Mock Surveys of the Sub-millimetre Sky

Size: px
Start display at page:

Download "Mock Surveys of the Sub-millimetre Sky"

Transcription

1 Mock Surveys of the Sub-millimetre Sky William Cowley Supervisors: Carlton Baugh, Cedric Lacey, Shaun Cole DEX-X: Thurs 9th Jan

2 Outline Sub-millimetre Galaxies Observational Motivation Angular resolution Field-to-field variations Theoretical Model GALFORM Dust model Creating lightcones Results and Future Work ALMA observing sub-mm galaxy LESS J credit:naoj

3 Sub-millimetre Galaxies (SMGs) First detected by SCUBA/JCMT in late 9s Luminous, high redshift (z ), dusty galaxies L IR L = SFR - M yr Single-dish sub-mm surveys: Coarse angular resolution ( FWHM) Pencil-beam areas (.7 deg ) 87µm LESS (" FWHM,.5 deg ) map Weiss et al 9 ALMA (.5" FWHM) observation of LABOCA (" FWHM) source Karim et al

4 Observational Motivation Angular resolution: Some " blended sources break up into multiple fainter.5" sources, affecting observed number counts Field-to-field variations: % prob of LH and UDS samples being drawn from same population Fraction per bin.5... Lockman Hole. mm (LH, robust IDs) 85 µm (LH Dye8 robust IDs) 85 µm (LH Dye8, all IDs) 85 µm (LH Schael robust IDs) 85 µm (LH Schael all IDs) K-S AzTEC - Dye8:.7% K-S AzTEC - Schael: 6%...5 UDS. mm (UDS, robust IDs) 85 µm (UDS Clements8) 85 µm (UDS Schael robust IDs) 85 µm (UDS Schael all IDs) Fraction per bin... K-S AzTEC - Clements8: 7% K-S AzTEC - Schael: 5% Karim et al Michalowski et al.. 5 Redshift

5 GALFORM Durham Semi-Analytic Galaxy Formation Model COSMOLOGICAL MODEL Ω, Λ, σ, h, P(k) 8 Galaxy formation and evolution is complex Semi-Analytic Models (SAMs) use simplified descriptions of physical processes Ab initio, physically motivated method to populate N-body simulations with galaxies, with minimal computational expense Parameters constrained by requiring local galaxy population to be reproduced DISK SIZES DARK MATTER HALOS MERGER TREES STRUCTURE GAS COOLING GALAXY MERGERS DISK FORMATION SPHEROID FORMATION STAR FORMATION BURSTS & FEEDBACK CHEMICAL EVOLUTION STELLAR POPULATIONS DUST EXTINCTION OBSERVABLE GALAXY PROPERTIES SPHEROID SIZES Adpated from Cole et al () 5

6 Lacey Model Features of the Model Millennium N-body simulation (WMAP-7 cosmology) AGN feedback Improved star formation treatment Successfully predict sub-mm observations and present day (z = ) luminosity function Top-heavy IMF (x = ) in starburst galaxies Bursts triggered by disk instabilities and galaxy mergers Multi-wavelength predictions K-band luminosity function Lyman-break luminosity function Lacey et. al. in prep 6

7 Lacey Model Features of the Model Millennium N-body simulation (WMAP-7 cosmology) AGN feedback Improved star formation treatment Successfully predict sub-mm observations and present day (z = ) luminosity function Top-heavy IMF (x = ) in starburst galaxies Bursts triggered by disk instabilities and galaxy mergers Multi-wavelength predictions K-band luminosity function Lyman-break luminosity function Lacey et. al. in prep 6

8 Galform Dust Model Two component dust medium: Molecular clouds (in which stars form) + Diffuse ISM Dust in thermal equilibrium with stellar radiation emits as modified blackbody: L dust λ = πκ d B λ (T d )M d Dust temperature calculated self consistently Granato et. al. 7

9 Creating Lightcones Merson et al log N(>S) (deg ) 6 5 Integral Lightcone (. deg ) Knudsen+ 8 Chen+ - - N-body simulation volume tiled to fill lightcone volume Cone geometry assigned Galaxy positions interpolated Preserves correlation function K -correction interpolated C.f. integral method of calculating number counts/redshift distribution d N d ln S = νdz dn d ln L ν dv dz 8

10 Creating Lightcones Merson et al log N(>S) (deg ) 6 5 Area of survey means some rare objects are missed Integral Lightcone (. deg ) Knudsen+ 8 Chen+ - - N-body simulation volume tiled to fill lightcone volume Cone geometry assigned Galaxy positions interpolated Preserves correlation function K -correction interpolated C.f. integral method of calculating number counts/redshift distribution d N d ln S = νdz dn d ln L ν dv dz 8

11 Creating Lightcones Merson et al dn(>s)/dz (deg ) 5 5 Integral z 5=.9 Lightcone (. deg ) z 5=.8 S 85 >.mjy 5 6 Redshift N-body simulation volume tiled to fill lightcone volume Cone geometry assigned Galaxy positions interpolated Preserves correlation function K -correction interpolated C.f. integral method of calculating number counts/redshift distribution d N d ln S = νdz dn d ln L ν dv dz 8

12 Creating Lightcones Merson et al dn(>s)/dz (deg ) 5 5 Integral z 5=.9 Lightcone (. deg ) z 5=.8 S 85 >.mjy At high redshifts the lightcone interpolation scheme does not reproduce the instrinsic evolution of the luminosity function 5 6 Redshift N-body simulation volume tiled to fill lightcone volume Cone geometry assigned Galaxy positions interpolated Preserves correlation function K -correction interpolated C.f. integral method of calculating number counts/redshift distribution d N d ln S = νdz dn d ln L ν dv dz 8

13 Mock Surveys: Field-to-field Variance.5 deg surveys log N(>S) (deg ) percentile Integral Lightcone (.5 deg ) Knudsen+ 8 Chen+ - - dn(>s)/dz (deg ) 5 5 mean median z 5=.9 z 5=.8 S 85 >.mjy 5 6 Redshift 9

