herschel, IRAM, and ALMA imaging The formation of high-mass stars: new insights from Herschel, IRAM, and ALMA imaging Frédérique Motte (IPAG Grenoble & AIM Paris-Saclay) Special credits to S. Bontemps, T. Csengeri, P. Didelon, A. Gusdorf,

More information

Observational studies of intermediate-mass protostars with PdBI, 30m and Herschel

Observational studies of intermediate-mass protostars with PdBI, 30m and Herschel Observational studies of intermediate-mass protostars with PdBI, 30m and Herschel Asunción Fuente, Roberto Neri, Aina Palau, José Cernicharo and many excellent collaborators Low-mass star formation Pre-stellar

More information

From Massive Cores to Massive Stars

From Massive Cores to Massive Stars From Massive Cores to Massive Stars Mark Krumholz Princeton University / UC Santa Cruz Collaborators: Richard Klein, Christopher McKee (UC Berkeley) Kaitlin Kratter, Christopher Matzner (U. Toronto) Jonathan

More information

How do protostars get their mass?

How do protostars get their mass? How do protostars get their mass? Phil Myers Harvard-Smithsonian Center for Astrophysics Origin of Stellar Masses Tenerife, Spain October 18, 2010 Introduction How does nature make a star? a star of particular

More information

GMC as a site of high-mass star formation

GMC as a site of high-mass star formation ALMA Image: N159W GMC as a site of high-mass star formation From galaxy evolution to individual star formation kpc 1-100pc GMCs: 10 4-10 6 Mo n(h 2 ) ~ 1000cm -3 Clumps, Cores 10 2-10 3 Mo n(h 2 ) ~ >10

More information

The Competitive Accretion Debate

The Competitive Accretion Debate The Competitive Accretion Debate 1,2 Paul C. Clark 2 Ralf S. Klessen 3 Ian A. Bonnell 3 Rowan J. Smith 1 KITP 2 University of Heidelberg 3 University of St Andrews What is CA and how does it work? Theory

More information

An Evolutionary Model of Massive Star Formation and Radiation Transfer

An Evolutionary Model of Massive Star Formation and Radiation Transfer An Evolutionary Model of Massive Star Formation and Radiation Transfer Yichen Zhang Universidad de Chile Collaborators: Jonathan Tan (UF), Christopher McKee (UC Berkeley), Takashi Hosokawa (U. Tokyo),

More information

Probing the embedded phase of star formation with JWST spectroscopy

Probing the embedded phase of star formation with JWST spectroscopy Probing the embedded phase of star formation with JWST spectroscopy NIRSPEC Spitzer NGC 1333 Low mass Herschel Cygnus X High mass Jorgensen et al. Gutermuth et al. 10 10 Motte, Henneman et al. E.F. van

More information

Observational Programme in Kent

Observational Programme in Kent Observational Programme in Kent ASTRO-F, WFCAM, SCUBA-2, SALT UKIRT: individual protostellar outflows SAO/MMT/LBT: individual high- mass protostars NTT/Calar Alto + SEST: rho Ophiuchus 2MASS/NTT: Rosette

More information

Dynamic star formation in the massive DR21 filament

Dynamic star formation in the massive DR21 filament SLAC-PUB-14218 Dynamic star formation in the massive DR21 filament N. Schneider 1, T. Csengeri 1, S. Bontemps 2, F. Motte 1, R. Simon 3, P. Hennebelle 4, C. Federrath 5, and R. Klessen 5,6 1 Laboratoire

More information

The Formation of Star Clusters

The Formation of Star Clusters The Formation of Star Clusters Orion Nebula Cluster (JHK) - McCaughrean Jonathan Tan University of Florida & KITP In collaboration with: Brent Buckalew (ERAU), Michael Butler (UF u-grad), Jayce Dowell

More information

Origin of the stellar Initial Mass Function (IMF) in the W43-MM1 ridge

Origin of the stellar Initial Mass Function (IMF) in the W43-MM1 ridge Origin of the stellar Initial Mass Function (IMF) in the W43-MM1 ridge Fabien Louvet (Universidad de Chile & IPAG Grenoble) Special credits to: F. Motte, T. Nony, S. Bontemps, A. Gusdorf, P. Didelon, P.

