The Origins of Mathematics. Mesopotamia

Size: px
Start display at page:

Download "The Origins of Mathematics. Mesopotamia"

Transcription

1 The Origins of Mathematics in Mesopotamia

2 The ancient Egyptians made their number system more efficient by introducing more symbols.

3 The inhabitants of Mesopotamia (our book calls them Babylonians) achieved a similar result by introducing positional notation.

4 The Babylonians used 60 as their base. How do we write a number in base 60?

5 The Babylonians used 60 as their base. How do we write a number in base 60? Write the following base 10 numbers in base 60: = 38, = 216, =

6 The Babylonians used 60 as their base. How do we write a number in base 60? Write the following base 10 numbers in base 60: = 1, , = 216, =

7 The Babylonians used 60 as their base. How do we write a number in base 60? Write the following base 10 numbers in base 60: = 1, , = 10,48, , =

8 The Babylonians used 60 as their base. How do we write a number in base 60? Write the following base 10 numbers in base 60: = 1, , = 10,48, , = 1,0,1,1 60

9 How did the Babylonians represent fractions with their base 60 positional system?

10 How did the Babylonians represent fractions with their base 60 positional system? Write the following base 10 fractions in base 60: 1/5 10 = 1/6 10 = 1/12 10 = 1/30 10 =

11 How did the Babylonians represent fractions with their base 60 positional system? Write the following base 10 fractions in base 60: 1/5 10 = 0; /6 10 = 1/12 10 = 1/30 10 =

12 How did the Babylonians represent fractions with their base 60 positional system? Write the following base 10 fractions in base 60: 1/5 10 = 0; /6 10 = 0; /12 10 = 1/30 10 =

13 How did the Babylonians represent fractions with their base 60 positional system? Write the following base 10 fractions in base 60: 1/5 10 = 0; /6 10 = 0; /12 10 = 0;5 60 1/30 10 =

14 How did the Babylonians represent fractions with their base 60 positional system? Write the following base 10 fractions in base 60: 1/5 10 = 0; /6 10 = 0; /12 10 = 0;5 60 1/30 10 = 0;2 60

15 How did the Babylonians do division?

16 How did the Babylonians do division? Perform the following divisions in base 60: (a) 18,5 divided by 6. (b) 42,7,15 divided by 4.

17 How did the Babylonians do division? Perform the following divisions in base 60: (a) 18,5 divided by 6 is 3,0;50. (b) 42,7,15 divided by 4.

18 How did the Babylonians do division? Perform the following divisions in base 60: (a) 18,5 divided by 6 is 3,0;50. (b) 42,7,15 divided by 4 is 10,31,48;45.

19 When answering the reading guide and discussion questions, try to write your responses in the historical style. In particular, the Babylonians would not have used symbols for +,, /, or =. For example: 18,5 divided by 6 is 18,5 multiplied by 0;10. 18,0 multiplied by 0;10 is 180;0 3,0. 5 multiplied by 0;10 is 0;50. The result is 3,0;50. It is a good idea to check your work using in base 10.

20 What are the disadvantages of using position notation as opposed to additive notation? What are the advantages? Why is positional notation conceptually more difficult than additive notation? How might the need for positional notation have arisen in ancient civilizations?

21 Where can you find evidence of the use of bases other than 10 in modern life? (Hint: thank about time, measurement, and number words in English and other languages.) Can you see an advantage of base 60 over base 10?

22 n n 60 n 10 1/6 1/12 1/15 1/30

23 n n 60 n 10 1/6 0; /12 0; /15 0; /30 0;

24 n (20 / n) 60 (20 / n) ; ; ; ; Because reciprocals written in sexagesimal notation are often simpler than they are written in decimal notation, the process of division (multiplication by a reciprocal) is also simpler.

25 n (20 / n) 60 (20 / n) ; ; ; ;

26 n (20 / n) 60 (20 / n) ;10 = 0; ; ; ;

27 n (20 / n) 60 (20 / n) ;10 = 3; ; ; ;

28 n (20 / n) 60 (20 / n) ; ; ; ;

29 n (20 / n) 60 (20 / n) ; ;5 = 0; ; ;

30 n (20 / n) 60 (20 / n) ; ;5 = 1; ; ;

31 n (20 / n) 60 (20 / n) ; ; ; ;

32 n (20 / n) 60 (20 / n) ; ; ;4 = 0; ;

33 n (20 / n) 60 (20 / n) ; ; ;4 = 1; ;

34 n (20 / n) 60 (20 / n) ; ; ; ;

35 n (20 / n) 60 (20 / n) ; ; ; ;2 = 0;

36 n (20 / n) 60 (20 / n) ; ; ; ;

37 n (20 / n) 60 (20 / n) ; ; ; ; We can often do division base 60 in our heads more easily than division base 10.

38 How would the Babylonians have represented the value 1/8?

39 How would the Babylonians have represented the value 1/8? How would the Babylonians have represented the value 1/9?

40 Why wouldn t the Babylonians have had a nice representation for the value 1/7? What are the first three numbers in the sexagesimal approximation to this number?