14 Mock Surveys: Field-to-field Variance.5 deg surveys log N(>S) (deg ) percentile Integral Lightcone (.5 deg ) Knudsen+ 8 Chen+ - - dn(>s)/dz (deg ) 5 5 Distribution of individual survey redshift means/medians mean median z 5=.9 z 5=.8 S 85 >.mjy 5 6 Redshift 9

15 Mock Surveys: Field-to-field Variance.5 deg surveys log N(>S) (deg ) percentile Integral Lightcone (.5 deg ) Knudsen+ 8 Chen+ - - dn(>s)/dz (deg ) Simpson+ (ALESS) mean median z 5=. z 5=. S 85 >5mJy 5 6 Redshift 9

16 Mock Surveys: Angular Resolution I Creating Mock Catalogues η (deg) mjy/beam Lightcone: RA, DEC and S 85µm >.mjy Pixelate (."." pixels) Convolve 5" FWHM SCUBA Re-pixelate (" " pixels) Add white noise ( mjy) Zero mean Convolve with matched filter g(q) = s (q)/j(q) s(q) /J(q)d q ɛ (deg) e.g. Laurent et al 5 Source Extraction: Search for hottest pixel in map and subtract off PSF

17 Mock Surveys: Angular Resolution I Creating Mock Catalogues η (deg) mjy/beam Lightcone: RA, DEC and S 85µm >.mjy Pixelate (."." pixels) Convolve 5" FWHM SCUBA Re-pixelate (" " pixels) Add white noise ( mjy) Zero mean Convolve with matched filter g(q) = s (q)/j(q) s(q) /J(q)d q ɛ (deg) e.g. Laurent et al 5 Source Extraction: Search for hottest pixel in map and subtract off PSF

18 Mock Surveys: Angular Resolution I Creating Mock Catalogues η (deg) mjy/beam Lightcone: RA, DEC and S 85µm >.mjy Pixelate (."." pixels) Convolve 5" FWHM SCUBA Re-pixelate (" " pixels) Add white noise ( mjy) Zero mean Convolve with matched filter g(q) = s (q)/j(q) s(q) /J(q)d q ɛ (deg) e.g. Laurent et al 5 Source Extraction: Search for hottest pixel in map and subtract off PSF

19 Mock Surveys: Angular Resolution I Creating Mock Catalogues η (deg) mjy/beam ɛ (deg) Lightcone: RA, DEC and S 85µm >.mjy Pixelate (."." pixels) Convolve 5" FWHM SCUBA Re-pixelate (" " pixels) Add white noise ( mjy) Zero mean Convolve with matched filter g(q) = e.g. Laurent et al 5 s (q)/j(q) s(q) /J(q)d q Source Extraction: Search for hottest pixel in map and subtract off PSF

20 Mock Surveys: Angular Resolution I Creating Mock Catalogues η (deg) z=.67 z=.67 z= z=.588 mjy/beam z=.9 z= 5. z=.87 z=.6 z=.79 z=.8 z=.5 z=.6 z=.766 z=.79 Lightcone: RA, DEC and S 85µm >.mjy Pixelate (."." pixels) Convolve 5" FWHM SCUBA Re-pixelate (" " pixels) Add white noise ( mjy) Zero mean Convolve with matched filter g(q) = s (q)/j(q) s(q) /J(q)d q ɛ (deg) e.g. Laurent et al 5 Source Extraction: Search for hottest pixel in map and subtract off PSF

21 Mock Surveys: Angular Resolution II Number Counts Karim+ (ALESS.5 ) Weiss+ 9 (LESS ) Knudsen+ 8 Chen+ log N(>S) (deg ) log N(>S) (deg ) 9- percentile Lightcone (.5 deg ) 5 beam 7.5 beam 5 beam beam

22 Mock Surveys: Angular Resolution II Number Counts Karim+ (ALESS.5 ) Weiss+ 9 (LESS ) Knudsen+ 8 Chen+ log N(>S) (deg ) log N(>S) (deg ) 9- percentile Lightcone (.5 deg ) 5 beam 7.5 beam

23 Mock Surveys: Angular Resolution II Number Counts Karim+ (ALESS.5 ) Weiss+ 9 (LESS ) Knudsen+ 8 Chen+ log N(>S) (deg ) log N(>S) (deg ) 9- percentile Lightcone (.5 deg ) 5 beam 5 beam

24 Mock Surveys: Angular Resolution II Number Counts Karim+ (ALESS.5 ) Weiss+ 9 (LESS ) Knudsen+ 8 Chen+ log N(>S) (deg ) log N(>S) (deg ) 9- percentile Lightcone (.5 deg ) 5 beam beam

25 Mock Surveys: Angular Resolution II Number Counts Karim+ (ALESS.5 ) Weiss+ 9 (LESS ) Knudsen+ 8 Chen+ log N(>S) (deg ) log N(>S) (deg ) 9- percentile Lightcone (.5 deg ) 5 beam 7.5 beam 5 beam beam

26 Summary and Future Work Summary SMG observations are sensitive to field-to-field variations Angular resolution of single-dish telescopes can skew observed number counts Future Work Properties of the blended SMG population multiple fraction physical (un)associations Comparison of multi-wavelength surveys Predictions for lensed vs. un-lensed SMG populations

Durham Lightcones: Synthetic galaxy survey catalogues from GALFORM. Jo Woodward, Alex Merson, Peder Norberg, Carlton Baugh, John Helly

Durham Lightcones: Synthetic galaxy survey catalogues from GALFORM. Jo Woodward, Alex Merson, Peder Norberg, Carlton Baugh, John Helly Durham Lightcones: Synthetic galaxy survey catalogues from GALFORM Jo Woodward, Alex Merson, Peder Norberg, Carlton Baugh, John Helly Outline 1. How are the lightcone mocks constructed? 2. What mocks are

More information

(i) All relevant physics included shaping galaxy evolution. (ii) Model gas content/star formation in a self-consistent scenario.