More information

High mass star formation in the Herschel era: highlights of the HOBYS key program

High mass star formation in the Herschel era: highlights of the HOBYS key program Recent Advances in Star Formation ASI Conference Series, 2012, Vol. 4, pp 55 62 Edited by Annapurni Subramaniam & Sumedh Anathpindika High mass star formation in the Herschel era: highlights of the HOBYS

More information

Formation of massive stars : a review

Formation of massive stars : a review Formation of massive stars : a review Patrick Hennebelle (a former «star formation ignorant» Ant s postdoc) Benoit Commerçon, Marc Joos, Andrea Ciardi, Gilles Chabrier One of the Constellation network

More information

Fragmentation in Hi-GAL clumps

Fragmentation in Hi-GAL clumps Fragmentation in Hi-GAL clumps Davide Elia M. Pestalozzi, S. Molinari, S. Pezzuto, E. Schisano, A.M. Di Giorgio ALMA Cycle 2 Proposal Fragmentation in Hi-GAL clumps (ID 2013.1.01193) Pestalozzi, M., Busquet,

More information

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Magnetic fields and massive star formation. Qizhou Zhang Harvard-Smithsonian Center for Astrophysics

Magnetic fields and massive star formation. Qizhou Zhang Harvard-Smithsonian Center for Astrophysics Magnetic fields and massive star formation Qizhou Zhang Harvard-Smithsonian Center for Astrophysics Role of Magnetic Field in Star Formation Cloud scale: formation/support magnetic or turbulent? Clump

More information

Infrared Dark Clouds seen by Herschel and ALMA

Infrared Dark Clouds seen by Herschel and ALMA Infrared Dark Clouds seen by Herschel and ALMA Ke Wang ESO Fellow www.eso.org/~kwang Collaborators: Qizhou Zhang, Xing (Walker) Lu, Izaskun Jimenez-Serra 1 IR-dark clouds: shadows in infrared sky Image

More information

Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) Coordinated by Frédérique Motte, Annie Zavagno, and Sylvain Bontemps

Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) Coordinated by Frédérique Motte, Annie Zavagno, and Sylvain Bontemps Cloud structure and high-mass star formation in HOBYS, the Herschel imaging survey of OB Young Stellar objects Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) http://hobys-herschel.cea.fr

More information

Lecture 23 Internal Structure of Molecular Clouds

Lecture 23 Internal Structure of Molecular Clouds Lecture 23 Internal Structure of Molecular Clouds 1. Location of the Molecular Gas 2. The Atomic Hydrogen Content 3. Formation of Clouds 4. Clouds, Clumps and Cores 5. Observing Molecular Cloud Cores References

More information

Star Formation. Spitzer Key Contributions to Date

Star Formation. Spitzer Key Contributions to Date Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Observed Relationships between Filaments and Star Formation

Observed Relationships between Filaments and Star Formation Observed Relationships between Filaments and Star Formation James Di Francesco (Ph. André, J. Pineda, R. Pudritz, D. Ward-Thompson, S.Inutsuka & the Herschel GBS, JCMT GBS and HOBYS Teams Herschel Gould

More information

!"#$%&'(#)*'+*,+ %#--./&+0&'-&+1*"&-+ 0*2'+(*+! #"#1(&".9.'$+:"*(*1;<(&"-+

!#$%&'(#)*'+*,+ %#--./&+0&'-&+1*&-+ 0*2'+(*+! ##1(&.9.'$+:*(*1;<(&-+ !"#$%&'(#)*'+*,+ %#--./&+0&'-&+1*"&-+ 0*2'+(*+!3444+567+ 18#"#1(&".9.'$+:"*(*1;

More information

Formation of massive stars: a review

Formation of massive stars: a review Formation of massive stars: a review Patrick Hennebelle Thanks to: Benoît Commerçon, Marc Joos, Andrea Ciardi Gilles Chabrier, Romain Teyssier How massive stars form? -Can we form massive stars in spite

More information

SFEs in clusters. Final value of the SFE. For an isolated clump SFE exp. (t exp. = SFE(t exp. M ( cluster. t ) exp M clump. (t) M gas,i.

