Astronomy C. Madison Brady

Size: px
Start display at page:

Download "Astronomy C. Madison Brady"

Transcription

1 Madison Brady Disclaimer: This presentation was prepared using draft rules. There may be some changes in the final copy of the rules.

2 Overview Stellar evolution and type II supernovae, as well as astronomical diagrams and calculation methods. Team of up to two Each team may bring: up to two three-ring binders of any size containing information in any form and from any source, attached using the available rings. Eye protection not required

3 Basics of This Event This year s focus is on stellar evolution and Type II Supernovae Students will be expected to be familiar with objects from the list and be able to identify them with the usage of images, diagrams, light curves, or other data Students should also be able to perform astronomical calculations

4 Changes From Last Year Focus is on Type II instead of Type Ia supernovae Type II result from the collapse of a massive star at the end of its life, Type Ia result from a white dwarf accreting enough mass to exceed the Chandrasekhar limit Examining different types of stellar objects More focus on large and late-stage objects (such as Wolf-Rayet stars, hypergiants, Cepheids, Luminous Blue Variables) New objects (elaborated upon in next slide)

5 New Objects - Star-Forming Regions NGC 6357 ( Lobster Nebula ), a HII region known for its very high population of extremely massive young stars NGC 7822, a HII region which contains an extremely hot eclipsing binary system and pillar-like formations known as elephant trunks

6 New Objects - Variables Alpha Orionis (Betelgeuse), a red supergiant semiregular variable. It is one of the brightest stars in the night sky. AG Carinae, a luminous blue variable and one of the most luminous stars in the Milky Way S Doradus, a Luminous Blue Variable in the LMC, prototypical LBV

7 New Objects - Binary Systems HR 5171, a system of three stars, two of which form an eclipsing binary system. The primary is a hypergiant and the largest known yellow star. Circinus X-1, an X-ray binary system containing a neutron star. It is one of the youngest observed X-ray binary systems.

8 New Objects - Stellar Remnants Geminga, a neutron star gamma-ray source. It was not identified as a neutron star until years after its discovery. M82 X-2, an X-ray pulsar with an exceptionally high luminosity possibly caused by the infalling of material along magnetic field lines. PSR B , a bright radio pulsar with very little gamma emission (essentially the reverse of Geminga)

9 New Objects - Supernova Remnants IC 443 ( Jellyfish Nebula ), a supernova remnant that is undergoing interesting interactions with surrounding molecular clouds DEM L241, a supernova remnant. It is a binary system, and its companion survived the blast. RCW103, a supernova remnant consisting of a very slowly-spinning neutron star (~6.5 hours)

10 New Objects - Supernova Remnants SN W49B, the most recent black hole in the Milky Way (with an age about a thousand years as viewed from Earth) SN 1987A, a nearby supernova which allowed astronomers to study the process of a supernova in detail ASASSn-15lh, a bright object. It may be a Type 1 supernova or a tidal disruption event around a black hole.

11 Key Formulas Kepler s third law Parallax Hubble s Law Luminosity Blackbody Radiation Distance Modulus Cepheid Period-Luminosity Relationship

12 Coaching Tips Familiarize students with all of the objects from the list. Identify and teach key equations, practice calculations using tests from past years. Students typically have the most trouble with computation, so get lots of practice! Intuitively understand the basics of stellar evolution for several different star masses. This way, even if the student does not know the specific answer to a question, they can at least make an informed guess based off of what they know is possible.

13 Common Pitfalls Common ways to lose points on tests: Misidentifying objects (if subsequent questions are about the object, a bad ID can ruin your score) Mis-copying formulas or generally not understanding calculations (this event can be heavily computational, students should understand how to compute basic values or else lose lots of points) Misusing units (for example, substituting a luminosity into the magnitude equation can cause quite a headache, and mistaking kilometers for astronomical units can make an answer many orders of magnitude off)

14 Example Questions Given an image of a light curve, determine what type of variable a star is. Describe what causes the mass-loss of a Wolf-Rayet star. Describe a typical gamma-ray binary system. List two theories regarding the nature of ASASSn-15lh. Given an image of a star with a scale bar, determine its width in AU. Use this derived radius to calculate its apparent magnitude, knowing that its temperature is 3000 k and it is 30 ly from Earth.