(i) All relevant physics included shaping galaxy evolution. (ii) Model gas content/star formation in a self-consistent scenario. Useful theoretical tool to predict galaxy evolution in CDM structures: Semi-analytic models (i) All relevant physics included shaping galaxy evolution. (ii) Model gas content/star formation in a self-consistent

More information

A unified multi-wavelength model of galaxy formation. Carlton Baugh Institute for Computational Cosmology

A unified multi-wavelength model of galaxy formation. Carlton Baugh Institute for Computational Cosmology A unified multi-wavelength model of galaxy formation Carlton Baugh Institute for Computational Cosmology M81 Angel Lopez Sanchez A unified multi-wavelength model of galaxy formation Lacey et al. 2015 arxiv:1509.08473

More information

Massively Star-Forming Dusty Galaxies. Len Cowie JCMT Users Meeting

Massively Star-Forming Dusty Galaxies. Len Cowie JCMT Users Meeting Massively Star-Forming Dusty Galaxies Len Cowie JCMT Users Meeting The luminous dusty star-formation history: We are using SCUBA-2 to address three questions What fraction of the SF is in luminous dusty

More information

Cosmological simulations for Euclid

Cosmological simulations for Euclid Cosmological simulations for Euclid Pablo Fosalba (Barcelona) Robert Smith (Zürich) Stéphane Colombi (Paris) Carlton Baugh (Durham) Marco Baldi (Münich) and many others 1 Outline 1. Computing the matter

More information

Dusty star-forming galaxies at high redshift (part 5)

Dusty star-forming galaxies at high redshift (part 5) Dusty star-forming galaxies at high redshift (part 5) Flow of story 4.1.1 4.1.2 4.1.3 Millimetric Spectroscopic Redshifts Millimetric Photometric Redshifts Redshift Distributions of 24 μm selected DSFG

More information

Comparing l-galaxies, galform and eagle

Comparing l-galaxies, galform and eagle V. Gonzalez-Perez /9 Comparing l-galaxies, galform and eagle Violeta Gonzalez-Perez @violegp Quan Guo (Postdam), Qi Guo (Beijing), Matthieu Schaller (Durham), Michelle Furlong (Durham), Richard Bower (Durham),

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

Occupy Dark Matter: Accessing the 99% of dusty galaxies that lie beneath the confusion noise floor. Marco Viero - Caltech

Occupy Dark Matter: Accessing the 99% of dusty galaxies that lie beneath the confusion noise floor. Marco Viero - Caltech Occupy Dark Matter: Accessing the 99% of dusty galaxies that lie beneath the confusion noise floor Marco Viero - Caltech hermes.sussex.ac.uk The Team Marco Viero, Plus engineers, instrument builders, software

More information

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University What can we learn from galaxy clustering measurements II Shaun Cole Institute for Computational Cosmology Durham University Introduction Galaxy clustering has two distinct uses: 1. Large scale tracers

More information

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering Alison Coil UCSD Talk Outline 1. Brief review of what we know about galaxy clustering from observations 2.

More information

Concentra)on of dusty starbursts and AGNs at a z=3.09 proto- cluster core

Concentra)on of dusty starbursts and AGNs at a z=3.09 proto- cluster core September 9,2015 at Soverato, Italy Concentra)on of dusty starbursts and AGNs at a z=3.09 proto- cluster core Hideki Umehata (ESO, U. Tokyo) Kotaro Kohno, Yoichi Tamura (U. Tokyo), et al 1 Outlines Introduction

More information

Galaxies 626. Lecture 10 The history of star formation from far infrared and radio observations

Galaxies 626. Lecture 10 The history of star formation from far infrared and radio observations Galaxies 626 Lecture 10 The history of star formation from far infrared and radio observations Cosmic Star Formation History Various probes of the global SF rate: ρ* (z) M yr 1 comoving Mpc 3 UV continuum

More information

Lyα-Emitting Galaxies at z=3.1: L* Progenitors Experiencing Rapid Star Formation

Lyα-Emitting Galaxies at z=3.1: L* Progenitors Experiencing Rapid Star Formation Lyα-Emitting Galaxies at z=3.1: L* Progenitors Experiencing Rapid Star Formation Gawiser et al., 2007 Presented on October 22, 2009 PHYS 689: Galaxy Formation Lyman-α Emitters (LAEs) Lyα line is easily

More information

Outline. Motivation SDP Data Preliminary science with Herschel only Preliminary science adding in other data Conclusion

Outline. Motivation SDP Data Preliminary science with Herschel only Preliminary science adding in other data Conclusion hermes.sussex.ac.uk Outline Motivation SDP Data Preliminary science with Herschel only Preliminary science adding in other data Conclusion The Team Plus engineers, instrument builders, software developers

More information

arxiv: v2 [astro-ph.co] 4 Sep 2013

arxiv: v2 [astro-ph.co] 4 Sep 2013 Mon. Not. R. Astron. Soc. 000, 1 28 (2013) Printed 5 September 2013 (MN LATEX style file v2.2) How well can we really estimate the stellar masses of galaxies from broad-band photometry? Peter D. Mitchell,

More information

The Herschel Multi-tiered Extragalactic Survey (HerMES) The Evolution of the FIR/SMM Luminosity Function and of the Cosmic SFRD

The Herschel Multi-tiered Extragalactic Survey (HerMES) The Evolution of the FIR/SMM Luminosity Function and of the Cosmic SFRD The Herschel Multi-tiered Extragalactic Survey (HerMES) The Evolution of the FIR/SMM Luminosity Function and of the Cosmic SFRD Lucia Marchetti University of Padova - Open University Mattia Vaccari - University