SFEs in clusters. Final value of the SFE. For an isolated clump SFE exp. (t exp. = SFE(t exp. M ( cluster. t ) exp M clump. (t) M gas,i. SFEs in clusters SFE(t) Final value of the SFE M cluster (t) M gas,i + M gas,acc (t) SFE exp = SFE(t exp ) M cluster (t exp ) M gas,i + M gas,acc ( t ) exp For an isolated clump SFE exp M ( cluster t )

More information

the Solar Neighborhood

the Solar Neighborhood Click to edit Master title style Star Formation at High A V in the Solar Neighborhood Amanda Heiderman NSF Fellow UVa/NRAO (w/ Neal Evans, UT Austin) Filaments 2014, October, 11, 2014 10/13/2014 1 Click

More information

Other stellar types. Open and globular clusters: chemical compositions

Other stellar types. Open and globular clusters: chemical compositions Other stellar types Some clusters have hotter stars than we find in the solar neighbourhood -- O, B, A stars -- as well as F stars, and cooler stars (G, K, M) Hence we can establish intrinsic values (M

More information

SFEs in clusters. Final value of the SFE. For an isolated clump SFE exp. (t exp. = SFE(t exp. M ( cluster. t ) exp M clump. (t) M gas,i.

SFEs in clusters. Final value of the SFE. For an isolated clump SFE exp. (t exp. = SFE(t exp. M ( cluster. t ) exp M clump. (t) M gas,i. SFEs in clusters SFE(t) Final value of the SFE M cluster (t) M gas,i + M gas,acc (t) SFE exp = SFE(t exp ) M cluster (t exp ) M gas,i + M gas,acc ( t ) exp For an isolated clump SFE exp M ( cluster t )

More information

Philamentary Structure and Velocity Gradients in the Orion A Cloud

Philamentary Structure and Velocity Gradients in the Orion A Cloud Red: CO from Mini survey Orion B Philamentary Structure and Velocity Gradients in the Orion A Cloud Spitzer Orion Cloud Survey: 10 sq. degrees in Orion A and Orion B mapped between 2004-2009 Orion A Green

More information

The dependence of star cluster formation on initial conditions. Matthew Bate University of Exeter

The dependence of star cluster formation on initial conditions. Matthew Bate University of Exeter The dependence of star cluster formation on initial conditions Matthew Bate University of Exeter Stellar properties do not greatly depend on initial conditions constellation Little evidence for variation

More information

Unraveling the Envelope and Disk: The ALMA Perspective

Unraveling the Envelope and Disk: The ALMA Perspective Unraveling the Envelope and Disk: The ALMA Perspective Leslie Looney (UIUC) Lee Mundy (UMd), Hsin-Fang Chiang (UIUC), Kostas Tassis (UChicago), Woojin Kwon (UIUC) The Early Disk Disks are probable generic

More information

Low mass star formation. Mark Thompson (with contributions from Jennifer Hatchell, Derek Ward-Thompson, Jane Greaves, Larry Morgan...

Low mass star formation. Mark Thompson (with contributions from Jennifer Hatchell, Derek Ward-Thompson, Jane Greaves, Larry Morgan... Low mass star formation Mark Thompson (with contributions from Jennifer Hatchell, Derek Ward-Thompson, Jane Greaves, Larry Morgan...) The observational state of play Multiwavelength surveys are bringing

More information

Chemical evolution in low-mass star formation. Kyung Hee University Jeong-Eun Lee

Chemical evolution in low-mass star formation. Kyung Hee University Jeong-Eun Lee Chemical evolution in low-mass star formation Kyung Hee University Jeong-Eun Lee Introduction Chemo-dynamical model Two applications: Standard accretion model Episodic accretion model Summary Contents

More information

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas tbisbas@gmail.com University of Virginia Outline of the presentation 1. Introduction 2.