15 Resources Science Olympiad Student Center - Astronomy Wiki, Question Marathons, Test Exchange Science Olympiad National Website Outside Websites: Chandra, NASA, Hubble Univ. of California, San Diego, Center for Astrophysics and Space Sciences Website

Science Olympiad Astronomy C Division Event MIT Invitational

Science Olympiad Astronomy C Division Event MIT Invitational Science Olympiad Astronomy C Division Event MIT Invitational Massachusetts Institute of Technology Cambridge, MA January 20, 2018 Team Number: Team Name: Instructions: 1) Please turn in all materials at

More information

National Science Olympiad Astronomy C Event 2013 Stellar Evolution and Type II Supernovas

National Science Olympiad Astronomy C Event 2013 Stellar Evolution and Type II Supernovas National Science Olympiad Astronomy C Event 2013 Stellar Evolution and Type II Supernovas DISCLAIMER This presentation was prepared using draft rules. There may be some changes in the final copy of the

More information

Science Olympiad Astronomy Event Division C. Supervisor: JoDee Baker.

Science Olympiad Astronomy Event Division C. Supervisor: JoDee Baker. Science Olympiad Astronomy Event Division C Supervisor: JoDee Baker email: jbakermaloney@gmail.com From 2013 National Rules: ASTRONOMY, Division C DESCRIPTION: Students will demonstrate an understanding

More information

Astronomy C UT Regional, Spring 2018 Contact: Dhruva Karkada,

Astronomy C UT Regional, Spring 2018 Contact: Dhruva Karkada, Astronomy C UT Regional, Spring 2018 Contact: Dhruva Karkada, dkarkada@gmail.com Competitors: School Name: Team Number: This test contains 5 sections, cumulatively worth 150 points. As always, you ll have

More information

Study aid -1. Google each object,

Study aid -1. Google each object, 2018 Div. C (High School) Astronomy Help Session Sunday, Feb. 18 th, 2018 Stellar Evolution and Type II supernovae Scott Jackson Mt. Cuba Astronomical Observatory 1 SO competition on March 3rd. Resources

More information

Science Olympiad UW- Milwaukee Regional. Astronomy Test

Science Olympiad UW- Milwaukee Regional. Astronomy Test Astronomy Test Choose the option that best describes the answer to the question. Mark your answer clearly on the answer sheet. Answers that are not readable will be marked incorrect. Tie breaker questions

More information

Astronomy C Captains Tryouts

Astronomy C Captains Tryouts Astronomy C Captains Tryouts Acton-Boxborough Regional High School Written by Antonio Frigo 19 Name: Instructions: 1) Turn in all materials at end of testing period. 2) Do not forget to put your name on

More information

Astronomy C UT Regional, Spring 2018 Contact: Dhruva Karkada,

Astronomy C UT Regional, Spring 2018 Contact: Dhruva Karkada, Astronomy C UT Regional, Spring 2018 Contact: Dhruva Karkada, dkarkada@gmail.com Competitors: School Name: Team Number: This test contains 5 sections, cumulatively worth 150 points. As always, you ll have

More information

Astronomy. Stellar Evolution & Type II Supernovae. raxu. August 2017

Astronomy. Stellar Evolution & Type II Supernovae. raxu. August 2017 Astronomy Stellar Evolution & Type II Supernovae raxu August 2017 This test is designed to be around a Regional test in difficulty. There are 30+60+50=140 points total. Answer all questions on the answer

More information

3/18/14. Today on Stellar Explosions. Second Mid-Term Exam. Things to do SECOND MID-TERM EXAM. Making a millisecond pulsars spin it up!

3/18/14. Today on Stellar Explosions. Second Mid-Term Exam. Things to do SECOND MID-TERM EXAM. Making a millisecond pulsars spin it up! 3/18/14 ASTR 1040: Stars & Galaxies Binary mass transfer: accretion disk Today on Stellar Explosions Spinning up pulsars through mass transfer from (surviving!) companions White dwarf supernovae from mass

More information

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes Astronomy Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes are hot, compact stars whose mass is comparable to the Sun's and size to the Earth's. A. White dwarfs B. Neutron stars

More information

Astronomy C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name: Team Number:

Astronomy C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name: Team Number: Astronomy C Science Olympiad North Regional Tournament at the University of Florida Rank: Points: Name(s): Team Name: School Name: Team Number: 0 Write all answers on the provided answer sheets. Only answers

More information

29:50 Stars, Galaxies, and the Universe Second Hour Exam November 10, 2010 Form A

29:50 Stars, Galaxies, and the Universe Second Hour Exam November 10, 2010 Form A 29:50 Stars, Galaxies, and the Universe Second Hour Exam November 10, 2010 Form A There are 20 questions (Note: There will be 32 on the real thing). Read each question and all of the choices before choosing.