41 Do discussion questions 5, 6, and 7.

42 The second section in this chapter highlights some of the problems ancient Babylonians could solve.

43 The solution to Problem 2.1 on page 28 seems to contain several errors. If you use the numbers given, what should you get for the volume, the number of workers, and the total cost? Give your answers both in base 10 and in base 60. Where might these errors have come from? Problem 2.1: A canal 5 GAR long, 1 1/2 GAR wide, and 1/2 GAR deep is to be dug. Each worker is assigned to dig 10 GIN, and is paid 6 SE. Find the area, volume, number of workers, and total cost. Solution: Multiply length and width to get 7;30 SAR, the area. Multiply 7;30 by depth to get 45 SAR, the volume. Multiply the reciprocal of the assignment, 6, by 4,30, which is the number of workers. Multiply 4,30 by the wages to get 9 GIN, the total expenses.

44 The solution to Problem 2.2 on page 20 also seems to contain an error. To find it, translate the procedure for finding the length L and the width W into formulas in terms of the sum L + W and the area LW. Where might this error have come from? Show geometrically why this procedure works. Problem 2.2: The length and width of a canal are together 6;30 GAR; the area of the canal is 7;30 SAR. What are the length and width? Solution: Take half the sum of the length and width, which is 3;15. Square 3;15 to get 10;33,45. Subtract the product of length and width, 7;30, from 10;33,45 to get 3;3,45. Take its square root, which is 1;45. Add it to the sum of the length and width, to get 5 GAR, the length, and subtract it from the sum to get 1;30 GAR, the width.

45 Rewrite the procedure described for the solution of Problem 2.3 using modern notation. Show geometrically why this procedure works. Problem 2.3: A canal s area is 7;30 SAR, and its length exceeded its width by 3;30 GAR. Solution: Take half of the amount by which the length exceeded the width, which is 1;45. Square 1;45 to get 3;3,45. Add 7;30 to get 10;33,45. Take its square root, to get 3;15. Add 1;45 to the square root to get 5 GAR, the length. Subtract 1;45 from the square root to get 1;30 GAR, the width.

46 The third section in this chapter discusses ancient Babylonian geometry.

47 The tablet YBC 7289 is shown together with a redrawing and a translation of the cuneiform numbers. How would we write the base 60 number 1;24,51,10 in base 10? What is the significance of this number? How might it have been obtained?

48 What is the significance of the tablet Plimpton 322? How might the ancient Babylonians have used such a table?

49

CHAPTER (multiply by 10) 2 10 (double first line) 4 20 (double third line) 8 40 (double fourth line) (halve first line)

CHAPTER (multiply by 10) 2 10 (double first line) 4 20 (double third line) 8 40 (double fourth line) (halve first line) CHAPTER 1 1. The answers are given in the answer section of the text. For the Egyptian hieroglyphics, 375 is three hundreds, seven tens and five ones, while 4856 is four thousands, eight hundreds, five

More information

Babylon/Mesopotamia. Mesopotamia = between two rivers, namely the Tigris and Euphrates.

Babylon/Mesopotamia. Mesopotamia = between two rivers, namely the Tigris and Euphrates. Babylon/Mesopotamia Mesopotamia = between two rivers, namely the Tigris and Euphrates. Civilization dates from before 3000 BCE covering several empires with varying borders: Sumerians, Akkadians, Babylonians,

More information

Measuring the Gardens of Eden, by Jenia Tevelev

Measuring the Gardens of Eden, by Jenia Tevelev Measuring the Gardens of Eden, by Jenia Tevelev 1 A map of the area around Gasur, near Kirkuk in northern Iraq, drawn up some time in the Sargonic period (2200 BCE). The central area, below the Rahium

More information

AMA1D01C Egypt and Mesopotamia

AMA1D01C Egypt and Mesopotamia Hong Kong Polytechnic University 2017 Outline Cultures we will cover: Ancient Egypt Ancient Mesopotamia (Babylon) Ancient Greece Ancient India Medieval Islamic World Europe since Renaissance References

More information

Mesopotamia Here We Come

Mesopotamia Here We Come Babylonians Mesopotamia Here We Come Chapter The Babylonians lived in Mesopotamia, a fertile plain between the Tigris and Euphrates rivers. Babylonian society replaced both the Sumerian and Akkadian civilizations.

More information

A COMPARATIVE STUDY OF EARLY EGYPTIAN, BABYLONIAN AND MAYAN NUMBER SYSTEM. *K. C. Chowdhury 1 and A. Baishya 2

A COMPARATIVE STUDY OF EARLY EGYPTIAN, BABYLONIAN AND MAYAN NUMBER SYSTEM. *K. C. Chowdhury 1 and A. Baishya 2 ! """#$# A COMPARATIVE STUDY OF EARLY EGYPTIAN, BABYLONIAN AND MAYAN NUMBER SYSTEM *K. C. Chowdhury and A. Baishya!"#$"%#& '#() *+, & -. chowdhurykc@yahoo.com,skdas_jrt@yahoo.co.in (Received on: -08-;

More information

LAMC Junior Circle January 29, Olga Radko and Oleg Gleizer. A digit and a number. Place-value numerals. Properties of numbers.

LAMC Junior Circle January 29, Olga Radko and Oleg Gleizer. A digit and a number. Place-value numerals. Properties of numbers. LAMC Junior Circle January 29, 2012 Olga Radko and Oleg Gleizer A digit and a number. Place-value numerals. Properties of numbers. Copyright: for home use only. This handout is a part of the book in preparation.

