How occultations improve asteroid shape models

Size: px
Start display at page:

Download "How occultations improve asteroid shape models"

Transcription

1 How occultations improve asteroid shape models Josef Ďurech Astronomical Institute, Charles University in Prague ESOP, August 30, 2014

2 Contents 1 Lightcurves Direct problem Inverse problem Reliability of the models 2 Occultations Scaling the convex models by occultations Detailed nonconvex models

3

4 What do we know known asteroids numbered well known orbit 100 new discovered every day we know the orbit in the solar system and the size (from the brightness, 10 m to 1000 km) for 5000 we known the rotation period (1 min to 100 d) for 500 we know the global shape (from the lightcurve inversion mainly) for 20 we know the detailed shape (from space probes, radar,...) Physical properties are known for a small fraction of the population we want to know more.

5 Contents 1 Lightcurves Direct problem Inverse problem Reliability of the models 2 Occultations Scaling the convex models by occultations Detailed nonconvex models

6 Brief history related to asteroid lightcurves 1801 the first asteroid discovered 1898 the first brightness variation detected (lightcurve) 1906 Russell published a paper on lightcurve inversion, opposition geometry, geometrical scattering, reflectivity/shape ambiguity 80 s triaxial ellipsoids 1992 Kaasalainen et al. provided the first general analysis of the inverse problem 2001 Kaasalainen et al. published a robust inversion scheme present lightcurve inversion has become a standard tool for revealing asteroid shapes, confirmed by many independent techniques

7 Asteroid lightcurves Direct problem The apparent brightness depends on the distance from the Earth and the Sun (known) geometry Sun asteroid Earth (known) and unknown parameters shape rotation state spin axis direction, period of rotation 1987/1/ /7/20.0 surface properties (albedo, light-scattering behaviour) Relative intensity 1.5 Periodic change 1 of brightness 1caused by rotation 1 lightcurve. Periods from 1 min to 100 d, typically hours /2/ Relative intensity /7/ Phase of rotation /2/ Phase of rotation /4/ Phase of rotation

8 Shape vs. albedo (reflectance) Lightcurves can be caused by irregular shape albedo variance over the surface combination of both Fortunately, asteroids are mostly uniformly gray brightness changes are caused by shape.

9 Asteroid lightcurves Inverse problem From a set of lightcurves (tens) observed under different geometries (over years) we can reconstruct the shape, the spin axis direction, the period, and other parameters lightcurve inversion, Kaasalainen et al. (2001) If we have enough observations covering various viewing/illumination geometries, we get unique convex model. We assume that the reflectivity is uniform over the surface no spots, no chessboard pattern, etc. (usually a valid assumption). Because of the limited observing geometry (plane of the ecliptic), there are usually two pole solutions (λ, β) and (λ ± 180, β) and the corresponding shapes are mirror images of each other. Because the albedo is not known, all models derived from photometry only are scale-free no information about the size.

10 Stability of the solution The distribution of reflectivity over the surface is sensitive to the noise in data, amount of data, light-scattering model, etc. ill-posed problem. 3D shape is stable Minkowski stability (defined and proved mathematically). 56 lightcurves 53 lightcurves

11 Nonconvex models It is possible to model the shape as a nonconvex body, but the solution is not stable and it is not clear, which details on the model are real. Differences between non-/convex models are apparent only for high Sun-asteroid-Earth phase angles and for highly nonconvex bodies. Convex models are almost always sufficient in practice. (1627) Ivar

12 Comparison with the reality Good approximation, convex models are good for global shape characteristics, spin axis ±5, accurate rotation period ±0.01 s. (25143) Itokawa

13 Laboratory model of an asteroid Convex model is not sensitive to the scattering law which is good, we do not know it. Kaasalainen at al. (2005)

14 Lightcurve inversion models models of 500 asteroids 381 available at Database of Asteroid Models from Inversion Techniques (DAMIT) more models soon inversion of sparse-in-time photometry from all-sky surveys, distributed computing project thousands of models in the near future, much more with the data from Gaia, Pan-STARRS, LSST,...

15 Contents 1 Lightcurves Direct problem Inverse problem Reliability of the models 2 Occultations Scaling the convex models by occultations Detailed nonconvex models

16 Occultations of stars by asteroids

17 How to combine occultations with shape models? convex models from lightcurves shape, pole, and period known sky-plane orientation can be computed for past/future occultations scaling the model by fitting the chords solving the pole ambiguity one pole clearly better that the other

18 How to combine occultations with shape models? convex models from lightcurves shape, pole, and period known sky-plane orientation can be computed for past/future occultations scaling the model by fitting the chords solving the pole ambiguity one pole clearly better that the other nonconvex models by multi-data inversion lightcurves and occultation profile used simultaneously in one optimization algorithm model tries to fit both lightcurve and occultation data nonconvex details better volume estimation density if mass is known