More information

Science Olympiad Astronomy C Division Event University of Chicago Invitational

Science Olympiad Astronomy C Division Event University of Chicago Invitational Science Olympiad Astronomy C Division Event University of Chicago Invitational The University of Chicago Chicago, IL January 12, 2019 Team Number: Team Name: Instructions: 1) Please turn in all materials

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies AST 101 Introduction to Astronomy: Stars & Galaxies Life and Death of High Mass Stars (M > 8 M sun ) REVIEW Last stage: Iron core surrounded by shells of increasingly lighter elements. REVIEW When mass

More information

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

More information

Stellar Astronomy Sample Questions for Exam 4

Stellar Astronomy Sample Questions for Exam 4 Stellar Astronomy Sample Questions for Exam 4 Chapter 15 1. Emission nebulas emit light because a) they absorb high energy radiation (mostly UV) from nearby bright hot stars and re-emit it in visible wavelengths.

More information

The Stellar Graveyard Neutron Stars & White Dwarfs

The Stellar Graveyard Neutron Stars & White Dwarfs The Stellar Graveyard Neutron Stars & White Dwarfs White Dwarfs White dwarfs are the remaining cores of low-mass (M < 8M sun ) stars Electron degeneracy pressure supports them against gravity Density ~

More information

The Bizarre Stellar Graveyard

The Bizarre Stellar Graveyard The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White dwarfs

More information

The distance modulus in the presence of absorption is given by

The distance modulus in the presence of absorption is given by Problem 4: An A0 main sequence star is observed at a distance of 100 pc through an interstellar dust cloud. Furthermore, it is observed with a color index B-V = 1.5. What is the apparent visual magnitude

More information

Today. Logistics. Visible vs. X-ray X. Synchrotron Radiation. Pulsars and Neutron Stars. ASTR 1040 Accel Astro: Stars & Galaxies

Today. Logistics. Visible vs. X-ray X. Synchrotron Radiation. Pulsars and Neutron Stars. ASTR 1040 Accel Astro: Stars & Galaxies ASTR 1040 Accel Astro: Stars & Galaxies Today Binary mass transfer Joys of nearest supernova: SN 1987A How mass transfer from binary companion can spin-up pulsar White dwarf supernovae from mass transfer

More information

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant.

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. The Deaths of Stars The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. Once the giant phase of a mediummass star ends, it exhales its outer

More information

Comparing a Supergiant to the Sun

Comparing a Supergiant to the Sun The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

More information

Neutron Stars. We now know that SN 1054 was a Type II supernova that ended the life of a massive star and left behind a neutron star.

Neutron Stars. We now know that SN 1054 was a Type II supernova that ended the life of a massive star and left behind a neutron star. Neutron Stars Neutron Stars The emission from the supernova that produced the crab nebula was observed in 1054 AD by Chinese, Japanese, Native Americans, and Persian/Arab astronomers as being bright enough

More information

Science Olympiad 2008 Reach for the Stars Division B

Science Olympiad 2008 Reach for the Stars Division B Science Olympiad 2008 Reach for the Stars Division B February 23, 2008 Team Number 0) Label an HR diagram With this test, you have been given a blank HR diagram. Provided is a list of objects and labels

More information

Starlight in the Night: Discovering the secret lives of stars

Starlight in the Night: Discovering the secret lives of stars Utah State University DigitalCommons@USU Public Talks Astrophysics 8-2-2008 Starlight in the Night: Discovering the secret lives of stars Shane L. Larson Utah State University Follow this and additional

More information

Evolution of High Mass stars

Evolution of High Mass stars Evolution of High Mass stars Neutron Stars A supernova explosion of a M > 8 M Sun star blows away its outer layers. The central core will collapse into a compact object of ~ a few M Sun. Pressure becomes

