Figure 18: Top row: example of a purely continuous spectrum (left) and one realization

Size: px
Start display at page:

Download "Figure 18: Top row: example of a purely continuous spectrum (left) and one realization"

Transcription

1 1..5 S() requency time time Lag 1..5 S() requency time time Lag Figure 18: Top row: example o a purely continuous spectrum (let) and one realization o length 128 (right). Bottom row: example o a purely discrete spectrum (let) and one realization o length 128 (right). Figure 19: Top row: realization o process with purely continuous spectrum (let) and sample autocorrelation (right). Bottom row: realization o process with purely discrete spectrum (let) and sample autocorrelation (right). 19 2

2 sd () acvs Lag sd () acvs Lag t Figure 2: Two spectral density unctions (let) and their corresponding autocovariance sequences (right). Figure 21: Illustration o the aliasing eect. The dotted curves above show cos(t) versus t. The solid curves show cos([1 + 2kπ]t) versus t or (rom top to bottom) k = 1, 2 and 3. The solid black squares show the common value o all our sinusoids when sampled at t =, 1,...,

3 Fig 21a: The concept o aliasing illustrated or two dierent sample intervals. In each picture the thin black line is the continuous spectrum, and the thick black line is the resulting spectrum or the discrete process (which is periodic, as shown by its continuation with the thick grey line).!"#$..25.5!"#%..25.5! "#$..25.5! "#% Figure 22: Examples o MA(1) spectra when θ 1,1 is positive we have a high requency spectrum and when θ 1,1 is negative we have a low requency spectrum 23

4 !"#$! "#$!"#$%&#$%' (#$%( (#$%)!" #$% #$%' (" #$%)( (" #$%)) !"#%! "#%..25.5!"#$% #$*' ("#$%)( (" #$*)!" #$%&#$*' (" #$%)( ("#$*)) Figure 23: Examples o AR(1) spectra when φ 1,1 is positive we have a low requency spectrum and when φ 1,1 is negative we have a high requency spectrum Figure 24: Examples o AR(2) spectra with real characteristic reciprocal roots, a = r 1 and b = r 2, giving AR parameter values o: φ 1,2 = r 1 + r 2 and φ 2,2 = r 1 r

5 !"#$%&'(#)# '%*+'$#,!"#$%$--#)# '%.*#, !"# $%&'(#)# '%*+'$#,!"# $%$--#)# '%.*#, Figure 25: Examples o AR(2) spectra with complex characteristic reciprocal roots, re ±i2π, with r =.99 or the plots in the let column and r =.7 or the plots in the right column, and =.1 or the plots in the irst row, and =.4 or the plots in the second row, the AR parameter values (as shown in the titles) can be calculated rom φ 1,2 = 2r cos(2π) and φ 2,2 = r 2 Figure 26: Inconsistency o the periodogram. The plots show the periodogram (on a decibel scale) o a unit variance white noise process o length (rom top to bottom) N = 128, 256 and 124. The horizontal dashed line indicates the true sd

6 Figure 27: Fejér s kernel or sample sizes N = 8, 32 and 128 Figure 28: Bias properties o the periodogram or an AR(2) process with low dynamic range. The thick curves are the true sd S(), while the thin curves are E{Ŝ(p) ()} or sample sizes (rom top to bottom) N = 16 and

7 h h h Figure 29: Bias properties o the periodogram or an AR(4) process with high dynamic range. The thick curves are the true sd S(), while the thin curves are E{Ŝ(p) ()} or sample sizes (rom top to bottom) N = 16, 64, 256 and 124. Figure 3: Dierent data tapers (let column) and associated spectral windows H() (right column), or N = 64. The tapers are a rectangular taper (top), a 2% (middle) and 5% (bottom) split cosine bell taper. 3 31