More information

Lensing & Herschel unveils extreme starformation at z 2

Lensing & Herschel unveils extreme starformation at z 2 Lensing & Herschel unveils extreme starformation at z 2 with Shane Bussmann, Jae Calanog, Alex Conley, Asantha Cooray, Francesco De Bernardis, Rui Marques Chaves, Paloma Martínez Navajas, Ismael Perez

More information

Dominik A. Riechers Cornell University

Dominik A. Riechers Cornell University JVLA ALMA CCAT First year of full science Finishing construction The next big thing The Interstellar Medium in High Redshift Galaxies Dominik A. Riechers Cornell University Phases of the ISM MPIA Summer

More information

Multi-wavelength ISM diagnostics in high redshift galaxies

Multi-wavelength ISM diagnostics in high redshift galaxies Multi-wavelength ISM diagnostics in high redshift galaxies Alexandra Pope (UMass Amherst) Transformational Science in the ALMA Era: Multi-Wavelength Studies of Galaxy Evolution Conference Charlottesville,

More information

High-redshift galaxies

High-redshift galaxies High-redshift galaxies Houjun Mo May 4, 2004 Galaxies can now be observed to z 6 Normal galaxies with 0.2 < z < 1 The Lyman-break population at z 3 The sub-mm sources at z 3 Between 1 2, spectroscopy desert,

More information

High Redshift Universe

High Redshift Universe High Redshift Universe Finding high z galaxies Lyman break galaxies (LBGs) Photometric redshifts Deep fields Starburst galaxies Extremely red objects (EROs) Sub-mm galaxies Lyman α systems Finding high

More information

Radio Afterglows. What Good are They? Dale A. Frail. National Radio Astronomy Observatory. Gamma Ray Bursts: The Brightest Explosions in the Universe

Radio Afterglows. What Good are They? Dale A. Frail. National Radio Astronomy Observatory. Gamma Ray Bursts: The Brightest Explosions in the Universe Radio Afterglows What Good are They? Dale A. Frail National Radio Astronomy Observatory Gamma Ray Bursts: The Brightest Explosions in the Universe The 2 nd Harvard-Smithsonian Conference on Theoretical

More information

Deep Surveys or How We Learn About the Early Universe When We Can t Measure All that Would Be Nice!

Deep Surveys or How We Learn About the Early Universe When We Can t Measure All that Would Be Nice! Deep Surveys or How We Learn About the Early Universe When We Can t Measure All that Would Be Nice! Presented at the AAS Seminar on Infrared Astronomy, AAS Meeting, Jan 7, 2003, Seattle Marcia Rieke mrieke@as.

More information

THE GAS MASS AND STAR FORMATION RATE

THE GAS MASS AND STAR FORMATION RATE THE GAS MASS AND STAR FORMATION RATE OF STAR-FORMING GALAXIES AT z ~ 1.3 Nissim Kanekar National Centre for Radio Astrophysics, Pune Apurba Bera Shiv Sethi Ben Weiner K. Dwarakanath Image: B. Premkumar

More information

The rise of galaxy surveys and mocks (DESI progress and challenges) Shaun Cole Institute for Computational Cosmology, Durham University, UK

The rise of galaxy surveys and mocks (DESI progress and challenges) Shaun Cole Institute for Computational Cosmology, Durham University, UK The rise of galaxy surveys and mocks (DESI progress and challenges) Shaun Cole Institute for Computational Cosmology, Durham University, UK Mock Santiago Welcome to Mock Santiago The goal of this workshop

More information

The Stellar to Baryonic Mass Function of Galaxies: from SDSS to GAMA with ASKAP

The Stellar to Baryonic Mass Function of Galaxies: from SDSS to GAMA with ASKAP The Stellar to Baryonic Mass Function of Galaxies: from SDSS to GAMA with ASKAP SDSS: Sloan Digital Sky Survey GAMA: Galaxy And Mass Assembly survey ASKAP: Australian Square Kilometer Array Pathfinder

More information

Towards a Complete Census of Extreme Starbursts in the Early Universe

Towards a Complete Census of Extreme Starbursts in the Early Universe Towards a Complete Census of Extreme Starbursts in the Early Universe Caitlin M. Casey, University of Cambridge (University of Hawai i - September 2010) Scott Chapman, Ian Smail, Rob Ivison, Andrew Blain,

More information

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars Astr 2320 Thurs. April 27, 2017 Today s Topics Chapter 21: Active Galaxies and Quasars Emission Mechanisms Synchrotron Radiation Starburst Galaxies Active Galactic Nuclei Seyfert Galaxies BL Lac Galaxies

More information

Exploring massive galaxy evolution with deep multi-wavelength surveys

Exploring massive galaxy evolution with deep multi-wavelength surveys Exploring massive galaxy evolution with deep multi-wavelength surveys Ross McLure, Henry Pearce, Michele Cirasuolo, Jim Dunlop (Edinburgh) Omar Almaini (Nottingham), Chris Simpson (Liverpool) Outline 1.

More information

Galaxy Formation: Overview

Galaxy Formation: Overview Galaxy Formation: Overview Houjun Mo March 30, 2004 The basic picture Formation of dark matter halos. Gas cooling in dark matter halos Star formation in cold gas Evolution of the stellar populaion Metal

More information

WHAT CAN WE LEARN ABOUT SUBMILLIMETER GALAXIES FROM INTERFEROMETRIC IMAGING? Joshua D. Younger Harvard/CfA

WHAT CAN WE LEARN ABOUT SUBMILLIMETER GALAXIES FROM INTERFEROMETRIC IMAGING? Joshua D. Younger Harvard/CfA WHAT CAN WE LEARN ABOUT SUBMILLIMETER GALAXIES FROM INTERFEROMETRIC IMAGING? Joshua D. Younger Harvard/CfA J. D. Younger, G. G. Fazio, J. Huang (CfA) M. S. Yun, G. Wilson, T. Perera, K. Scott, J. Austermann

More information

Cosmological Merger Rates

Cosmological Merger Rates Cosmological Merger Rates C. Brook, F. Governato, P. Jonsson Not Phil Hopkins Kelly Holley-Bockelmann Vanderbilt University and Fisk University k.holley@vanderbilt.edu Why do we care so much about the

More information

What do we need to know about galaxy formation?