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Central Florida May 17, 2014 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2) Do

More information

Wednesday, January 25, 2017

Wednesday, January 25, 2017 Wednesday, January 25, 2017 Powerpoint of lectures posted as pdf after every class, on Canvas and at http://www.as.utexas.edu/astronomy/education/spring17/wheeler/ 309n.html?a=lec Wednesday Star Parties

More information

Planetary Nebulae evolve to White Dwarf Stars

Planetary Nebulae evolve to White Dwarf Stars Planetary Nebulae evolve to White Dwarf Stars Planetary Nebulae When Red Giant exhausts its He fuel the C core contracts Low & medium-mass stars don t have enough gravitational energy to heat to core 6

More information

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc. Chapter 14: The Bizarre Stellar Graveyard Assignments 2 nd Mid-term to be held Friday Nov. 3 same basic format as MT1 40 mult. choice= 80 pts. 4 short answer = 20 pts. Sample problems on web page Origin

More information

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar. Chapter 11: Neutron Stars and Black Holes A supernova explosion of an M > 8 M sun star blows away its outer layers. Neutron Stars The central core will collapse into a compact object of ~ a few M sun.

More information

Names: Team: Team Number:

Names: Team: Team Number: Astronomy C Michigan Region 8 March 11, 2017 Names: Team: Team Number: Directions 1. There is a separate answer sheet. Answers written elsewhere (e.g. on the test) will not be considered. 2. You may take

More information

Lecture 8: Stellar evolution II: Massive stars

Lecture 8: Stellar evolution II: Massive stars Lecture 8: Stellar evolution II: Massive stars Senior Astrophysics 2018-03-27 Senior Astrophysics Lecture 8: Stellar evolution II: Massive stars 2018-03-27 1 / 29 Outline 1 Stellar models 2 Convection

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information

Chapter 18 The Bizarre Stellar Graveyard

Chapter 18 The Bizarre Stellar Graveyard Chapter 18 The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White

More information

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10 Lecture 13 : The Interstellar Medium and Cosmic Recycling Midterm Results A2020 Prof. Tom Megeath The Milky Way in the Infrared View from the Earth: Edge On Infrared light penetrates the clouds and shows

More information

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition The Bizarre Stellar Graveyard 18.1 White Dwarfs What is a white dwarf? What can happen to a white dwarf in a close binary system? What supports

More information

StarTalk. Sanjay Yengul May "To know ourselves, we must know the stars."

StarTalk. Sanjay Yengul May To know ourselves, we must know the stars. StarTalk Sanjay Yengul May 2016 "To know ourselves, we must know the stars." Twinkle Twinkle How many stars are there? How big are these stars? Picture of night sky What are they made of? Why do they shine?

More information

2019 Astronomy Team Selection Test

2019 Astronomy Team Selection Test 2019 Astronomy Team Selection Test Acton-Boxborough Regional High School Written by Antonio Frigo Do not flip over this page until instructed. Instructions You will have 45 minutes to complete this exam.

More information

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: Stellar Remnants Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu March 24, 2015 Read: S3, Chap 18 03/24/15 slide 1 Exam #2: March 31 One week from today!

More information

Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review

Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review 16-1 Fusion in the Sun The solar corona has temperatures roughly the same as temperatures in the Sun's core, where nuclear fusion takes place.

More information

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars The Death of Stars Today s Lecture: Post main-sequence (Chapter 13, pages 296-323) How stars explode: supernovae! White dwarfs Neutron stars White dwarfs Roughly the size of the Earth with the mass of

More information

3/13/18. Things to do. Synchrotron Radiation. Today on Stellar Explosions

3/13/18. Things to do. Synchrotron Radiation. Today on Stellar Explosions ASTR 1040: Stars & Galaxies Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 17 Tues 13 Mar 2018 zeus.colorado.edu/astr1040-toomre Ring Nebula Today on Stellar Explosions Revisit Pulsars spinning