8 6 6 N=64, original data N=64, tapered data N=256, original data N=256, tapered data N=124, original data N=124, tapered data Figure 31: Bias properties o direct spectral estimators or an AR(4) process with high dynamic range, using a 2% (let column) and 5% (right column) split cosine bell taper. The thick curves are the true sd S(), while the thin curves are E{Ŝ(p) ()} or sample sizes (rom top to bottom) N = 16, 64 and 256. Figure 32: The let column shows simulations rom the AR(4) model: X t = 2.767X t X t X t X t 4 + t For (rom top to bottom) N = 64, 256 and 124. The right column shows {X t h t } where {h t } is the appropriate length 5% split cosine bell taper

9 6 N=64, Yule-Walker AR(4) 6 N=64, Yule-Walker AR(8) N=256, Yule-Walker AR(4) N=124, Yule-Walker AR(4) N=256, Yule-Walker AR(8) N=124, Yule-Walker AR(8) Figure 33: The thick line shows the spectrum o the AR(4) process associated with the Yule-Walker estimates o φ 1,4,..., φ 4,4, or the sequences shown in the let column o Figure 32 (i.e. untapered). The thin line shows the true spectrum. Figure 34: The thick line shows the spectrum o the AR(8) process associated with the Yule-Walker estimates o φ 1,8,..., φ 8,8, or the sequences shown in the let column o Figure 32 (i.e. untapered). The thin line shows the true spectrum

10 6 N=64, Tapered Yule-Walker AR(4) N=256, Tapered Yule-Walker AR(4) N=124, Tapered Yule-Walker AR(4) Figure 35: The thick line shows the spectrum o the AR(4) process associated with the Yule-Walker estimates o φ 1,4,..., φ 4,4, or the sequences shown in the right column o Figure 32 (i.e. tapered). The thin line shows the true spectrum. 36

Additional exercises in Stationary Stochastic Processes

Additional exercises in Stationary Stochastic Processes Mathematical Statistics, Centre or Mathematical Sciences Lund University Additional exercises 8 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

More information

The Discrete Fourier Transform (DFT) Properties of the DFT DFT-Specic Properties Power spectrum estimate. Alex Sheremet.

The Discrete Fourier Transform (DFT) Properties of the DFT DFT-Specic Properties Power spectrum estimate. Alex Sheremet. 4. April 2, 27 -order sequences Measurements produce sequences of numbers Measurement purpose: characterize a stochastic process. Example: Process: water surface elevation as a function of time Parameters:

More information

Practical Spectral Estimation

Practical Spectral Estimation Digital Signal Processing/F.G. Meyer Lecture 4 Copyright 2015 François G. Meyer. All Rights Reserved. Practical Spectral Estimation 1 Introduction The goal of spectral estimation is to estimate how the

More information

Automatic Autocorrelation and Spectral Analysis

Automatic Autocorrelation and Spectral Analysis Piet M.T. Broersen Automatic Autocorrelation and Spectral Analysis With 104 Figures Sprin ger 1 Introduction 1 1.1 Time Series Problems 1 2 Basic Concepts 11 2.1 Random Variables 11 2.2 Normal Distribution

More information

FGN 1.0 PPL 1.0 FD

FGN 1.0 PPL 1.0 FD FGN PPL FD f f Figure SDFs for FGN, PPL and FD processes (top to bottom rows, respectively) on both linear/log and log/log aes (left- and right-hand columns, respectively) Each SDF S X ( ) is normalized

More information

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of Index* The Statistical Analysis of Time Series by T. W. Anderson Copyright 1971 John Wiley & Sons, Inc. Aliasing, 387-388 Autoregressive {continued) Amplitude, 4, 94 case of first-order, 174 Associated

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Advanced Digital Signal Processing -Introduction

Advanced Digital Signal Processing -Introduction Advanced Digital Signal Processing -Introduction LECTURE-2 1 AP9211- ADVANCED DIGITAL SIGNAL PROCESSING UNIT I DISCRETE RANDOM SIGNAL PROCESSING Discrete Random Processes- Ensemble Averages, Stationary