19 Occultations and convex models scaling

20 Occultations and convex models many events

21 Occ. and convex models pole ambiguity resolved wrong pole correct pole

22 Occ. and conv. models pole ambiguity unresolved pole #1 pole #2

23 Multi-data inversion photometry the most important data source, available for almost all known asteroids lightcurve inversion robust method with results confirmed by ground-truths model: accurate rotation period, pole directions, global convex shape about 500 models now

24 Multi-data inversion photometry the most important data source, available for almost all known asteroids lightcurve inversion robust method with results confirmed by ground-truths model: accurate rotation period, pole directions, global convex shape about 500 models now other data general nonconvex shapes adaptive optics images details, size occultation silhouettes details, size thermal infrared observations albedo, size, thermal properties radar flyby data from spacecraft part of a 3D shape

25 Nonconvex details from lightcurves and occultations convex model scaled to fit occ. chords

26 Nonconvex details from lightcurves and occultations convex model scaled to fit occ. chords nonconvex model derived from by simultaneous inversion of lightcurves and occultation data

27 Occultation by binary asteroid (90) Antiope

28 Model vs. observations lightcurves Relative intensity Relative intensity /12/ /6/ Phase of rotation /11/ /1/ Phase of rotation /3/ /3/ Phase of rotation

29 Shape model of (90) Antiope

30 Model vs. observations occultation #1 Model projection vs. occultation data from 2011/07/ s 150 y [km] x [km]

31 Model vs. observations occultation #2 Model projection vs. occultation data from 2008/01/ s y [km] x [km]

32 Conclusions + Future Mass production of convex models from photometry much more data from ongoing and future surveys Gaia space mission of ESA Pan-STARRS (Hawaii) LSST (Large Synoptic Survey Telescope) scaling of convex models + removing pole ambiguity detailed models from combined (LC + Occ) data inversion models stored in Database of Asteroid Models from Inversion Techniques (DAMIT) possibility to plot sky-plane projections for any model for a given time distributed computing project Asteroids@home thousand of new models

Physical models of asteroids from sparse photometric data

Physical models of asteroids from sparse photometric data Near Earth Objects, our Celestial Neighbors: Opportunity and Risk Proceedings IAU Symposium No. 236, 26 c 26 International Astronomical Union A. Milani, G. Valsecchi & D. Vokrouhlický, eds. DOI:./XX Physical

More information

Asteroid Models from the Pan-STARRS Photometry

Asteroid Models from the Pan-STARRS Photometry Earth, Moon, and Planets (2006) Ó Springer 2006 DOI 10.1007/s11038-006-9084-8 Asteroid Models from the Pan-STARRS Photometry JOSEF Dˇ URECH Astronomical Institute, Charles University in Prague, V Holesˇovicˇka

More information

The determination of asteroid physical properties from Gaia observations

The determination of asteroid physical properties from Gaia observations INAF --Osservatorio Astronomico di Torino Determination of asteroid physical properties from Gaia observations Alberto Cellino Pisa GREAT Workshop, May 4-6, 2011 The determination of asteroid physical

More information

Density of asteroids Mass measurements Volume determination Post-Gaia Era

Density of asteroids Mass measurements Volume determination Post-Gaia Era 1/14 Benoît Carry, Gaia GREAT, 4 6 May 2011 based on DeMeo et al. 2009 2/14 Benoît Carry, Gaia GREAT, 4 6 May 2011 Density & Composition Density & Composition 2/14 Benoît Carry, Gaia GREAT, 4 6 May 2011

More information

The expected Gaia revolution in asteroid science: Photometry and Spectroscopy

The expected Gaia revolution in asteroid science: Photometry and Spectroscopy A. Cellino (INAF- Torino Observatory) P. Tanga, D. Hestroffer, K. Muinonen, A. Dell Oro, L. Galluccio The expected Gaia revolution in asteroid science: Photometry and Spectroscopy Although in situ exploration

More information

arxiv: v1 [astro-ph.ep] 16 May 2017

arxiv: v1 [astro-ph.ep] 16 May 2017 Chapter 1 Shape models and physical properties of asteroids Santana-Ros T., Dudziński G. and Bartczak P. arxiv:1705.05710v1 [astro-ph.ep] 16 May 2017 Abstract Despite the large amount of high quality data

More information

Shape model of binary asteroid (90) Antiope reconstructed from lightcurves and stellar occultations

Shape model of binary asteroid (90) Antiope reconstructed from lightcurves and stellar occultations Shape model of binary asteroid (90) Antiope reconstructed from lightcurves and stellar occultations J. urech Charles University contact e-mail: durech@sirrah.troja.m.cuni.cz I will present a shape model

More information

GAIA Observations of Asteroids: Sizes, Taxonomy, Shapes and Spin Properties

GAIA Observations of Asteroids: Sizes, Taxonomy, Shapes and Spin Properties GAIA Observations of Asteroids: Sizes, Taxonomy, Shapes and Spin Properties Alberto Cellino (INAF, Torino Observatory), and the GAIA Solar System Working Group The impact of GAIA on Asteroid Science will