More information

NATIONAL SCIENCE OLYMPIAD ASTRONOMY C DIVISION EVENT 10 MAY 2003 OHIO STATE UNIVERSITY COLUMBUS, OHIO

NATIONAL SCIENCE OLYMPIAD ASTRONOMY C DIVISION EVENT 10 MAY 2003 OHIO STATE UNIVERSITY COLUMBUS, OHIO NATIONAL SCIENCE OLYMPIAD ASTRONOMY C DIVISION EVENT 10 MAY 2003 OHIO STATE UNIVERSITY COLUMBUS, OHIO TEAM NUMBER: TEAM NAME: INSTRUCTIONS: 1) Please turn in ALL materials at the end of the event. 2) Do

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

National Science Olympiad Astronomy C Division Event 19 May 2012 University of Central Florida Orlando, FL

National Science Olympiad Astronomy C Division Event 19 May 2012 University of Central Florida Orlando, FL National Science Olympiad Astronomy C Division Event 19 May 2012 University of Central Florida Orlando, FL Artist Illustration of Red Giant, White Dwarf and Accretion Disk (Wikimedia) TEAM NUMBER: TEAM

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

Chapter 14: The Bizarre Stellar Graveyard

Chapter 14: The Bizarre Stellar Graveyard Lecture Outline Chapter 14: The Bizarre Stellar Graveyard 14.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf?

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9 Phys 0 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9 MULTIPLE CHOICE 1. We know that giant stars are larger in diameter than the sun because * a. they are more luminous but have about the

More information

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name Astronomy 132 - Stars, Galaxies and Cosmology Exam 3 Please PRINT full name Also, please sign the honor code: I have neither given nor have I received help on this exam The following exam is intended to

More information

Science Olympiad Astronomy C Division Event Golden Gate Invitational

Science Olympiad Astronomy C Division Event Golden Gate Invitational Science Olympiad Astronomy C Division Event Golden Gate Invitational University of California, Berkeley Berkeley, CA February 9, 2019 Team Number: Team Name: Instructions: 1) Please turn in all materials

More information

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: Stellar Remnants Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu October 28, 2014 Read: S3, Chap 18 10/28/14 slide 1 Exam #2: November 04 One week from today!

More information

Astronomy C. Captains Tryouts Raleigh Charter High School. Written by anna1234. Name: Instructions:

Astronomy C. Captains Tryouts Raleigh Charter High School. Written by anna1234. Name: Instructions: Total Score: / 84 Astronomy C Captains Tryouts 2019 Raleigh Charter High School Written by anna1234 Name: 1. These constants will be used throughout the test: Instructions: a. 1 Parsec = 3.1 x 10 16 meters

More information

Editorial comment: research and teaching at UT

Editorial comment: research and teaching at UT Wednesday, March 23, 2017 Reading for Exam 3: Chapter 6, end of Section 6 (binary evolution), Section 6.7 (radioactive decay), Chapter 7 (SN 1987A), Background: Sections 3.1, 3.2, 3.3, 3.4, 3.5, 3.8, 3.10,

More information

Chapter 9. Stars. The Hertzsprung-Russell Diagram. Topics for Today s Class. Phys1411 Introductory Astronomy Instructor: Dr.

Chapter 9. Stars. The Hertzsprung-Russell Diagram. Topics for Today s Class. Phys1411 Introductory Astronomy Instructor: Dr. Foundations of Astronomy 13e Seeds Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 9 Stars Cengage Learning 2016 Topics for Today s Class HR Diagram Variable Stars Intrinsic Variables Cepheids

More information

Cassiopeia A: Supernova Remnant

Cassiopeia A: Supernova Remnant Crab Nebula: Pulsar During a supernova, the core of a massive star can be compressed to form a rapidly rotating ball composed mostly of neutrons that is only twelve miles in diameter. A teaspoon of such

More information

Supernovae, Neutron Stars, Pulsars, and Black Holes

Supernovae, Neutron Stars, Pulsars, and Black Holes Supernovae, Neutron Stars, Pulsars, and Black Holes Massive stars and Type II supernovae Massive stars (greater than 8 solar masses) can create core temperatures high enough to burn carbon and heavier

More information

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

Astro 1050 Fri. Apr. 10, 2015

Astro 1050 Fri. Apr. 10, 2015 Astro 1050 Fri. Apr. 10, 2015 Today: Continue Ch. 13: Star Stuff Reading in Bennett: For Monday: Finish Chapter 13 Star Stuff Reminders: Ch. 12 HW now on Mastering Astronomy, due Monday. Ch. 13 will be