More information

The Early Phases of Disc Formation and Disc Evolution

The Early Phases of Disc Formation and Disc Evolution The Early Phases of Disc Formation and Disc Evolution modelling prospective Robi Banerjee Hamburger Sternwarte Topics Angular momentum Fragmentation Disc-envelope evolution Initial angular momentum of

More information

Molecular Clouds and Star Formation. James Di Francesco September 21, 2015 NRC Herzberg Programs in Astronomy & Astrophysics

Molecular Clouds and Star Formation. James Di Francesco September 21, 2015 NRC Herzberg Programs in Astronomy & Astrophysics James Di Francesco September 21, 2015 NRC Herzberg Programs in Astronomy & Astrophysics 2 Hubble image of M51 (NASA/ESA) Five Star Formation Regimes Local (Low-mass) Star Formation o

More information

The role of magnetic fields during massive star formation

The role of magnetic fields during massive star formation The role of magnetic fields during massive star formation Wouter Vlemmings Chalmers University of Technology / Onsala Space Observatory / Nordic ALMA Regional Center with: Gabriele Surcis, Kalle Torstensson,

More information

Protoclusters in the Milky Way: Physical properties of massive starless & star-forming clumps from the BGPS. Brian Svoboda (Arizona)

Protoclusters in the Milky Way: Physical properties of massive starless & star-forming clumps from the BGPS. Brian Svoboda (Arizona) Protoclusters in the Milky Way: Physical properties of massive starless & star-forming clumps from the BGPS Brian Svoboda (Arizona) Cygnus X in BGPS & WISE Image Credit: Adam Ginsburg Y. Shirley (Arizona)

More information

Probing the turbulent ambipolar diffusion scale in molecular clouds with spectroscopy

Probing the turbulent ambipolar diffusion scale in molecular clouds with spectroscopy MNRAS 438, 663 671 (2014) Advance Access publication 2013 December 19 doi:10.1093/mnras/stt2237 Probing the turbulent ambipolar diffusion scale in molecular clouds with spectroscopy T. Hezareh, 1 T. Csengeri,

More information

First detection of a THz water maser in NGC7538-IRS1

First detection of a THz water maser in NGC7538-IRS1 First detection of a THz water maser in NGC7538-IRS1 Fabrice Herpin Laboratoire d Astrophysique de Bordeaux - France A. Baudry, A.M.S Richards, M.D. Gray, N. Schneider, K.M. Menten, F. Wyrowski, S. Bontemps,

More information

Formation Mechanisms of Brown Dwarfs: Observations & Theories. Dan Li April 2009

Formation Mechanisms of Brown Dwarfs: Observations & Theories. Dan Li April 2009 Formation Mechanisms of Brown Dwarfs: Observations & Theories Dan Li April 2009 What is brown dwarf (BD)? BD Mass : upper-limit ~ 0.075 M lower-limit ~ 0.013 M (?) Differences between BD and giant planet:

More information

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Aim Review the characteristics of regions of ionized gas within young massive star forming regions. Will focus the discussion

More information

An overview of star formation

An overview of star formation An overview of star formation Paul Clark ITA: Ralf Klessen Robi Banerjee Simon Glover Ian Bonnell Clare Dobbs Jim Dale Why study star formation? Stars chemically the enrich the Universe, so star formation

More information

! what determines the initial mass function of stars (IMF)? dn /dm

! what determines the initial mass function of stars (IMF)? dn /dm ! what determines the initial mass function of stars (IMF)? dn /dm M ! what determines the initial mass function of stars (IMF)?! What determines the total mass of stars that can form in the cloud? dn

More information

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México 1 Collaborators: CRyA UNAM: Abroad: Javier Ballesteros-Paredes Pedro Colín Gilberto Gómez Recent PhDs: Alejandro González

More information

Accretion Mechanisms

Accretion Mechanisms Massive Protostars Accretion Mechanism Debate Protostellar Evolution: - Radiative stability - Deuterium shell burning - Contraction and Hydrogen Ignition Stahler & Palla (2004): Section 11.4 Accretion

More information

Star Formation in GMCs: Lessons from Herschel Observations of the Aquila Complex

Star Formation in GMCs: Lessons from Herschel Observations of the Aquila Complex Herschel PACS/SPIRE map of Aquila (Gould Belt survey) ORISTARS erc project Lab. AIM, Paris-Saclay, France Ph. André, A. Men'shchikov, N. Schneider, S. Bontemps, D. Arzoumanian, N. Peretto, P. Didelon,