More information

CONTENTS NOTATIONAL CONVENTIONS GLOSSARY OF KEY SYMBOLS 1 INTRODUCTION 1

CONTENTS NOTATIONAL CONVENTIONS GLOSSARY OF KEY SYMBOLS 1 INTRODUCTION 1 DIGITAL SPECTRAL ANALYSIS WITH APPLICATIONS S.LAWRENCE MARPLE, JR. SUMMARY This new book provides a broad perspective of spectral estimation techniques and their implementation. It concerned with spectral

More information

Fourier Analysis of Stationary and Non-Stationary Time Series

Fourier Analysis of Stationary and Non-Stationary Time Series Fourier Analysis of Stationary and Non-Stationary Time Series September 6, 2012 A time series is a stochastic process indexed at discrete points in time i.e X t for t = 0, 1, 2, 3,... The mean is defined

More information

Lecture 4 - Spectral Estimation

Lecture 4 - Spectral Estimation Lecture 4 - Spectral Estimation The Discrete Fourier Transform The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier Transform for signals known only at N instants separated

More information

Statistics 349(02) Review Questions

Statistics 349(02) Review Questions Statistics 349(0) Review Questions I. Suppose that for N = 80 observations on the time series { : t T} the following statistics were calculated: _ x = 10.54 C(0) = 4.99 In addition the sample autocorrelation

More information

Harmonic Analysis: I. consider following two part stationary process: X t = µ + D l cos (2πf l t t + φ l ) {z }

Harmonic Analysis: I. consider following two part stationary process: X t = µ + D l cos (2πf l t t + φ l ) {z } Harmonic Analysis: I consider following two part stationary process: LX X t = µ + D l cos (2πf l t t + φ l ) l=1 {z } (1) part (1) is harmonic process (Equation (37c)) + η t {z} (2) µ, L, D l s and f l

More information

Lecture 11: Spectral Analysis

Lecture 11: Spectral Analysis Lecture 11: Spectral Analysis Methods For Estimating The Spectrum Walid Sharabati Purdue University Latest Update October 27, 2016 Professor Sharabati (Purdue University) Time Series Analysis October 27,

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2.

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2. 3. Fourier ransorm From Fourier Series to Fourier ransorm [, 2] In communication systems, we oten deal with non-periodic signals. An extension o the time-requency relationship to a non-periodic signal

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

CHAPTER 8 ANALYSIS OF AVERAGE SQUARED DIFFERENCE SURFACES

CHAPTER 8 ANALYSIS OF AVERAGE SQUARED DIFFERENCE SURFACES CAPTER 8 ANALYSS O AVERAGE SQUARED DERENCE SURACES n Chapters 5, 6, and 7, the Spectral it algorithm was used to estimate both scatterer size and total attenuation rom the backscattered waveorms by minimizing

More information

Review of spectral analysis methods applied to sea level anomaly signals

Review of spectral analysis methods applied to sea level anomaly signals Review of spectral analysis methods applied to sea level anomaly signals C. Mailhes 1, D. Bonacci 1, O. Besson 1, A. Guillot 2, S. Le Gac 2, N. Steunou 2, C. Cheymol 2, N. Picot 2 1. Telecommunications

More information

(a)

(a) Chapter 8 Subspace Methods 8. Introduction Principal Component Analysis (PCA) is applied to the analysis of time series data. In this context we discuss measures of complexity and subspace methods for

More information

Linear models. Chapter Overview. Linear process: A process {X n } is a linear process if it has the representation.

Linear models. Chapter Overview. Linear process: A process {X n } is a linear process if it has the representation. Chapter 2 Linear models 2.1 Overview Linear process: A process {X n } is a linear process if it has the representation X n = b j ɛ n j j=0 for all n, where ɛ n N(0, σ 2 ) (Gaussian distributed with zero

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.34: Discrete-Time Signal Processing OpenCourseWare 006 ecture 8 Periodogram Reading: Sections 0.6 and 0.7

More information

IV. Covariance Analysis

IV. Covariance Analysis IV. Covariance Analysis Autocovariance Remember that when a stochastic process has time values that are interdependent, then we can characterize that interdependency by computing the autocovariance function.