More information

MATHEMATICS AND ITS HISTORY. Jimmie Lawson

MATHEMATICS AND ITS HISTORY. Jimmie Lawson MATHEMATICS AND ITS HISTORY Jimmie Lawson Spring, 2005 Chapter 1 Mathematics of Ancient Egypt 1.1 History Egyptian mathematics dates back at least almost 4000 years ago. The main sources about mathematics

More information

Curricula and syllabuses in Mesopotamia

Curricula and syllabuses in Mesopotamia How did mathematics teachers work four thousand years ago? Curricula and syllabuses in Mesopotamia Christine Proust (Laboratoire SPHERE, CNRS & Université Paris Diderot) France Conference Re(s)sources

More information

1.2 MESOPOTAMIA. 10 Chapter 1 Egypt and Mesopotamia

1.2 MESOPOTAMIA. 10 Chapter 1 Egypt and Mesopotamia 10 Chapter 1 Egypt and Mesopotamia not surprising that these calculated angles closely approximate the actual angles used in the construction of the three major pyramids at Giza. The Moscow Papyrus, however,

More information

History of the Pythagorean Theorem

History of the Pythagorean Theorem History of the Pythagorean Theorem Laura Swenson, (LSwenson) Joy Sheng, (JSheng) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of

More information

Numbers and Counting. Number. Numbers and Agriculture. The fundamental abstraction.

Numbers and Counting. Number. Numbers and Agriculture. The fundamental abstraction. Numbers and Counting Number The fundamental abstraction. There is archaeological evidence of counters and counting systems in some of the earliest of human cultures. In early civilizations, counting and

More information

Section 4.2. Place-Value or Positional- Value Numeration Systems. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 4.2. Place-Value or Positional- Value Numeration Systems. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 4.2 Place-Value or Positional- Value Numeration Systems What You Will Learn Place-Value or Position-Value Numeration Systems 4.2-2 Place-Value System (or Positional-Value System) The value of the

More information

Sect Addition, Subtraction, Multiplication, and Division Properties of Equality

Sect Addition, Subtraction, Multiplication, and Division Properties of Equality Sect.1 - Addition, Subtraction, Multiplication, and Division Properties of Equality Concept #1 Definition of a Linear Equation in One Variable An equation is a statement that two quantities are equal.

More information

Grade 6 Math Circles November 1 st /2 nd. Egyptian Mathematics

Grade 6 Math Circles November 1 st /2 nd. Egyptian Mathematics Faculty of Mathematics Waterloo, Ontario N2L 3G Centre for Education in Mathematics and Computing Grade 6 Math Circles November st /2 nd Egyptian Mathematics Ancient Egypt One of the greatest achievements

More information

Unit 3. Linear Equations & Inequalities. Created by: M. Signore & G. Garcia

Unit 3. Linear Equations & Inequalities. Created by: M. Signore & G. Garcia Unit 3 Linear Equations & Inequalities Created by: M. Signore & G. Garcia 1 Lesson #13: Solving One Step Equations Do Now: 1. Which sentence illustrates the distributive property? a) xy = yx b) x(yz) =

More information

The trick is to multiply the numerator and denominator of the big fraction by the least common denominator of every little fraction.

The trick is to multiply the numerator and denominator of the big fraction by the least common denominator of every little fraction. Complex Fractions A complex fraction is an expression that features fractions within fractions. To simplify complex fractions, we only need to master one very simple method. Simplify 7 6 +3 8 4 3 4 The

More information

Concept: Solving Equations

Concept: Solving Equations Concept: Solving Equations EQ: How do we justify how we solve equations? REI. 1 Vocabulary: Properties of Equality Properties of Operation Justify 1 Solve the equations below, provide an explanation for

More information

Unit 1. Math 116. Number Systems

Unit 1. Math 116. Number Systems Unit Math Number Systems Unit One Number Systems Sections. Introduction to Number Systems Through out history civilizations have keep records using their own number systems. This unit will introduce some

More information

Mesopotamian Writing Mesopotamian Mathematics Conclusion. Mesopotamia. Douglas Pfeffer

Mesopotamian Writing Mesopotamian Mathematics Conclusion. Mesopotamia. Douglas Pfeffer n Writing n Mathematics Table of contents n Writing n Mathematics 1 n Writing 2 n Mathematics 3 Outline n Writing n Mathematics The Era and the Sources Cuneiform Writing 1 n Writing 2 n Mathematics 3 n

More information

Thinking Inside the Box: Geometric Interpretations of Quadratic Problems in BM 13901

Thinking Inside the Box: Geometric Interpretations of Quadratic Problems in BM 13901 Thinking Inside the Box: Geometric Interpretations of Quadratic Problems in BM 13901 by Woody Burchett Georgetown College Dr. Homer S. White, Adviser wburche0@georgetowncollege.edu 101 Westview Drive Versailles,

More information

Inverse Operations. What is an equation?