What do we need to know about galaxy formation? What do we need to know about galaxy formation? rachel somerville University of Michigan Hubble Science Legacy Workshop April 2002 what s next? test the CDM paradigm constrain the nature of the dark matter

More information

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS)

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS) AGN/Galaxy Co-Evolution Fabio Fontanot (HITS) 21/11/2012 AGN activity in theoretical models of galaxy formation Represents a viable solution for a number of long-standing theoretical problems Properties

More information

Star-formation Across Cosmic Time: Initial Results from the e-merge Study of the μjy Radio Source Population. SPARCs VII The Precursors Awaken

Star-formation Across Cosmic Time: Initial Results from the e-merge Study of the μjy Radio Source Population. SPARCs VII The Precursors Awaken Star-formation Across Cosmic Time: Initial Results from the e-merge Study of the μjy Radio Source Population SPARCs VII The Precursors Awaken Tom Muxlow & Nick Wrigley JBCA Manchester for the e-merge Consortium

More information

CCAT: Key Science Goals. Jonas Zmuidzinas and the CCAT Science Steering Committee

CCAT: Key Science Goals. Jonas Zmuidzinas and the CCAT Science Steering Committee CCAT: Key Science Goals Jonas Zmuidzinas and the CCAT Science Steering Committee Science reports in CCAT Study Co-Chairs Terry Herter (Cornell) and Jonas Zmuidzinas (CIT) Science Theme Lead Distant Galaxies

More information

Molecules at High Redshift (CO in Spitzer and Herschel-selected High-z Samples) David T. Frayer (NRAO), H-ATLAS, GOODS-H, FIDEL, and Zpectrometer

Molecules at High Redshift (CO in Spitzer and Herschel-selected High-z Samples) David T. Frayer (NRAO), H-ATLAS, GOODS-H, FIDEL, and Zpectrometer Molecules at High Redshift (CO in Spitzer and Herschel-selected High-z Samples) David T. Frayer (NRAO), H-ATLAS, GOODS-H, FIDEL, and Zpectrometer Teams Frayer (1) Background! IRAS ULIRG/LIRGs showed good

More information

15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation

15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation 15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation Continuum Instrumentation 5120 bolometers (4 sub arrays x 1280 bolometers) at

More information

Luminous Quasars and AGN Surveys with ELTs

Luminous Quasars and AGN Surveys with ELTs Luminous Quasars and AGN Surveys with ELTs Roberto J. Assef Núcleo de Astronomía Universidad Diego Portales This Talk Will focus on two topics: 1. The most luminous (obscured) quasars 2. AGN surveys Big

More information

Simulations* in the radio waves regime for ASKAP *of galaxy formation. Claudia Lagos (ARC DECRA fellow) on behalf of ICRAR-theory group

Simulations* in the radio waves regime for ASKAP *of galaxy formation. Claudia Lagos (ARC DECRA fellow) on behalf of ICRAR-theory group Simulations* in the radio waves regime for ASKAP *of galaxy formation Claudia Lagos (ARC DECRA fellow) on behalf of ICRAR-theory group Theory/computing group at ICRAR Preparing the theory for ASKAP...

More information

Multiwavelength Study of Distant Galaxies. Toru Yamada (Subaru Telescope, NAOJ)

Multiwavelength Study of Distant Galaxies. Toru Yamada (Subaru Telescope, NAOJ) Multiwavelength Study of Distant Galaxies Toru Yamada (Subaru Telescope, NAOJ) Studying Galaxy Formation with ALMA 1. Studying Galaxy Forming Region with ALMA 2. Multi-wavelength Study of Galaxy Formation/Evolution

More information

20x increase from z = 0 to 2!

20x increase from z = 0 to 2! black hole accretion (AGN) & star formation (SF) 20x increase from z = 0 to 2! due to more gas (initial supply or accretion) or higher efficiency gas è stars, AGN starbursts merging? ALMA survey of ISM

More information

arxiv: v2 [astro-ph.ga] 6 Aug 2016

arxiv: v2 [astro-ph.ga] 6 Aug 2016 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 9 August 2016 (MN LATEX style file v2.2) A unified multi-wavelength model of galaxy formation arxiv:1509.08473v2 [astro-ph.ga] 6 Aug 2016 Cedric G.

More information

Distant galaxies: a future 25-m submm telescope

Distant galaxies: a future 25-m submm telescope Distant galaxies: a future 25-m submm telescope Andrew Blain Caltech 11 th October 2003 Cornell-Caltech Workshop Contents Galaxy populations being probed Modes of investigation Continuum surveys Line surveys

More information

The clustering of merging star-forming haloes: dust emission as high frequency arcminute CMB foreground ABSTRACT

The clustering of merging star-forming haloes: dust emission as high frequency arcminute CMB foreground ABSTRACT A&A 478, 685 7 (28) DOI: 1.151/4-6361:27827 c ESO 28 Astronomy & Astrophysics The clustering of merging star-forming haloes: dust emission as high frequency arcminute CMB foreground M. Righi 1, C. Hernández-Monteagudo

More information

Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts

Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts Zhi-Yu (Z-Y) Zhang 张智昱 U. Edinburgh/ESO Outline Background Sample description Herschel

More information

The star-formation history of mass-selected galaxies in the VIDEO survey

The star-formation history of mass-selected galaxies in the VIDEO survey The star-formation history of mass-selected galaxies in the VIDEO survey Jonathan Zwart jz@uwcastro.org 18 September, 2013 OVERVIEW Measuring Star-Formation Rates (SFRs) The VISTA Deep Extragalactic Observations