More information

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES This document is meant as a complement to Chapter 4 in the textbook, the aim being to get a basic understanding of spectral densities through

More information

TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall Problem 1.

TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall Problem 1. TLT-5/56 COMMUNICATION THEORY, Exercise 3, Fall Problem. The "random walk" was modelled as a random sequence [ n] where W[i] are binary i.i.d. random variables with P[W[i] = s] = p (orward step with probability

More information

In many diverse fields physical data is collected or analysed as Fourier components.

In many diverse fields physical data is collected or analysed as Fourier components. 1. Fourier Methods In many diverse ields physical data is collected or analysed as Fourier components. In this section we briely discuss the mathematics o Fourier series and Fourier transorms. 1. Fourier

More information

STAD57 Time Series Analysis. Lecture 23

STAD57 Time Series Analysis. Lecture 23 STAD57 Time Series Analysis Lecture 23 1 Spectral Representation Spectral representation of stationary {X t } is: 12 i2t Xt e du 12 1/2 1/2 for U( ) a stochastic process with independent increments du(ω)=

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

Signal processing Frequency analysis

Signal processing Frequency analysis Signal processing Frequency analysis Jean-Hugh Thomas (jean-hugh.thomas@univ-lemans.r) Fourier series and Fourier transorm (h30 lecture+h30 practical work) 2 Sampling (h30+h30) 3 Power spectrum estimation

More information

Part III Spectrum Estimation

Part III Spectrum Estimation ECE79-4 Part III Part III Spectrum Estimation 3. Parametric Methods for Spectral Estimation Electrical & Computer Engineering North Carolina State University Acnowledgment: ECE79-4 slides were adapted

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Autoregressive tracking of vortex shedding. 2. Autoregression versus dual phase-locked loop

Autoregressive tracking of vortex shedding. 2. Autoregression versus dual phase-locked loop Autoregressive tracking of vortex shedding Dileepan Joseph, 3 September 2003 Invensys UTC, Oxford 1. Introduction The purpose of this report is to summarize the work I have done in terms of an AR algorithm

More information

Lecture 7 Random Signal Analysis

Lecture 7 Random Signal Analysis Lecture 7 Random Signal Analysis 7. Introduction to Probability 7. Amplitude Distributions 7.3 Uniform, Gaussian, and Other Distributions 7.4 Power and Power Density Spectra 7.5 Properties of the Power

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

Time series models in the Frequency domain. The power spectrum, Spectral analysis

Time series models in the Frequency domain. The power spectrum, Spectral analysis ime series models in the Frequency domain he power spectrum, Spectral analysis Relationship between the periodogram and the autocorrelations = + = ( ) ( ˆ α ˆ ) β I Yt cos t + Yt sin t t= t= ( ( ) ) cosλ

More information

Autoregressive Models Fourier Analysis Wavelets

Autoregressive Models Fourier Analysis Wavelets Autoregressive Models Fourier Analysis Wavelets BFR Flood w/10yr smooth Spectrum Annual Max: Day of Water year Flood magnitude vs. timing Jain & Lall, 2000 Blacksmith Fork, Hyrum, UT Analyses of Flood

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

Heteroskedasticity and Autocorrelation Consistent Standard Errors

Heteroskedasticity and Autocorrelation Consistent Standard Errors NBER Summer Institute Minicourse What s New in Econometrics: ime Series Lecture 9 July 6, 008 Heteroskedasticity and Autocorrelation Consistent Standard Errors Lecture 9, July, 008 Outline. What are HAC

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 III. Stationary models 1 Purely random process 2 Random walk (non-stationary)