More information

Simulations of massive magnetized dense core collapse

Simulations of massive magnetized dense core collapse Simulations of massive magnetized dense core collapse Matthias González Benoît Commerçon, Neil Vaytet Raphaël Mignon-Risse Laboratoire AIM, Université Paris Diderot-CEA-CNRS, CEA Saclay Outline 1 Context

More information

MASSIVE STAR FORMATION

MASSIVE STAR FORMATION MASSIVE STAR FORMATION PP VI Heidelberg July 16, 2013 Hubble Heritage image of S 106 Jonathan Tan Maria Beltran Paola Caselli Francesco Fontani Asuncion Fuente Mark Krumholz Christopher McKee Andrea Stolte

More information

Nuclear Star Formation, The Torus, & Gas Inflow in Seyfert Galaxies

Nuclear Star Formation, The Torus, & Gas Inflow in Seyfert Galaxies Nuclear Star Formation, The Torus, & Gas Inflow in Seyfert Galaxies Richard Davies 1, H. Engel 1, M. Schartmann 1, G. Orban de Xivry 1, E. Sani 2, E. Hicks 3, A. Sternberg 4, R. Genzel 1, L. Tacconi 1,

More information

The Red MSX Source Survey. Massive Star Formation in the Milky Way. Stuart Lumsden University of Leeds

The Red MSX Source Survey. Massive Star Formation in the Milky Way. Stuart Lumsden University of Leeds The Red MSX Source Survey Massive Star Formation in the Milky Way Stuart Lumsden University of Leeds RMS Team: Melvin Hoare, Rene Oudmaijer, Heather Cooper, Ben Davies (Leeds) Joe Mottram (Exeter) James

More information

THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith)

THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith) THE FORMATION OF MASSIVE STARS η Carina (NASA, ESA, N. Smith) THE FORMATION OF MASSIVE STARS Christopher F. McKee HIPACC, UCSC August 8, 2013 with Andrew Cunningham Richard Klein Mark Krumholz Andrew Myers

More information

Initial conditions for massive star formation

Initial conditions for massive star formation Initial conditions for massive star formation Friedrich Wyrowski Max Planck Institute for Radioastronomy Bonn, Germany Zoom into l~29 8mu MSX GLIMPSE 8mu + PdBI NH2D Remarks & Scope Literature growing

More information

What's in the brew? A study of the molecular environment of methanol masers and UCHII regions

What's in the brew? A study of the molecular environment of methanol masers and UCHII regions What's in the brew? A study of the molecular environment of methanol masers and UCHII regions Outline of talk Low vs high -mass star formation (SF) The SF menagerie UCHII regions, hot and cold cores, methanol

More information

Thomas Henning Max Planck Institute for Astronomy Heidelberg

Thomas Henning Max Planck Institute for Astronomy Heidelberg Thomas Henning Max Planck Institute for Astronomy Heidelberg Early Stages of Massive Star Formation ISOSS 22164+6003 (Distance = 6 kpc L=20 000 L sun ) Deep NIR CAHA Image + Herschel/PACS 70, 100, 160

More information

Fundamental Issues in Star Formation

Fundamental Issues in Star Formation Fundamental Issues in Star Formation - Formation and statistical properties of dense molecular cloud cores (mass function of cores, scaling relations, gravitational boundedness, rotational properties)

More information

Star Formation. Stellar Birth

Star Formation. Stellar Birth Star Formation Lecture 12 Stellar Birth Since stars don t live forever, then they must be born somewhere and at some time in the past. How does this happen? And when stars are born, so are planets! 1 Molecular

More information

!From the filamentary structure of the ISM! to prestellar cores to the IMF:!! Results from the Herschel Gould Belt survey!

!From the filamentary structure of the ISM! to prestellar cores to the IMF:!! Results from the Herschel Gould Belt survey! !From the filamentary structure of the ISM! to prestellar cores to the IMF:!! Results from the Herschel Gould Belt survey! Philippe André CEA Lab. AIM Paris- Saclay PACS! Part of Orion B! 70/250/500 µm!