More information

Formation of z~6 Quasars from Hierarchical Galaxy Mergers

Formation of z~6 Quasars from Hierarchical Galaxy Mergers Formation of z~6 Quasars from Hierarchical Galaxy Mergers Yuexing Li et al Presentation by: William Gray Definitions and Jargon QUASAR stands for QUASI-stellAR radio source Extremely bright and active

More information

Galaxy Ecology. an Environmental Impact Assessment. Frank van den Bosch (MPIA)

Galaxy Ecology. an Environmental Impact Assessment. Frank van den Bosch (MPIA) Galaxy an Environmental Impact Assessment Frank van den Bosch (MPIA) in collaboration with Xiaohu Yang (SHAO), Houjun Mo (UMass), Simone Weinmann (Zürich) Anna Pasquali (MPIA), Daniel Aquino (MPIA) Aspen,

More information

Clustering studies of ROSAT/SDSS AGN through cross-correlation functions with SDSS Galaxies

Clustering studies of ROSAT/SDSS AGN through cross-correlation functions with SDSS Galaxies Clustering studies of ROSAT/SDSS AGN through cross-correlation functions with SDSS Galaxies Mirko Krumpe (ESO, UCSD) mkrumpe@eso.org Collaborators: Takamitsu Miyaji (UNAM-E, UCSD), Alison L. Coil (UCSD),

More information

Luminous red galaxies in hierarchical cosmologies

Luminous red galaxies in hierarchical cosmologies Mon. Not. R. Astron. Soc. 386, 2145 2160 (2008) doi:10.1111/j.1365-2966.2008.13179.x Luminous red galaxies in hierarchical cosmologies C. Almeida, 1 C. M. Baugh, 1 D. A. Wake, 1 C. G. Lacey, 1 A. J. Benson,

More information

Galaxy Clustering from CIB Correlations. marco viero / university of toronto

Galaxy Clustering from CIB Correlations. marco viero / university of toronto Galaxy Clustering from CIB Correlations marco viero / university of toronto 1 University of Toronto Peter Martin Barth Netterfield Marco Viero University of Pennsylvania Mark Devlin Marie Rex Chris Semisch

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

3 Observational Cosmology Evolution from the Big Bang Lecture 2

3 Observational Cosmology Evolution from the Big Bang Lecture 2 3 Observational Cosmology Evolution from the Big Bang Lecture 2 http://www.sr.bham.ac.uk/~smcgee/obscosmo/ Sean McGee smcgee@star.sr.bham.ac.uk http://www.star.sr.bham.ac.uk/~smcgee/obscosmo Nucleosynthesis

More information

Astronomy 730. Evolution

Astronomy 730. Evolution Astronomy 730 Evolution Outline } Evolution } Formation of structure } Processes on the galaxy scale } Gravitational collapse, merging, and infall } SF, feedback and chemical enrichment } Environment }

More information

The Universe in the Cloud. Darren Croton Centre for Astrophysics and Supercomputing Swinburne University

The Universe in the Cloud. Darren Croton Centre for Astrophysics and Supercomputing Swinburne University PART III The Universe in the Cloud Darren Croton Centre for Astrophysics and Supercomputing Swinburne University dcroton@astro.swin.edu.au Let s recap... The skeleton The flesh Schmidt law star formation

More information

AGN feedback and its influence on massive galaxy evolution

AGN feedback and its influence on massive galaxy evolution AGN feedback and its influence on massive galaxy evolution Darren Croton (University of California Berkeley) Simon White, Volker Springel, et al. (MPA) DEEP2 & AEGIS collaborations (Berkeley & everywhere

More information

Million Element Integral Field Unit Design Study

Million Element Integral Field Unit Design Study Million Element Integral Field Unit Design Study Simon Morris, Robert Content, Cedric Lacey (University of Durham, UK) AURA contract No. 9414257-GEM00303 Milestone 1 Prepare and present a PowerPoint presentation

More information

Gas Accretion & Outflows from Redshift z~1 Galaxies

Gas Accretion & Outflows from Redshift z~1 Galaxies Gas Accretion & Outflows from Redshift z~1 Galaxies David C. Koo Kate Rubin, Ben Weiner, Drew Phillips, Jason Prochaska, DEEP2, TKRS, & AEGIS Teams UCO/Lick Observatory, University of California, Santa

More information

WFIRST and JWST synergies in the study of First Light. M. Stiavelli STScI, Baltimore

WFIRST and JWST synergies in the study of First Light. M. Stiavelli STScI, Baltimore WFIRST and JWST synergies in the study of First Light M. Stiavelli STScI, Baltimore 1 WFIRST and JWST synergies in the study of First Light Plan: - Detecting the First Stars WFIRST-AFTA as an object finder

More information

The Far-Infrared Radio Correlation in Galaxies at High Redshifts

The Far-Infrared Radio Correlation in Galaxies at High Redshifts The Far-Infrared Radio Correlation in Galaxies at High Redshifts Plan A My own work aims and methodology My results so far Implications of my results What I plan to do next brief summary of the FIR-Radio

More information

erschel ATLAS Steve Eales and the H-ATLAS and HerMES teams

erschel ATLAS Steve Eales and the H-ATLAS and HerMES teams The erschel ATLAS Steve Eales and the H-ATLAS and HerMES teams The Herschel ATLAS The widest area survey with Herschel (~ 550 sq deg) Consortium of 150+ astronomers worldwide led by Cardiff and Nottingham

More information

Extragalactic Surveys: Prospects from Herschel-PACS

Extragalactic Surveys: Prospects from Herschel-PACS Extragalactic Surveys: Prospects from Herschel-PACS Bruno Altieri Max-Planck-Institut für extraterrestrische Physik, Garching PACS Team, PACS GT extragalactic survey (PEP) Team PI: Dieter Lutz PEP in a