More information

Module 29.3: nag tsa spectral Time Series Spectral Analysis. Contents

Module 29.3: nag tsa spectral Time Series Spectral Analysis. Contents Time Series Analysis Module Contents Module 29.3: nag tsa spectral Time Series Spectral Analysis nag tsa spectral calculates the smoothed sample spectrum of a univariate and bivariate time series. Contents

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

Covariances of ARMA Processes

Covariances of ARMA Processes Statistics 910, #10 1 Overview Covariances of ARMA Processes 1. Review ARMA models: causality and invertibility 2. AR covariance functions 3. MA and ARMA covariance functions 4. Partial autocorrelation

More information

SIO 210: Data analysis

SIO 210: Data analysis SIO 210: Data analysis 1. Sampling and error 2. Basic statistical concepts 3. Time series analysis 4. Mapping 5. Filtering 6. Space-time data 7. Water mass analysis 10/8/18 Reading: DPO Chapter 6 Look

More information

SIO 210: Data analysis methods L. Talley, Fall Sampling and error 2. Basic statistical concepts 3. Time series analysis

SIO 210: Data analysis methods L. Talley, Fall Sampling and error 2. Basic statistical concepts 3. Time series analysis SIO 210: Data analysis methods L. Talley, Fall 2016 1. Sampling and error 2. Basic statistical concepts 3. Time series analysis 4. Mapping 5. Filtering 6. Space-time data 7. Water mass analysis Reading:

More information

Biomedical Signal Processing and Signal Modeling

Biomedical Signal Processing and Signal Modeling Biomedical Signal Processing and Signal Modeling Eugene N. Bruce University of Kentucky A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto

More information

Treatment and analysis of data Applied statistics Lecture 6: Bayesian estimation

Treatment and analysis of data Applied statistics Lecture 6: Bayesian estimation Treatment and analysis o data Applied statistics Lecture 6: Bayesian estimation Topics covered: Bayes' Theorem again Relation to Likelihood Transormation o pd A trivial example Wiener ilter Malmquist bias

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

SOLUTIONS BSc and MSci EXAMINATIONS (MATHEMATICS) MAY JUNE 2002 This paper is also taken for the relevant examination for the Associateship.

SOLUTIONS BSc and MSci EXAMINATIONS (MATHEMATICS) MAY JUNE 2002 This paper is also taken for the relevant examination for the Associateship. UNIVERSITY OF LONDON IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE SOLUTIONS BSc and MSci EXAMINATIONS (MATHEMATICS) MAY JUNE 00 This paper is also taken for the relevant examination for the Associateship

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before.

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before. ACF and PACF of an AR(p) We will only present the general ideas on how to obtain the ACF and PACF of an AR(p) model since the details follow closely the AR(1) and AR(2) cases presented before. Recall that

More information

Notes on Wavelets- Sandra Chapman (MPAGS: Time series analysis) # $ ( ) = G f. y t

Notes on Wavelets- Sandra Chapman (MPAGS: Time series analysis) # $ ( ) = G f. y t Wavelets Recall: we can choose! t ) as basis on which we expand, ie: ) = y t ) = G! t ) y t! may be orthogonal chosen or appropriate properties. This is equivalent to the transorm: ) = G y t )!,t )d 2

More information

Time Series Solutions HT 2009

Time Series Solutions HT 2009 Time Series Solutions HT 2009 1. Let {X t } be the ARMA(1, 1) process, X t φx t 1 = ɛ t + θɛ t 1, {ɛ t } WN(0, σ 2 ), where φ < 1 and θ < 1. Show that the autocorrelation function of {X t } is given by

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 IT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete all 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. assachusetts

More information

THE PROCESSING of random signals became a useful

THE PROCESSING of random signals became a useful IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 11, NOVEMBER 009 3867 The Quality of Lagged Products and Autoregressive Yule Walker Models as Autocorrelation Estimates Piet M. T. Broersen