Inverse Operations. What is an equation? Inverse Operations What is an equation? An equation is a mathematical statement, in symbols, that two things are exactly the same (or equivalent). Equations are written with an equal sign, as in 2+=5 9

More information

Sect Properties of Real Numbers and Simplifying Expressions

Sect Properties of Real Numbers and Simplifying Expressions Sect 1.7 - Properties of Real Numbers and Simplifying Expressions Concept #1 Commutative Properties of Real Numbers Ex. 1a 9.34 + 2.5 Ex. 1b 2.5 + ( 9.34) Ex. 1c 6.3(4.2) Ex. 1d 4.2( 6.3) a) 9.34 + 2.5

More information

Chapter 5 Arithmetic AND terminology used in paper

Chapter 5 Arithmetic AND terminology used in paper Chapter 5 Arithmetic AND terminology used in paper (Usually Q1 Paper 1) This revision guide covers o Rounding o Numbers in the standard form (to one decimal place, to two decimal..etc) (write as a x 10

More information

NAME DATE PERIOD. A negative exponent is the result of repeated division. Extending the pattern below shows that 4 1 = 1 4 or 1. Example: 6 4 = 1 6 4

NAME DATE PERIOD. A negative exponent is the result of repeated division. Extending the pattern below shows that 4 1 = 1 4 or 1. Example: 6 4 = 1 6 4 Lesson 4.1 Reteach Powers and Exponents A number that is expressed using an exponent is called a power. The base is the number that is multiplied. The exponent tells how many times the base is used as

More information

Working with equations for speed and velocity

Working with equations for speed and velocity Working with equations for speed and velocity Objectives Interpret symbolic relationships. Describe motion using equations for speed and average velocity. Solve speed and velocity problems mathematically.

More information

Math Round. Any figure shown may not be drawn to scale.

Math Round. Any figure shown may not be drawn to scale. Indiana Academic Super Bowl Math Round 2019 Coaches Practice A Program of the Indiana Association of School Principals Students: Throughout this round we will be pronouncing mathematic symbols and concepts

More information

Study Guide for Exam 1

Study Guide for Exam 1 Study Guide for Exam 1 Math 330: History of Mathematics October 2, 2006. 1 Introduction What follows is a list of topics that might be on the exam. Of course, the test will only contain only a selection

More information

MATH ALGEBRA AND FUNCTIONS

MATH ALGEBRA AND FUNCTIONS Students: 1. Use letters, boxes, or other symbols to stand for any number in simple expressions or equations. 1. Students use and interpret variables, mathematical symbols and properties to write and simplify

More information

Indiana Academic Super Bowl. Math Round Senior Division Invitational 1. A Program of the Indiana Association of School Principals

Indiana Academic Super Bowl. Math Round Senior Division Invitational 1. A Program of the Indiana Association of School Principals Indiana Academic Super Bowl Math Round 2019 Senior Division Invitational 1 A Program of the Indiana Association of School Principals Students: Throughout this round we will be pronouncing mathematic symbols

More information

Chapter 1 Indices & Standard Form

Chapter 1 Indices & Standard Form Chapter 1 Indices & Standard Form Section 1.1 Simplifying Only like (same letters go together; same powers and same letter go together) terms can be grouped together. Example: a 2 + 3ab + 4a 2 5ab + 10

More information

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions.

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 2. Use powers to model real life problems. Multiplication Properties of Exponents

More information

UNIT 4 NOTES: PROPERTIES & EXPRESSIONS

UNIT 4 NOTES: PROPERTIES & EXPRESSIONS UNIT 4 NOTES: PROPERTIES & EXPRESSIONS Vocabulary Mathematics: (from Greek mathema, knowledge, study, learning ) Is the study of quantity, structure, space, and change. Algebra: Is the branch of mathematics

More information

Mathematics Hidden Behind the Two Coefficients of Babylonian Geometry. Kazuo MUROI

Mathematics Hidden Behind the Two Coefficients of Babylonian Geometry. Kazuo MUROI Mathematics Hidden Behind the Two Coefficients of Babylonian Geometry Kazuo MUROI 1. Introduction In Babylonian mathematics many geometrical coefficients are listed in some cuneiform tablets which we call

More information

Algebra I Notes Unit Two: Variables

Algebra I Notes Unit Two: Variables Syllabus Objectives:. The student will use order of operations to evaluate expressions.. The student will evaluate formulas and algebraic expressions using rational numbers (with and without technology).

More information

I named this section Egypt and Babylon because the surviving documents from Egypt are older. But I m going to discuss Babylon first so sue me.

I named this section Egypt and Babylon because the surviving documents from Egypt are older. But I m going to discuss Babylon first so sue me. I. Ancient Times All the major ancient civilizations developed around river valleys. By 000 BC, there were civilizations thriving around the Nile (Egypt), the Tigris and Euphrates (Babylon), the Ganges

More information

D. Correct! You translated the phrase exactly using x to represent the given real number.

D. Correct! You translated the phrase exactly using x to represent the given real number. Problem Solving Drill 14: Solving and Graphing Linear Inequalities Question No. 1 of 10 Question 1. Which inequality represents the statement three more than seven times a real number is greater than or

More information

LP03 Chapter 5. A prime number is a natural number greater that 1 that has only itself and 1 as factors. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

LP03 Chapter 5. A prime number is a natural number greater that 1 that has only itself and 1 as factors. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, LP03 Chapter 5 Prime Numbers A prime number is a natural number greater that 1 that has only itself and 1 as factors. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, Question 1 Find the prime factorization of 120.