More information

The galaxy population in cold and warm dark matter cosmologies

The galaxy population in cold and warm dark matter cosmologies The galaxy population in cold and warm dark matter cosmologies Lan Wang National Astronomical Observatories, CAS Collaborators: Violeta Gonzalez-Perez, Lizhi Xie, Andrew Cooper, Carlos Frenk, Liang Gao,

More information

The SCUBA HAlf Degree Extragalactic Survey VI. 350-μm mapping of submillimetre galaxies

The SCUBA HAlf Degree Extragalactic Survey VI. 350-μm mapping of submillimetre galaxies Mon. Not. R. Astron. Soc. 384, 597 60 (2008) doi:0./j.365-2966.2007.2808.x The SCUBA HAlf Degree Extragalactic Survey VI. 350-μm mapping of submillimetre galaxies Kristen Coppin,,2 Mark Halpern, Douglas

More information

Search for the FIRST GALAXIES

Search for the FIRST GALAXIES Search for the FIRST GALAXIES R. Pelló IRAP - Institut de Recherche en Astrophysique et Planétologie 1 XIème Ecole de Cosmologie : 17-22 Sep 2012 (Cargèse) Outline 1. Looking for the first galaxies a)

More information

13.1 Galaxy Evolution: Introduction

13.1 Galaxy Evolution: Introduction 13.1 Galaxy Evolution: Introduction Galaxies Must Evolve Stars evolve: they are born from ISM, evolve, shed envelopes or explode, enriching the ISM, more stars are born Structure evolves: density fluctuations

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

The Merger-Driven Star Formation History of the Universe

The Merger-Driven Star Formation History of the Universe The Merger-Driven Star Formation History of the Universe Lars Hernquist, TJ Cox, Dusan Keres, Volker Springel, Philip Hopkins 08/17/07 Rachel Somerville (MPIA), Gordon Richards (JHU), Kevin Bundy (Caltech),

More information

The ALMA z=4 Survey (AR4S)

The ALMA z=4 Survey (AR4S) The ALMA z=4 Survey (AR4S) ALMA studies of massive z~4-5 galaxies Corentin Schreiber Leiden University October 21 2016 In collaboration with: Maurilio Pannella, David Elbaz, Roger Leiton, Tao Wang, and

More information

Sources of scatter in cluster mass-observable relations

Sources of scatter in cluster mass-observable relations Great Lakes Cosmology Workshop 8, Columbus OH June 2, 2007 Sources of scatter in cluster mass-observable relations Paul Ricker University of Illinois National Center for Supercomputing Applications With

More information

Outflows in local ULIRGS: [CII] 158 Broad Components and OH outflows

Outflows in local ULIRGS: [CII] 158 Broad Components and OH outflows Outflows in local ULIRGS: [CII] 158 Broad Components and OH outflows Natalie Christopher, University of Oxford Dr Verma and Professor Roche, University of Oxford And the SHINING team, Lead by E. Sturm,

More information

A mid and far-ir view of the star formation activity in galaxy systems and their surroundings

A mid and far-ir view of the star formation activity in galaxy systems and their surroundings A mid and far-ir view of the star formation activity in galaxy systems and their surroundings Andrea Biviano Andrea Biviano INAF/Osservatorio Astronomico di Trieste Outline: mid-ir & multiwavelength observations

More information

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004 Probing the End of Dark Ages with High-redshift Quasars Xiaohui Fan University of Arizona Dec 14, 2004 High-redshift Quasars and the End of Cosmic Dark Ages Existence of SBHs at the end of Dark Ages BH

More information

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University The First Galaxies Erik Zackrisson Department of Astronomy Stockholm University Outline The first galaxies what, when, why? What s so special about them? Why are they important for cosmology? How can we

More information

Modelling the galaxy population

Modelling the galaxy population Modelling the galaxy population Simon White Max Planck Institut für Astrophysik IAU 277 Ouagadougou 1 The standard model reproduces -- the linear initial conditions -- IGM structure during galaxy formation

More information

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy 12-14 April 2006, Rome, Italy Francesco Melchiorri Memorial Conference Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher

More information

Galaxy Evolution at High Redshift: The Future Remains Obscure. Mark Dickinson (NOAO)

Galaxy Evolution at High Redshift: The Future Remains Obscure. Mark Dickinson (NOAO) Galaxy Evolution at High Redshift: The Future Remains Obscure Mark Dickinson (NOAO) Galaxy Evolution at High Redshift: The Future Remains Obscure Past Mark Dickinson (NOAO) IRAS FIDEL 60μm MIPS 160μm 70μm

More information

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS Astr 598: Astronomy with SDSS Spring Quarter 4, University of Washington, Željko Ivezić Lecture : SDSS Sources at Other Wavelengths: From X rays to radio Large Surveys at Many Wavelengths SDSS: UV-IR five-band

More information

Cavendish Laboratory, Madingley Road, Cambridge, UK

Cavendish Laboratory, Madingley Road, Cambridge, UK THE DIFFERENTIAL MAGNIFICATION OF HIGH- REDSHIFT ULTRALUMINOUS INFRARED GALAXIES A. W. BLAIN Cavendish Laboratory, Madingley Road, Cambridge, UK 1. Introduction The spectral energy distribution (SED) of

More information

GALAXY EVOLUTION STUDIES AND HIGH PERFORMANCE COMPUTING

GALAXY EVOLUTION STUDIES AND HIGH PERFORMANCE COMPUTING GALAXY EVOLUTION STUDIES AND HIGH PERFORMANCE COMPUTING Andreas Efstathiou European University Cyprus Astrophysics and HPC group ACTIVE AREAS OF ASTRONOMY OPPORTUNITIES FOR THEORETICAL, OBSERVATIONAL AND

More information

Galaxy Activity in Semi Analytical Models. Fabio Fontanot (INAF OATs) Ljubljana 05/04/11

Galaxy Activity in Semi Analytical Models. Fabio Fontanot (INAF OATs) Ljubljana 05/04/11 Galaxy Activity in Semi Analytical Models Fabio Fontanot (INAF OATs) Ljubljana 05/04/11 Part I: Theoretical background 1. Baryonic gas falls in the gravitational potential of Dark Matter Halos 2. Baryonic

More information

Age-redshift relation. The time since the big bang depends on the cosmological parameters.