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

SIO 211B, Rudnick. We start with a definition of the Fourier transform! ĝ f of a time series! ( )

SIO 211B, Rudnick. We start with a definition of the Fourier transform! ĝ f of a time series! ( ) SIO B, Rudnick! XVIII.Wavelets The goal o a wavelet transorm is a description o a time series that is both requency and time selective. The wavelet transorm can be contrasted with the well-known and very

More information

4.5 Nonparametric Spectral Estimation

4.5 Nonparametric Spectral Estimation 4.5 Nonparametric Spectral Estimation 195 The confidence intervals for the SOI series at the yearly cycle,! =1/1 = 40/480, and the possible El Niño cycle of four years! =1/48 = 10/480 can be computed in

More information

Visualising the spectral analysis of time series

Visualising the spectral analysis of time series Visualising he specral analysis of ime series Adam M. Sykulski Marie Curie Research Fellow NorhWes Research Associaes (NWRA), Seale, USA & Universiy College London (UCL), UK Slides available online a:

More information

Minitab Project Report Assignment 3

Minitab Project Report Assignment 3 3.1.1 Simulation of Gaussian White Noise Minitab Project Report Assignment 3 Time Series Plot of zt Function zt 1 0. 0. zt 0-1 0. 0. -0. -0. - -3 1 0 30 0 50 Index 0 70 0 90 0 1 1 1 1 0 marks The series

More information

Data Processing and Analysis

Data Processing and Analysis Data Processing and Analysis Rick Aster and Brian Borchers September 10, 2013 Energy and Power Spectra It is frequently valuable to study the power distribution of a signal in the frequency domain. For

More information

ADSP ADSP ADSP ADSP. Advanced Digital Signal Processing (18-792) Spring Fall Semester, Department of Electrical and Computer Engineering

ADSP ADSP ADSP ADSP. Advanced Digital Signal Processing (18-792) Spring Fall Semester, Department of Electrical and Computer Engineering Advanced Digital Signal rocessing (18-792) Spring Fall Semester, 201 2012 Department of Electrical and Computer Engineering ROBLEM SET 8 Issued: 10/26/18 Due: 11/2/18 Note: This problem set is due Friday,

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

SIO 210 CSP: Data analysis methods L. Talley, Fall Sampling and error 2. Basic statistical concepts 3. Time series analysis

SIO 210 CSP: Data analysis methods L. Talley, Fall Sampling and error 2. Basic statistical concepts 3. Time series analysis SIO 210 CSP: Data analysis methods L. Talley, Fall 2016 1. Sampling and error 2. Basic statistical concepts 3. Time series analysis 4. Mapping 5. Filtering 6. Space-time data 7. Water mass analysis Reading:

More information

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

Longitudinal Waves. Reading: Chapter 17, Sections 17-7 to Sources of Musical Sound. Pipe. Closed end: node Open end: antinode

Longitudinal Waves. Reading: Chapter 17, Sections 17-7 to Sources of Musical Sound. Pipe. Closed end: node Open end: antinode Longitudinal Waes Reading: Chapter 7, Sections 7-7 to 7-0 Sources o Musical Sound Pipe Closed end: node Open end: antinode Standing wae pattern: Fundamental or irst harmonic: nodes at the ends, antinode

More information

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA Applied Time Series Analysis Wayne A. Woodward Southern Methodist University Dallas, Texas, USA Henry L. Gray Southern Methodist University Dallas, Texas, USA Alan C. Elliott University of Texas Southwestern

More information

Homework 2. For the homework, be sure to give full explanations where required and to turn in any relevant plots.