More information

9. TRANSFORMING TOOL #2 (the Multiplication Property of Equality)

9. TRANSFORMING TOOL #2 (the Multiplication Property of Equality) 9 TRANSFORMING TOOL # (the Multiplication Property of Equality) a second transforming tool THEOREM Multiplication Property of Equality In the previous section, we learned that adding/subtracting the same

More information

Name Class Date. t = = 10m. n + 19 = = 2f + 9

Name Class Date. t = = 10m. n + 19 = = 2f + 9 1-4 Reteaching Solving Equations To solve an equation that contains a variable, find all of the values of the variable that make the equation true. Use the equality properties of real numbers and inverse

More information

MTH122: Algebra I. Course length: Two semesters. Materials: Algebra I: A Reference Guide and Problem Sets. Prerequisites: MTH112: Pre-Algebra

MTH122: Algebra I. Course length: Two semesters. Materials: Algebra I: A Reference Guide and Problem Sets. Prerequisites: MTH112: Pre-Algebra MTH122: Algebra I In this course, students explore the tools of algebra. Students learn to identify the structure and properties of the real number system; complete operations with integers and other rational

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic MQ1 Everyone has a gift! Due Today by 10pm Please email PDF lastname-firstname.pdf to ta4@paradise.caltech.edu HW #1 Due Tuesday, 4/14 230 2:30pm in class T = today x= hw#x

More information

ALGEBRA 1. Interactive Notebook Chapter 2: Linear Equations

ALGEBRA 1. Interactive Notebook Chapter 2: Linear Equations ALGEBRA 1 Interactive Notebook Chapter 2: Linear Equations 1 TO WRITE AN EQUATION: 1. Identify the unknown (the variable which you are looking to find) 2. Write the sentence as an equation 3. Look for

More information

Expressions, Equations and Inequalities Guided Notes

Expressions, Equations and Inequalities Guided Notes Expressions, Equations and Inequalities Guided Notes Standards: Alg1.M.A.SSE.A.01a - The Highly Proficient student can explain the context of different parts of a formula presented as a complicated expression.

More information

1.7 Inequalities. Copyright Cengage Learning. All rights reserved.

1.7 Inequalities. Copyright Cengage Learning. All rights reserved. 1.7 Inequalities Copyright Cengage Learning. All rights reserved. Objectives Solving Linear Inequalities Solving Nonlinear Inequalities Absolute Value Inequalities Modeling with Inequalities 2 Inequalities

More information

Senior Math. Binary numbers are based on the powers of 2: 2 0 = 1, 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 4 = 16, Binary numbers use only two digits: 0 and 1

Senior Math. Binary numbers are based on the powers of 2: 2 0 = 1, 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 4 = 16, Binary numbers use only two digits: 0 and 1 Academic Coaches Conference Senior Math Senior Math Fertile Crescent I. Numeration Systems 12% A. Binary (base 2) and Sexagesimal (base 60) Systems B. Convert to and from base 10 C. Add and subtract in

More information

5.2. November 30, 2012 Mrs. Poland. Verifying Trigonometric Identities

5.2. November 30, 2012 Mrs. Poland. Verifying Trigonometric Identities 5.2 Verifying Trigonometric Identities Verifying Identities by Working With One Side Verifying Identities by Working With Both Sides November 30, 2012 Mrs. Poland Objective #4: Students will be able to

More information

PREFACE. Synergy for Success in Mathematics 9 is designed for Grade 9 students. The textbook

PREFACE. Synergy for Success in Mathematics 9 is designed for Grade 9 students. The textbook Synergy for Success in Mathematics 9 is designed for Grade 9 students. The textbook contains all the required learning competencies and is supplemented with some additional topics for enrichment. Lessons

More information

Equations, Inequalities, and Problem Solving

Equations, Inequalities, and Problem Solving CHAPTER Equations, Inequalities, and Problem Solving. Linear Equations in One Variable. An Introduction to Problem Solving. Formulas and Problem Solving.4 Linear Inequalities and Problem Solving Integrated

More information

Part I, Number Systems. CS131 Mathematics for Computer Scientists II Note 1 INTEGERS

Part I, Number Systems. CS131 Mathematics for Computer Scientists II Note 1 INTEGERS CS131 Part I, Number Systems CS131 Mathematics for Computer Scientists II Note 1 INTEGERS The set of all integers will be denoted by Z. So Z = {..., 2, 1, 0, 1, 2,...}. The decimal number system uses the

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

LESSON 9.1 ROOTS AND RADICALS

LESSON 9.1 ROOTS AND RADICALS LESSON 9.1 ROOTS AND RADICALS LESSON 9.1 ROOTS AND RADICALS 67 OVERVIEW Here s what you ll learn in this lesson: Square Roots and Cube Roots a. Definition of square root and cube root b. Radicand, radical

More information

Solving Polynomial Equations

Solving Polynomial Equations Solving Polynomial Equations Introduction We will spend the next few lectures looking at the history of the solutions of polynomial equations. We will organize this examination by the degree of the equations,

More information

Properties of Real Numbers

Properties of Real Numbers Properties of Real Numbers Essential Understanding. Relationships that are always true for real numbers are called properties, which are rules used to rewrite and compare expressions. Two algebraic expressions