More information

Chapter 18 The Bizarre Stellar Graveyard. White Dwarfs. What is a white dwarf? Size of a White Dwarf White Dwarfs

Chapter 18 The Bizarre Stellar Graveyard. White Dwarfs. What is a white dwarf? Size of a White Dwarf White Dwarfs Chapter 18 The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

CHAPTER 28 STARS AND GALAXIES

CHAPTER 28 STARS AND GALAXIES CHAPTER 28 STARS AND GALAXIES 28.1 A CLOSER LOOK AT LIGHT Light is a form of electromagnetic radiation, which is energy that travels in waves. Waves of energy travel at 300,000 km/sec (speed of light Ex:

More information

Visit for more fantastic resources. Edexcel. A Level. A Level Physics. Astrophysics 1 (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. Edexcel. A Level. A Level Physics. Astrophysics 1 (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. Edexcel A Level A Level Physics Astrophysics 1 (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. Amongst

More information

First: Some Physics. Tides on the Earth. Lecture 11: Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes A2020 Prof. Tom Megeath. 1.

First: Some Physics. Tides on the Earth. Lecture 11: Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes A2020 Prof. Tom Megeath. 1. Lecture 11: Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes A2020 Prof. Tom Megeath First: Some Physics 1. Tides 2. Degeneracy Pressure Concept 1: How does gravity cause tides? R F tides

More information

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA Ay 1 Midterm Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA You have THREE HOURS to complete the exam, but it is about two hours long. The

More information

Friday, March 21, 2014 Reading for Exam 3: End of Section 6.6 (Type Ia binary evolution), 6.7 (radioactive decay), Chapter 7 (SN 1987A), NOT Chapter

Friday, March 21, 2014 Reading for Exam 3: End of Section 6.6 (Type Ia binary evolution), 6.7 (radioactive decay), Chapter 7 (SN 1987A), NOT Chapter Friday, March 21, 2014 Reading for Exam 3: End of Section 6.6 (Type Ia binary evolution), 6.7 (radioactive decay), Chapter 7 (SN 1987A), NOT Chapter 8 (Neutron Stars), keep for Exam 4. Background: Sections

More information

Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

More information

ASTRONOMY. MINNESOTA REGIONS 2011 by Michael Huberty

ASTRONOMY. MINNESOTA REGIONS 2011 by Michael Huberty ASTRONOMY MINNESOTA REGIONS 2011 by Michael Huberty Team Number School Name Total Points You may tear this sheet off of the rest of the test to use as your answer sheet. Please make sure that you print

More information

Ch. 16 & 17: Stellar Evolution and Death

Ch. 16 & 17: Stellar Evolution and Death Ch. 16 & 17: Stellar Evolution and Death Stars have lives: born, evolve, die Mass determines stellar evolution: Really Low Mass (0.08 to 0.4 M sun ) Low Mass: (0.4 to 4 M sun ) Long lives High Mass (4

More information

Neutron Stars. Melissa Louie

Neutron Stars. Melissa Louie Neutron Stars Melissa Louie 11-08-10 Outline History, Formation, Properties Detection Pulsars Crab Nebula Pulsar Pulsar Timing Pulsars in Binary Systems Isolated Neutron Stars J185635-3754 Summary 2 The

More information

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table:

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table: Compton Lecture #4: Massive Stars and Welcome! On the back table: Supernovae Lecture notes for today s s lecture Extra copies of last week s s are on the back table Sign-up sheets please fill one out only

More information

Science Olympiad Astronomy C Regional Event February 11, 2017 Maryland

Science Olympiad Astronomy C Regional Event February 11, 2017 Maryland Science Olympiad Astronomy C Regional Event February 11, 2017 Maryland TEAM NUMBER: TEAM NAME: INSTRUCTIONS: 1) Please turn in ALL MATERIALS at the end of this event. 2) Do not forget to put your TEAM

More information

Chapter 18 Lecture. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 18 Lecture. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc. Chapter 18 Lecture The Cosmic Perspective Seventh Edition The Bizarre Stellar Graveyard The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to

More information

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars Lecture 11 Stellar Evolution Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars A Spiral Galaxy (Milky Way Type) 120,000 ly A few hundred billion stars