Homework 2. For the homework, be sure to give full explanations where required and to turn in any relevant plots. Homework 2 1 Data analysis problems For the homework, be sure to give full explanations where required and to turn in any relevant plots. 1. The file berkeley.dat contains average yearly temperatures for

More information

A Fourier Transform Model in Excel #1

A Fourier Transform Model in Excel #1 A Fourier Transorm Model in Ecel # -This is a tutorial about the implementation o a Fourier transorm in Ecel. This irst part goes over adjustments in the general Fourier transorm ormula to be applicable

More information

Autoregressive (AR) spectral estimates for Frequency- Wavenumber (F-k) analysis of strong-motion data

Autoregressive (AR) spectral estimates for Frequency- Wavenumber (F-k) analysis of strong-motion data Autoregressive (AR) spectral estimates for Frequency- Wavenumber (F-k) analysis of strong-motion data R. Rupakhety & R. Sigbörnsson Earthquake Engineering Research Center (EERC), University of Iceland

More information

NOTES AND CORRESPONDENCE. A Quantitative Estimate of the Effect of Aliasing in Climatological Time Series

NOTES AND CORRESPONDENCE. A Quantitative Estimate of the Effect of Aliasing in Climatological Time Series 3987 NOTES AND CORRESPONDENCE A Quantitative Estimate of the Effect of Aliasing in Climatological Time Series ROLAND A. MADDEN National Center for Atmospheric Research,* Boulder, Colorado RICHARD H. JONES

More information

Additional Pointers. Introduction to Computer Vision. Convolution. Area operations: Linear filtering

Additional Pointers. Introduction to Computer Vision. Convolution. Area operations: Linear filtering Additional Pointers Introduction to Computer Vision CS / ECE 181B andout #4 : Available this afternoon Midterm: May 6, 2004 W #2 due tomorrow Ack: Prof. Matthew Turk for the lecture slides. See my ECE

More information

STATISTICS. 1. Measures of Central Tendency

STATISTICS. 1. Measures of Central Tendency STATISTICS 1. Measures o Central Tendency Mode, median and mean For a sample o discrete data, the mode is the observation, x with the highest requency,. 1 N F For grouped data in a cumulative requency

More information

Chapter 3: Regression Methods for Trends

Chapter 3: Regression Methods for Trends Chapter 3: Regression Methods for Trends Time series exhibiting trends over time have a mean function that is some simple function (not necessarily constant) of time. The example random walk graph from

More information

Notes on Random Processes

Notes on Random Processes otes on Random Processes Brian Borchers and Rick Aster October 27, 2008 A Brief Review of Probability In this section of the course, we will work with random variables which are denoted by capital letters,

More information

E 4101/5101 Lecture 6: Spectral analysis

E 4101/5101 Lecture 6: Spectral analysis E 4101/5101 Lecture 6: Spectral analysis Ragnar Nymoen 3 March 2011 References to this lecture Hamilton Ch 6 Lecture note (on web page) For stationary variables/processes there is a close correspondence

More information

IDENTIFICATION OF ARMA MODELS

IDENTIFICATION OF ARMA MODELS IDENTIFICATION OF ARMA MODELS A stationary stochastic process can be characterised, equivalently, by its autocovariance function or its partial autocovariance function. It can also be characterised by

More information

7. MULTIVARATE STATIONARY PROCESSES

7. MULTIVARATE STATIONARY PROCESSES 7. MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalar-valued random variables on the same probability

More information

Supplement To: Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

Supplement To: Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background Supplement To: Search or Tensor, Vector, and Scalar Polarizations in the Stochastic GravitationalWave Background B. P. Abbott et al. (LIGO Scientiic Collaboration & Virgo Collaboration) This documents

More information

Ch 4. Models For Stationary Time Series. Time Series Analysis

Ch 4. Models For Stationary Time Series. Time Series Analysis This chapter discusses the basic concept of a broad class of stationary parametric time series models the autoregressive moving average (ARMA) models. Let {Y t } denote the observed time series, and {e

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

Time Series. Anthony Davison. c

Time Series. Anthony Davison. c Series Anthony Davison c 2008 http://stat.epfl.ch Periodogram 76 Motivation............................................................ 77 Lutenizing hormone data..................................................