More information

INITIAL CONDITIONS. Paola Caselli. School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES. Protoplanetary disks

INITIAL CONDITIONS. Paola Caselli. School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES. Protoplanetary disks Paola Caselli School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Protoplanetary disks INITIAL CONDITIONS Boley 2009 Quiescent molecular clouds High-mass star forming regions Pre-stellar

More information

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc. Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth 2014 Pearson Education, Inc. Star Birth The dust and gas between the star in our galaxy is referred to as the Interstellar medium (ISM).

More information

arxiv: v1 [astro-ph.sr] 10 Mar 2015

arxiv: v1 [astro-ph.sr] 10 Mar 2015 Fragmentation of Molecular Clumps and Formation of Protocluster arxiv:1503.03017v1 [astro-ph.sr] 10 Mar 2015 Qizhou Zhang 1, Ke Wang 2, Xing Lu 1,3, Izaskun Jiménez-Serra 2 ABSTRACT Sufficiently massive

More information

ATLASGAL: APEX Telescope Large Area Survey of the Galaxy

ATLASGAL: APEX Telescope Large Area Survey of the Galaxy ATLASGAL: APEX Telescope Large Area Survey of the Galaxy MPG/Germany: F. Schuller (PI), K. Menten, F. Wyrowski (MPIfR), H. Beuther, T. Henning, H. Linz, P. Schilke ESO countries: M. Walmsley (co-pi), S.

More information

Early Protostellar Evolution

Early Protostellar Evolution Early Protostellar Evolution Challenges for star formation observations & theory & Mike Dunham Yale University Frontiers in Star Formation, Oct 27, 2012 Stella Offner Hubble Fellow Motivation The IMF is

More information

Setting the stage for solar system formation

Setting the stage for solar system formation Setting the stage for solar system formation ALMA insights into the early years of young stars Jes Jørgensen! Niels Bohr Institute & Centre for Star and Planet Formation University of Copenhagen http://youngstars.nbi.dk

More information

Star Cluster Formation and the Origin of Stellar Properties. Matthew Bate University of Exeter

Star Cluster Formation and the Origin of Stellar Properties. Matthew Bate University of Exeter Star Cluster Formation and the Origin of Stellar Properties Matthew Bate University of Exeter Typical molecular cloud (Bate et al. 2003) Denser cloud (Bate & Bonnell 2005) Jeans mass 1 M, Opacity limit

More information

The Initial Mass Function Elisa Chisari

The Initial Mass Function Elisa Chisari The Initial Mass Function AST 541 Dec 4 2012 Outline The form of the IMF Summary of observations Ingredients of a complete model A Press Schechter model Numerical simulations Conclusions The form of the

More information

The protostellar luminosity problem: historical perspective. Lee Hartmann, University of Michigan

The protostellar luminosity problem: historical perspective. Lee Hartmann, University of Michigan The protostellar luminosity problem: historical perspective Lee Hartmann, University of Michigan A subject made possible by IRAS... embedded objects are not more luminous than CTTS L(bol)s imply dm/dt

More information

OUR KNOWLEDGE OF HIGH-MASS STAR FORMATION AT THE DAWN OF HERSCHEL

OUR KNOWLEDGE OF HIGH-MASS STAR FORMATION AT THE DAWN OF HERSCHEL To appear in: Astronomy in the submillimeter and far infrared domains with the Herschel Space Observatory Editors : will be set by the publisher EAS Publications Series, Vol.?, 2007 OUR KNOWLEDGE OF HIGH-MASS

More information

Anatomy of the S255-S257 complex - Triggered high-mass star formation

Anatomy of the S255-S257 complex - Triggered high-mass star formation Proceedings Title IAU Symposium Proceedings IAU Symposium No. IAUS237, 2006 A.C. Editor, B.D. Editor & C.E. Editor, eds. c 2006 International Astronomical Union DOI: 00.0000/X000000000000000X Anatomy of

More information

Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores

Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2011 Collapse, outflows and fragmentation of massive, turbulent and magnetized

More information

How do high line-mass filaments fragment? Towards an evolutionary sequence with ALMA

How do high line-mass filaments fragment? Towards an evolutionary sequence with ALMA How do high line-mass filaments fragment? Towards an evolutionary sequence with ALMA Jouni Kainulainen Max-Planck-Institute for Astronomy Kainulainen+2017 (A&A accepted; arxiv:1603.05688) With: Amelia