More information

Algebra 31 Summer Work Packet Review and Study Guide

Algebra 31 Summer Work Packet Review and Study Guide Algebra Summer Work Packet Review and Study Guide This study guide is designed to accompany the Algebra Summer Work Packet. Its purpose is to offer a review of the ten specific concepts covered in the

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic Quizzes grade (6): average of top n-2 T = today x= hw#x out x= hw#x due mon tue wed thr fri 1 M1 oh 1 8 oh M1 15 oh 1 T 2 oh M2 22 oh PCP oh 2 oh sun oh 29 oh M2 oh = office

More information

7.12 The student will represent relationships with tables, graphs, rules, and words.

7.12 The student will represent relationships with tables, graphs, rules, and words. 7.12 The student will represent relationships with tables, graphs, rules, and words. HINTS & NOTES Relation- is a set of ordered pairs. Remember to always start from the origin. Origin is (0,0) Move horizontally

More information

Babylonian & Egyptian Mathematics

Babylonian & Egyptian Mathematics Babylonian/Egyptian Mathematics from the Association of Teachers of Mathematics Page 1 Babylonian & Egyptian Mathematics The Babylonians lived in Mesopotamia, a fertile plain between the Tigris and Euphrates

More information

Pre-Algebra. Guided Notes. Unit thru 3-6, 4-3b. Equations

Pre-Algebra. Guided Notes. Unit thru 3-6, 4-3b. Equations Pre-Algebra Guided Notes Unit 4 3-1 thru 3-6, 4-3b Equations Name Lesson 3-1 Distributive Property Distributive Property used to multiply a number by a sum or difference a(b + c) = Write an equivalent

More information

COMMON CORE STATE STANDARDS TO BOOK CORRELATION

COMMON CORE STATE STANDARDS TO BOOK CORRELATION COMMON CORE STATE STANDARDS TO BOOK CORRELATION Conceptual Category: Number and Quantity Domain: The Real Number System After a standard is introduced, it is revisited many times in subsequent activities,

More information

Making Infinitely Many Mistakes Deliberately Iteration

Making Infinitely Many Mistakes Deliberately Iteration Making Infinitely Many Mistakes Deliberately Iteration Robert Sachs Department of Mathematical Sciences George Mason University Fairfax, Virginia 22030 rsachs@gmu.edu August 4, 2016 Introduction The math

More information

Nicholas Ball. Getting to the Root of the Problem: An Introduction to Fibonacci s Method of Finding Square Roots of Integers

Nicholas Ball. Getting to the Root of the Problem: An Introduction to Fibonacci s Method of Finding Square Roots of Integers Nicholas Ball Getting to the Root of the Problem: An Introduction to Fibonacci s Method of Finding Square Roots of Integers Introduction Leonardo of Pisa, famously known as Fibonacci, provided extensive

More information

Intro to Algebra Today. We will learn names for the properties of real numbers. Homework Next Week. Due Tuesday 45-47/ 15-20, 32-35, 40-41, *28,29,38

Intro to Algebra Today. We will learn names for the properties of real numbers. Homework Next Week. Due Tuesday 45-47/ 15-20, 32-35, 40-41, *28,29,38 Intro to Algebra Today We will learn names for the properties of real numbers. Homework Next Week Due Tuesday 45-47/ 15-20, 32-35, 40-41, *28,29,38 Due Thursday Pages 51-53/ 19-24, 29-36, *48-50, 60-65

More information

Parent Guide. Number System. Diocese of Cleveland

Parent Guide. Number System. Diocese of Cleveland Parent Guide Grade Eight Algebra Curriculum Diocese of Cleveland Below is a list of skills your child will be taught in Grade Eight Algebra. As parents, you are encouraged to support the work of your child

More information

General Methodology for Solving Equations

General Methodology for Solving Equations Section. Pre-Activity Preparation General Methodology for Solving Equations Catering A catering company charges $6.9 per guest with an additional set up fee of $00. How many guests can be invited if the

More information

Algebra SEMESTER ONE. K12.com { Pg. 1 } Course Overview. Unit 1: Algebra Basics. Unit 2: Properties of Real Numbers

Algebra SEMESTER ONE. K12.com { Pg. 1 } Course Overview. Unit 1: Algebra Basics. Unit 2: Properties of Real Numbers Algebra Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform manipulations with numbers, variables, equations, and inequalities. They also learn

More information

Section 10-1: Laws of Exponents

Section 10-1: Laws of Exponents Section -: Laws of Eponents Learning Outcome Multiply: - ( ) = - - = = To multiply like bases, add eponents, and use common base. Rewrite answer with positive eponent. Learning Outcome Write the reciprocals

More information

CP Algebra 2. Summer Packet. Name:

CP Algebra 2. Summer Packet. Name: CP Algebra Summer Packet 018 Name: Objectives for CP Algebra Summer Packet 018 I. Number Sense and Numerical Operations (Problems: 1 to 4) Use the Order of Operations to evaluate expressions. (p. 6) Evaluate

More information

Math 200 University of Connecticut

Math 200 University of Connecticut IRRATIONALITY OF π AND e KEITH CONRAD Math 2 University of Connecticut Date: Aug. 3, 25. Contents. Introduction 2. Irrationality of π 2 3. Irrationality of e 3 4. General Ideas 4 5. Irrationality of rational

More information

2 ways to write the same number: 6,500: standard form 6.5 x 10 3 : scientific notation