More information

LECTURE ON HAC COVARIANCE MATRIX ESTIMATION AND THE KVB APPROACH

LECTURE ON HAC COVARIANCE MATRIX ESTIMATION AND THE KVB APPROACH LECURE ON HAC COVARIANCE MARIX ESIMAION AND HE KVB APPROACH CHUNG-MING KUAN Institute of Economics Academia Sinica October 20, 2006 ckuan@econ.sinica.edu.tw www.sinica.edu.tw/ ckuan Outline C.-M. Kuan,

More information

Asymptote. 2 Problems 2 Methods

Asymptote. 2 Problems 2 Methods Asymptote Problems Methods Problems Assume we have the ollowing transer unction which has a zero at =, a pole at = and a pole at =. We are going to look at two problems: problem is where >> and problem

More information

An introduction to volatility models with indices

An introduction to volatility models with indices Applied Mathematics Letters 20 (2007) 177 182 www.elsevier.com/locate/aml An introduction to volatility models with indices S. Peiris,A.Thavaneswaran 1 School of Mathematics and Statistics, The University

More information

Functions Modeling Change A Preparation for Calculus Third Edition

Functions Modeling Change A Preparation for Calculus Third Edition Powerpoint slides copied from or based upon: Functions Modeling Change A Preparation for Calculus Third Edition Connally, Hughes-Hallett, Gleason, Et Al. Copyright 2007 John Wiley & Sons, Inc. 1 CHAPTER

More information

Contents. Digital Signal Processing, Part II: Power Spectrum Estimation

Contents. Digital Signal Processing, Part II: Power Spectrum Estimation Contents Digital Signal Processing, Part II: Power Spectrum Estimation 5. Application of the FFT for 7. Parametric Spectrum Est. Filtering and Spectrum Estimation 7.1 ARMA-Models 5.1 Fast Convolution 7.2

More information

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Elec461 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Dr. D. S. Taubman May 3, 011 In this last chapter of your notes, we are interested in the problem of nding the instantaneous

More information

1. How can you tell if there is serial correlation? 2. AR to model serial correlation. 3. Ignoring serial correlation. 4. GLS. 5. Projects.

1. How can you tell if there is serial correlation? 2. AR to model serial correlation. 3. Ignoring serial correlation. 4. GLS. 5. Projects. 1. How can you tell if there is serial correlation? 2. AR to model serial correlation. 3. Ignoring serial correlation. 4. GLS. 5. Projects. 1) Identifying serial correlation. Plot Y t versus Y t 1. See

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm Chicago Booth Honor Code: I pledge my honor that I have not violated the Honor Code during

More information

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties Module 4 Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14, 2016 20h

More information

The Fourier Transform

The Fourier Transform The Fourier Transorm Fourier Series Fourier Transorm The Basic Theorems and Applications Sampling Bracewell, R. The Fourier Transorm and Its Applications, 3rd ed. New York: McGraw-Hill, 2. Eric W. Weisstein.

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

On Moving Average Parameter Estimation

On Moving Average Parameter Estimation On Moving Average Parameter Estimation Niclas Sandgren and Petre Stoica Contact information: niclas.sandgren@it.uu.se, tel: +46 8 473392 Abstract Estimation of the autoregressive moving average (ARMA)

More information

Lecture 17: variance in a band = log(s xx (f)) df (2) If we want to plot something that is more directly representative of variance, we can try this:

Lecture 17: variance in a band = log(s xx (f)) df (2) If we want to plot something that is more directly representative of variance, we can try this: UCSD SIOC 221A: (Gille) 1 Lecture 17: Recap We ve now spent some time looking closely at coherence and how to assign uncertainties to coherence. Can we think about coherence in a different way? There are

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY 1 BME 50500: Image and Signal Processing in Biomedicine Lecture 5: Correlation and Power-Spectrum Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information