More information

STUDYING COMPACT RADIO SOURCES ASSOCIATED WITH UCHII REGIONS

STUDYING COMPACT RADIO SOURCES ASSOCIATED WITH UCHII REGIONS STUDYING COMPACT RADIO SOURCES ASSOCIATED WITH UCHII REGIONS Josep Maria Masqué Saumell Departamento de Astronomía Universidad de Guanajuato Collaborators: Universidad de Guanajuato: Miguel Angel Trinidad,

More information

The Formation of Massive Stars

The Formation of Massive Stars The Formation of Massive Stars Mark Krumholz UC Santa Cruz Collaborators: Richard Klein, Chris McKee, Stella Offner (UC Berkeley) Andrew Cunningham (LLNL) Kaitlin Kratter, Chris Matzner (U. Toronto) Jim

More information

Star Formation: How my knowledge has been shaped by observations taken by the James Clerk Maxwell Telescope

Star Formation: How my knowledge has been shaped by observations taken by the James Clerk Maxwell Telescope Star Formation: How my knowledge has been shaped by observations taken by the James Clerk Maxwell Telescope With: J. Di Francesco, H. Kirk (NRC); S. Mairs, M. Chen (UVic); A. Pon (Leeds); R. Friesen (DI);

More information

Star forming filaments: Chemical modeling and synthetic observations!

Star forming filaments: Chemical modeling and synthetic observations! Star forming filaments: Chemical modeling and synthetic observations Daniel Seifried I. Physikalisches Institut, University of Cologne The 6th Zermatt ISM Symposium 11.9.2015, Zermatt Collaborators: Stefanie

More information

Cold Cores of Molecular Clouds. Mika Juvela, Department of physics, University of Helsinki

Cold Cores of Molecular Clouds. Mika Juvela, Department of physics, University of Helsinki Cold Cores of Molecular Clouds Mika Juvela, Department of physics, University of Helsinki Juvela - IAU August 2012 on cold cores On behalfmika of the Planck andxxviii, Herschel projects Content Molecular

More information

Revealing and understanding the low-mass end of the IMF. Low-mass part of the Initial Mass Function Star, brown dwarf formation. G.

Revealing and understanding the low-mass end of the IMF. Low-mass part of the Initial Mass Function Star, brown dwarf formation. G. Revealing and understanding the low-mass end of the IMF Low-mass part of the Initial Mass Function Star, brown dwarf formation G. Chabrier Field: Resolved objects IMF down to the HB limit Salpeter Kroupa

More information

Nearby Universe: Rapporteur

Nearby Universe: Rapporteur Nearby Universe: Rapporteur Margaret Meixner (STScI) SAGE: Tracing the Lifecycle of Baryonic Matter: Intermediate mass stars High mass stars credit: http://hea-www.cfa.harvard.edu/champ/education/public/icons/

More information

Direct Evidence for Two Fluid Effects in Molecular Clouds. Dinshaw Balsara & David Tilley University of Notre Dame

Direct Evidence for Two Fluid Effects in Molecular Clouds. Dinshaw Balsara & David Tilley University of Notre Dame Direct Evidence for Two Fluid Effects in Molecular Clouds Dinshaw Balsara & David Tilley University of Notre Dame 1 Outline Introduction earliest stages of star formation Theoretical background Magnetically

More information

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae)

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae) Astrophysics: Stellar Evolution 1 Stellar Birth Stellar Formation A. Interstellar Clouds (Nebulae) B. Protostellar Clouds 2 C. Protostars Dr. Bill Pezzaglia Updated: 10/02/2006 A. Interstellar Clouds 1.