2 ways to write the same number: 6,500: standard form 6.5 x 10 3 : scientific notation greater than or equal to one, and less than 10 positive exponents: numbers greater than 1 negative exponents: numbers less than 1, (> 0) (fractions) 2 ways to write the same number: 6,500: standard form

More information

1.4 Properties of Real Numbers and Algebraic Expressions

1.4 Properties of Real Numbers and Algebraic Expressions 0 CHAPTER Real Numbers and Algebraic Expressions.4 Properties of Real Numbers and Algebraic Expressions S Use Operation and Order Symbols to Write Mathematical Sentences. 2 Identify Identity Numbers and

More information

Chapter Solving Equations by Adding, Subtracting, Multiplying, and Dividing.notebook

Chapter Solving Equations by Adding, Subtracting, Multiplying, and Dividing.notebook Bellwork: Write as a fraction and reduce if you can: 1) 2.7 2) 0.325 Homework Questions??? Write each as a decimal, use repeating decimals when necessary: 3) 5/2 4) 6/8 Evaluate: 5) 2x + y; x = 4, y =

More information

Algebra I Notes Unit Two: Variables

Algebra I Notes Unit Two: Variables Syllabus Objectives:. The student will use order of operations to evaluate expressions.. The student will evaluate formulas and algebraic expressions using rational numbers (with and without technology).

More information

Floating calculation in Mesopotamia

Floating calculation in Mesopotamia Floating calculation in Mesopotamia Christine Proust To cite this version: Christine Proust. Floating calculation in Mesopotamia. 2016. HAL Id: hal-0645 https://hal.archives-ouvertes.fr/hal-0645

More information

What Fun! It's Practice with Scientific Notation!

What Fun! It's Practice with Scientific Notation! What Fun! It's Practice with Scientific Notation! Review of Scientific Notation Scientific notation provides a place to hold the zeroes that come after a whole number or before a fraction. The number 100,000,000

More information

Chapter 3: Factors, Roots, and Powers

Chapter 3: Factors, Roots, and Powers Chapter 3: Factors, Roots, and Powers Section 3.1 Chapter 3: Factors, Roots, and Powers Section 3.1: Factors and Multiples of Whole Numbers Terminology: Prime Numbers: Any natural number that has exactly

More information

A Justification for Sig Digs

A Justification for Sig Digs A Justification for Sig Digs Measurements are not perfect. They always include some degree of uncertainty because no measuring device is perfect. Each is limited in its precision. Note that we are not

More information

How to Do Word Problems. Solving Linear Equations

How to Do Word Problems. Solving Linear Equations Solving Linear Equations Properties of Equality Property Name Mathematics Operation Addition Property If A = B, then A+C = B +C Subtraction Property If A = B, then A C = B C Multiplication Property If

More information

Algebra I Chapter 6: Solving and Graphing Linear Inequalities

Algebra I Chapter 6: Solving and Graphing Linear Inequalities Algebra I Chapter 6: Solving and Graphing Linear Inequalities Jun 10 9:21 AM Chapter 6 Lesson 1 Solve Inequalities Using Addition and Subtraction Vocabulary Words to Review: Inequality Solution of an Inequality

More information

Practice Set 1.1 Algebraic Expressions and Real Numbers. Translate each English phrase into an algebraic expression. Let x represent the number.

Practice Set 1.1 Algebraic Expressions and Real Numbers. Translate each English phrase into an algebraic expression. Let x represent the number. Practice Set 1.1 Algebraic Expressions and Real Numbers Translate each English phrase into an algebraic expression. Let x represent the number. 1. A number decreased by seven. 1.. Eighteen more than a

More information

CD't1D Find 4 + (-6). ~ Find -2 + (-3).

CD't1D Find 4 + (-6). ~ Find -2 + (-3). Add Integers To add integers with the same sign, add their absolute values. The sum is: positive if both integers are positive. negative if both integers are negative. To add integers with different signs,

More information

MATH 0030 Lecture Notes Section 2.1 The Addition Property of Equality Section 2.2 The Multiplication Property of Equality

MATH 0030 Lecture Notes Section 2.1 The Addition Property of Equality Section 2.2 The Multiplication Property of Equality MATH 0030 Lecture Notes Section.1 The Addition Property of Equality Section. The Multiplication Property of Equality Introduction Most, but not all, salaries and prices have soared over the decades. To

More information

Beyond Whole Number Bases

Beyond Whole Number Bases Beyond Whole Number Bases Figure 1: Here is a Venn diagram representing the various subsets of the real numbers. As you can see there are many types of real numbers, why restrict ourselves to positive

More information

Solving Linear Equations (in one variable)

Solving Linear Equations (in one variable) Solving Linear Equations (in one variable) In Chapter of my Elementary Algebra text you are introduced to solving linear equations. The main idea presented throughout Sections.1. is that you need to isolate

More information

Math-2. Lesson 1-2 Solving Single-Unknown Linear Equations

Math-2. Lesson 1-2 Solving Single-Unknown Linear Equations Math-2 Lesson 1-2 Solving Single-Unknown Linear Equations Linear Equation: an equation where all of the letters (either variables or unknown values) have NO EXPONENTS. 4x 2 = 6 2x + 3y = 6 Previous Vocabulary