Age-redshift relation. The time since the big bang depends on the cosmological parameters. Age-redshift relation The time since the big bang depends on the cosmological parameters. Lyman Break Galaxies High redshift galaxies are red or absent in blue filters because of attenuation from the neutral

More information

On the Assembly of Galaxies in Dark Matter Halos

On the Assembly of Galaxies in Dark Matter Halos On the Assembly of Galaxies in Dark Matter Halos...new insights from halo occupation modeling... collaborators: Zhankhui Lu, Houjun Mo, Neal Katz, Martin Weinberg (UMass), Xiaohu Yang, Youcai Zhang, Jiaxin

More information

UNder CLose Examination: Semi Analytical Models

UNder CLose Examination: Semi Analytical Models UNder CLose Examination: Semi Analytical Models Jerusalem Winter School 2003-2004 Frank van den Bosch (ETH Zürich) Outline Semi-Analytical Models: Ingredients Merger Trees; the skeleton of hierarchical

More information

Ionization Feedback in Massive Star Formation

Ionization Feedback in Massive Star Formation Ionization Feedback in Massive Star Formation Thomas Peters Institut für Theoretische Astrophysik Zentrum für Astronomie der Universität Heidelberg Ralf Klessen, Robi Banerjee (ITA, Heidelberg) Mordecai-Mark

More information

The Cosmic History of Star Formation. James Dunlop Institute for Astronomy, University of Edinburgh

The Cosmic History of Star Formation. James Dunlop Institute for Astronomy, University of Edinburgh The Cosmic History of Star Formation James Dunlop Institute for Astronomy, University of Edinburgh PLAN 1. Background 2. Star-formation rate (SFR) indicators 3. The last ~11 billion years: 0 < z < 3 4.

More information

THE CONNECTION BETWEEN STAR FORMATION AND DARK MATTER HALOS AS SEEN IN THE INFRARED

THE CONNECTION BETWEEN STAR FORMATION AND DARK MATTER HALOS AS SEEN IN THE INFRARED ESLAB 2013 04/04/2013 Noordwijk THE CONNECTION BETWEEN STAR FORMATION AND DARK MATTER HALOS AS SEEN IN THE INFRARED Material at http://irfu.cea.fr/sap/phocea/page/index.php?id=537 Matthieu Béthermin In

More information

Extragalactic Astronomy

Extragalactic Astronomy Extragalactic Astronomy Topics: Milky Way Galaxies: types, properties, black holes Active galactic nuclei Clusters and groups of galaxies Cosmology and the expanding universe Formation of structure Galaxies

More information

Cosmological Background Radiation and Extragalactic Gamma-ray Opacity

Cosmological Background Radiation and Extragalactic Gamma-ray Opacity Cosmological Background Radiation and Extragalactic Gamma-ray Opacity Rudy Gilmore SISSA TeV Particle Astrophysics July 21, 2010 Collaborators: Joel Primack - UCSC Rachel Somerville - STScI (Baltimore)

More information

AGN in hierarchical galaxy formation models

AGN in hierarchical galaxy formation models AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Physics of Galactic Nuclei, Ringberg Castle, June 18, 2009 Outline Brief introduction

More information

Radio Nebulae around Luminous Blue Variable Stars

Radio Nebulae around Luminous Blue Variable Stars Radio Nebulae around Luminous Blue Variable Stars Claudia Agliozzo 1 G. Umana 2 C. Trigilio 2 C. Buemi 2 P. Leto 2 A. Ingallinera 1 A. Noriega-Crespo 3 J. Hora 4 1 University of Catania, Italy 2 INAF-Astrophysical

More information

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers?

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers? Elaine M. Sadler Black holes in massive galaxies Demographics of radio galaxies nearby and at z~0.55 Are radio galaxies signposts to black-hole mergers? Work done with Russell Cannon, Scott Croom, Helen

More information

On the influence of environment on star-forming galaxies

On the influence of environment on star-forming galaxies On the influence of environment on star-forming galaxies Lizhi Xie 谢利智 Tianjin Normal University; INAF-OATS Collaborators: G. De Lucia; F. Fontanot; D. Wilman; M. Fossati Galaxy properties correlate with

More information

University of Groningen

University of Groningen University of Groningen The far infra-red SEDs of main sequence and starburst galaxies Cowley, William Ian; Béthermin, Matthieu; Lagos, Claudia del P.; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun

More information

IRS Spectroscopy of z~2 Galaxies

IRS Spectroscopy of z~2 Galaxies IRS Spectroscopy of z~2 Galaxies Houck et al., ApJ, 2005 Weedman et al., ApJ, 2005 Lutz et al., ApJ, 2005 Astronomy 671 Jason Marshall Opening the IR Wavelength Regime for Discovery One of the primary

More information

SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03

SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03 SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03 Jingzhe Ma University of California, Irvine Collaborators: Asantha Cooray, Arianna Brown, Hooshang Nayyeri, Hugo Messias,

More information

The shapes of faint galaxies: A window unto mass in the universe

The shapes of faint galaxies: A window unto mass in the universe Lecture 15 The shapes of faint galaxies: A window unto mass in the universe Intensity weighted second moments Optimal filtering Weak gravitational lensing Shear components Shear detection Inverse problem:

More information

The Formation of Galaxies: connecting theory to data

The Formation of Galaxies: connecting theory to data Venice, October 2003 The Formation of Galaxies: connecting theory to data Simon D.M. White Max Planck Institute for Astrophysics The Emergence of the Cosmic Initial Conditions > 105 independent ~ 5 measurements

More information