More information

Zooming into high-mass star-forming regions

Zooming into high-mass star-forming regions Zooming into high-mass star-forming regions Henrik Beuther SMA ATCA PdBI VLA Important questions - What are the characteristics of accretion disks/large toroid in high-mass star formation? - Can we constrain

More information

Cinthya Herrera (NAOJ)

Cinthya Herrera (NAOJ) Cinthya Herrera (NAOJ) ASTE/ALMA Development Workshop 2014, June 18th, 2014 Galaxies interactions... Key in hierarchical model of galaxy formation and evolution (e.g., Kauffmann et al. 1993) Most massive

More information

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2 Next Generation Very Large Array Working Group 2 HI in M74: Walter+ 08 CO in M51: Schinnerer+ 13 Continuum in M82: Marvil & Owen Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of

More information

Understanding the tracers of star formation

Understanding the tracers of star formation Understanding the tracers of star formation Kazi Rygl (ESA-ESTEC) Cygnus X region, HOBYS (F. Motte, M. Hennemann)/Herschel/ESA 22 Jan 2015, Bologna Overview Evolutionary phases of star formation Age determinations:

More information

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds Lecture 26 Clouds, Clumps and Cores 1. Review of Dense Gas Observations 2. Atomic Hydrogen and GMCs 3. Formation of Molecular Clouds 4. Internal Structure 5. Observing Cores 6. Preliminary Comments on

More information

Molecular Cloud Turbulence and Star Formation

Molecular Cloud Turbulence and Star Formation Molecular Cloud Turbulence and Star Formation Javier Ballesteros-Paredes1, Ralf Klessen2, MordecaiMark Mac Low3, Enrique Vazquez-Semadeni1 1UNAM Morelia, Mexico, 2AIP, Potsdam, Germany, 3AMNH New York,

More information

Supplemental Figure 1

Supplemental Figure 1 Supplemental Material: Annu. Rev. Astron. Astrophys. 2018. 56:41 82 https://doi.org/10.1146/annurev-astro-091916-055235 High-Mass Star and Massive Cluster Formation in the Milky Way Motte, Bontemps, Louvet

More information

Magnetic Fields over all Scales

Magnetic Fields over all Scales Magnetic Fields over all Scales Patrick Koch (ASIAA) 1 pc with: Hsuan-Gu Chou, Paul Ho, Ya-Wen Tang, Hsi-Wei Yen 30 mpc (CSO / Hertz @ 350µm, ~20 ) (JCMT / SCUPOL @850µm, ~10 ) (SMA@ 345 GHz: ~ 3 to 0.7

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture11; November 1, 2016 Previously on Astro-1 Introduction to stars Measuring distances Inverse square law: luminosity vs brightness Colors and spectral types, the H-R diagram

More information

From Massive Cores to Massive Stars

From Massive Cores to Massive Stars Pathways through an Eclectic Universe ASP Conference Series, Vol. 390, c 2008 J. H. Knapen, T. J. Mahoney, and A. Vazdekis, eds. From Massive Cores to Massive Stars Mark R. Krumholz Department of Astrophysical

More information

THE STAR FORMATION NEWSLETTER No February /5/29

THE STAR FORMATION NEWSLETTER No February /5/29 THE STAR FORMATION NEWSLETTER No.266-12 February 2015 2015/5/29 46-50 Understanding star formation in molecular clouds II. Signatures of gravitational collapse of IRDCs to Cloud-cloud collision as a trigger

More information

Fragmentation of the Integral Shaped Filament as viewed by ALMA

Fragmentation of the Integral Shaped Filament as viewed by ALMA Fragmentation of the Integral Shaped Filament as viewed by ALMA Jouni Kainulainen Max-Planck-Institute for Astronomy Kainulainen et al. (submitted; arxiv:1603.05688) With: Amelia Stutz, Thomas Stanke,

More information

N-body Dynamics in Stellar Clusters Embedded in Gas

N-body Dynamics in Stellar Clusters Embedded in Gas N-body Dynamics in Stellar Clusters Embedded in Gas Matthew Bate, University of Exeter Kurosawa, Harries, Bate & Symington (2004) Collaborators: Ian Bonnell, St Andrews Volker Bromm, Texas Star Formation

More information

Quasi-stars and the Cosmic Evolution of Massive Black Holes

Quasi-stars and the Cosmic Evolution of Massive Black Holes Quasi-stars and the Cosmic Evolution of Massive Black Holes Marta Volonteri and Mitchell C. Begelman 2010 MNRAS 409:1022 David Riethmiller January 26, 2011 Outline Two different methods for MBH formation:

More information