More information

Algebra II Chapter 5: Polynomials and Polynomial Functions Part 1

Algebra II Chapter 5: Polynomials and Polynomial Functions Part 1 Algebra II Chapter 5: Polynomials and Polynomial Functions Part 1 Chapter 5 Lesson 1 Use Properties of Exponents Vocabulary Learn these! Love these! Know these! 1 Example 1: Evaluate Numerical Expressions

More information

Algebra I+ Pacing Guide. Days Units Notes Chapter 1 ( , )

Algebra I+ Pacing Guide. Days Units Notes Chapter 1 ( , ) Algebra I+ Pacing Guide Days Units Notes Chapter 1 (1.1-1.4, 1.6-1.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order

More information

Number Systems. There are 10 kinds of people those that understand binary, those that don t, and those that expected this joke to be in base 2

Number Systems. There are 10 kinds of people those that understand binary, those that don t, and those that expected this joke to be in base 2 Number Systems There are 10 kinds of people those that understand binary, those that don t, and those that expected this joke to be in base 2 A Closer Look at the Numbers We Use What is the difference

More information

7x 5 x 2 x + 2. = 7x 5. (x + 1)(x 2). 4 x

7x 5 x 2 x + 2. = 7x 5. (x + 1)(x 2). 4 x Advanced Integration Techniques: Partial Fractions The method of partial fractions can occasionally make it possible to find the integral of a quotient of rational functions. Partial fractions gives us

More information

Table of Contents. 2013, Pearson Education, Inc.

Table of Contents. 2013, Pearson Education, Inc. Table of Contents Chapter 1 What is Number Theory? 1 Chapter Pythagorean Triples 5 Chapter 3 Pythagorean Triples and the Unit Circle 11 Chapter 4 Sums of Higher Powers and Fermat s Last Theorem 16 Chapter

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic Lectures are at: paradise.caltech.edu/ist4/lectures.html edu/ist4/lectures html Homeworks are at: paradise.caltech.edu/ist4/homeworks.html edu/ist4/homeworks html T = today

More information

CD't1D Find 4 + (-6). ~ Find -2 + (-3).

CD't1D Find 4 + (-6). ~ Find -2 + (-3). Add Integers To add integers with the same sign, add their absolute values. The sum is: positive if both integers are positive. negative if both integers are negative. To add integers with different signs,

More information

CLEP College Algebra - Problem Drill 21: Solving and Graphing Linear Inequalities

CLEP College Algebra - Problem Drill 21: Solving and Graphing Linear Inequalities CLEP College Algebra - Problem Drill 21: Solving and Graphing Linear Inequalities No. 1 of 10 1. Which inequality represents the statement three more than seven times a real number is greater than or equal

More information

You ve probably heard the word algebra on many occasions, and you

You ve probably heard the word algebra on many occasions, and you In This Chapter Chapter 1 Assembling Your Tools Giving names to the basic numbers Reading the signs and interpreting the language Operating in a timely fashion You ve probably heard the word algebra on

More information

Unit 6 Study Guide: Equations. Section 6-1: One-Step Equations with Adding & Subtracting

Unit 6 Study Guide: Equations. Section 6-1: One-Step Equations with Adding & Subtracting Unit 6 Study Guide: Equations DUE DATE: A Day: Dec 18 th B Day: Dec 19 th Name Period Score / Section 6-1: One-Step Equations with Adding & Subtracting Textbook Reference: Page 437 Vocabulary: Equation

More information

1.2 REAL NUMBERS. 10 Chapter 1 Basic Concepts: Review and Preview

1.2 REAL NUMBERS. 10 Chapter 1 Basic Concepts: Review and Preview 10 Chapter 1 Basic Concepts: Review and Preview (b) Segment of a circle of radius R, depth R 2: A 4 R 2 (c) Frustum of cone: V 1 h R2 Rr r 2 R r R R 2 Conversion between fluid ounces and cubic inches:

More information

5.1. Integer Exponents and Scientific Notation. Objectives. Use the product rule for exponents. Define 0 and negative exponents.

5.1. Integer Exponents and Scientific Notation. Objectives. Use the product rule for exponents. Define 0 and negative exponents. Chapter 5 Section 5. Integer Exponents and Scientific Notation Objectives 2 4 5 6 Use the product rule for exponents. Define 0 and negative exponents. Use the quotient rule for exponents. Use the power

More information

Making Math: A Hands on History Beth Powell

Making Math: A Hands on History Beth Powell Making Math: A Hands on History Beth Powell My City School, San Francisco, CA bethciis@yahoo.com Why Study the History of Math Full of Epic Failures Creates a Sense of Wonder Connections, Integration,

More information

9.1. Basic Concepts of Vectors. Introduction. Prerequisites. Learning Outcomes. Learning Style

9.1. Basic Concepts of Vectors. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Vectors 9.1 Introduction In engineering, frequent reference is made to physical quantities, such as force, speed and time. For example, we talk of the speed of a car, and the force in

More information

Curriculum Summary Seventh Grade Pre-Algebra

Curriculum Summary Seventh Grade Pre-Algebra Curriculum Summary Seventh Grade Pre-Algebra Students should know and be able to demonstrate mastery in the following skills by the end of Seventh Grade: Ratios and Proportional Relationships Analyze proportional

More information