More information

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

PHYS103 Sec 901 Hour Exam No. 3 Page: 1 PHYS103 Sec 901 Hour Exam No. 3 Page: 1 PHYS103 Sec 901 Hour Exam No. 3 Page: 2 1 The star alpha-centauri C has moved across the sky by 3853 seconds of arc during the last thousand years - slightly more

More information

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

PHYS103 Sec 901 Hour Exam No. 3 Page: 1 PHYS103 Sec 901 Hour Exam No. 3 Page: 1 PHYS103 Sec 901 Hour Exam No. 3 Page: 2 1 A steady X-ray signal with sudden bursts lasting a few seconds each is probably caused by a. a supermassive star. b. a

More information

White dwarfs are the remaining cores of dead stars. Electron degeneracy pressure supports them against the crush of gravity. The White Dwarf Limit

White dwarfs are the remaining cores of dead stars. Electron degeneracy pressure supports them against the crush of gravity. The White Dwarf Limit The Bizarre Stellar Graveyard Chapter 18 Lecture The Cosmic Perspective 18.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to a white dwarf in a close binary system? Seventh

More information

AN INTRODUCTIONTO MODERN ASTROPHYSICS

AN INTRODUCTIONTO MODERN ASTROPHYSICS AN INTRODUCTIONTO MODERN ASTROPHYSICS Second Edition Bradley W. Carroll Weber State University DaleA. Ostlie Weber State University PEARSON Addison Wesley San Francisco Boston New York Cape Town Hong Kong

More information

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Brock University Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

More information

Supernovae Through the Ages

Supernovae Through the Ages Supernovae Through the Ages We ourselves are stardust. -Carl Sagan Jason Kezwer September 11, 2013 Outline - What are supernovae? Why are they important? - An observational history - How supernovae affect

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

Astronomy 104: Second Exam

Astronomy 104: Second Exam Astronomy 104: Second Exam Stephen Lepp October 29, 2014 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer A The Sun is powered by converting hydrogen to what?

More information

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2) Chapter 12 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) As a main-sequence star, the Sun's hydrogen supply should last about 10 billion years from the zero-age

More information

Abundance of Elements. Relative abundance of elements in the Solar System

Abundance of Elements. Relative abundance of elements in the Solar System Abundance of Elements Relative abundance of elements in the Solar System What is the origin of elements in the universe? Three elements formed in the first minutes after the big bang (hydrogen, helium

More information

Stars. For Jupiter: M/Msun = 0.001

Stars. For Jupiter: M/Msun = 0.001 Stars Stars are classified by spectral classes O,B,A,F,G,K,M Oh be a fine girl (or guy), kiss me! Key here is the effective temperature of the star (surface temperature) Difference in spectrum is due to

More information

Star Formation. Stellar Birth

Star Formation. Stellar Birth Star Formation Lecture 12 Stellar Birth Since stars don t live forever, then they must be born somewhere and at some time in the past. How does this happen? And when stars are born, so are planets! 1 Molecular

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

Stellar Evolution: from star birth to star death and back again

Stellar Evolution: from star birth to star death and back again Stellar Evolution: from star birth to star death and back again Prof. David Cohen Dept. of Physics and Astronomy This presentation is available at: astro.swarthmore.edu/~cohen/presentations/admitted_students_2006/

More information

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Brock University Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Number of hours: 50 min Time of Examination: 18:00 15:50 Instructor:

More information

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

More information

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study Stars, Galaxies, a the Universe Stars, Galaxies, and the Universe Telescopes Use Target Reading Skills Check student definitions for accuracy. 1. Electromagneticradiationisenergythatcan travel through

More information

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath Review: Creating Stellar Remnants Binaries may be destroyed in white dwarf supernova Binaries be converted into black holes Review: Stellar

More information

Stars & Galaxies. Chapter 27 Modern Earth Science

Stars & Galaxies. Chapter 27 Modern Earth Science Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars How do astronomers determine the composition and surface temperature of a star? Composition & Temperature

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6.

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6. Supernovae The spectra of supernovae fall into many categories (see below), but beginning in about 1985, astronomers recognized that there were physically, only two basic types of supernovae: Type Ia and

More information