More information

A collective effort of many people active in the CU4 of the GAIA DPAC

A collective effort of many people active in the CU4 of the GAIA DPAC A collective effort of many people active in the CU4 of the GAIA DPAC (D. Hestroffer, P. Tanga, J.M. Petit, J. Berthier, W. Thuillot, F. Mignard, M. Delbò,...) The impact of GAIA on Asteroid Science will

More information

Pablo Santos-Sanz & the SBNAF team

Pablo Santos-Sanz & the SBNAF team Pablo Santos-Sanz & the SBNAF team Project baseline & strategy Topic: COMPET-05-2015 - Scientific exploitation of astrophysics, comets, and planetary data Project Title: Small Bodies Near and Far (SBNAF)

More information

Description of deliverable

Description of deliverable Deliverable H2020 COMPET-05-2015 project Small Bodies: Near And Far (SBNAF) Topic: COMPET-05-2015 - Scientific exploitation of astrophysics, comets, and planetary data Project Title: Small Bodies Near

More information

Deliverable. H2020 COMPET project Small Bodies: Near And Far (SBNAF)

Deliverable. H2020 COMPET project Small Bodies: Near And Far (SBNAF) Deliverable H2020 COMPET-05-2015 project Small Bodies: Near And Far (SBNAF) Topic: COMPET-05-2015 - Scientific exploitation of astrophysics, comets, and planetary data Project Title: Small Bodies Near

More information

How do telescopes work? Simple refracting telescope like Fuertes- uses lenses. Typical telescope used by a serious amateur uses a mirror

How do telescopes work? Simple refracting telescope like Fuertes- uses lenses. Typical telescope used by a serious amateur uses a mirror Astro 202 Spring 2008 COMETS and ASTEROIDS Small bodies in the solar system Impacts on Earth and other planets The NEO threat to Earth Lecture 4 Don Campbell How do telescopes work? Typical telescope used

More information

Rotation period determination for asteroid 9021 Fagus

Rotation period determination for asteroid 9021 Fagus Rotation period determination for asteroid 9021 Fagus G. Apostolovska 1, A. Kostov 2, Z. Donchev 2 and E. Vchkova Bebekovska 1 1 Institute of Physics, Faculty of Science, Ss. Cyril and Methodius University,

More information

A fast ellipsoid model for asteroids inverted from lightcurves

A fast ellipsoid model for asteroids inverted from lightcurves Research in Astron. Astrophys. 23 Vol. 3 No. 4, 47 478 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics A fast ellipsoid model for asteroids inverted from

More information

The Main Points. Asteroids. Lecture #22: Asteroids 3/14/2008

The Main Points. Asteroids. Lecture #22: Asteroids 3/14/2008 Lecture #22: Asteroids Discovery/Observations Where are they? How many are there? What are they like? Where did they come from? Reading: Chapter 12.1 Astro 102/104 1 The Main Points Asteroids are small,

More information

AO Images of Asteroids, Inverting their Lightcurves, and SSA

AO Images of Asteroids, Inverting their Lightcurves, and SSA AO Images of Asteroids, Inverting their Lightcurves, and SSA Jack Drummond a and Julian Christou b,c a Starfire Optical Range, Directed Energy Directorate Air Force Research Laboratory, Kirtland AFB, NM

More information

Determining asteroid diameters from occultations. Dave Herald

Determining asteroid diameters from occultations. Dave Herald Determining asteroid diameters from occultations Dave Herald In our predictions, we rely on asteroid diameters determined from (in order): i. AKARI AcuA (IR satellite measurements) ii. IRAS diamalb (IR

More information

Frank Freestar8n. Retrograde (apparent westward at 12 km/s) Stationary. Asteroid. 0.5 km/s rotation at equator, 0 at poles. Earth

Frank Freestar8n. Retrograde (apparent westward at 12 km/s) Stationary. Asteroid. 0.5 km/s rotation at equator, 0 at poles. Earth Chord direction in asteroid occultations: Effect of Earth rotation and orientation combined with asteroid relative velocity Frank Freestar8n This report conveys why the chord measured as an asteroid occults

More information

Photometric study and 3D modeling of two asteroids using inversion techniques

Photometric study and 3D modeling of two asteroids using inversion techniques Photometric study and 3D modeling of two asteroids using inversion techniques Raz Parnafes (High school student) Research work done via the Bareket observatory, Israel. Abstract New photometric observations

More information

The Gravitational Microlensing Planet Search Technique from Space

The Gravitational Microlensing Planet Search Technique from Space The Gravitational Microlensing Planet Search Technique from Space David Bennett & Sun Hong Rhie (University of Notre Dame) Abstract: Gravitational microlensing is the only known extra-solar planet search

More information

GAIA: SOLAR SYSTEM ASTROMETRY IN DR2

GAIA: SOLAR SYSTEM ASTROMETRY IN DR2 GAIA: SOLAR SYSTEM ASTROMETRY IN DR2 P. Tanga 1, F. Spoto 1,2 1 Observatoire de la Côte d Azur, Nice, France 2 IMCCE, Observatoire de Paris, France 2 Gaia is observing asteroids - Scanning the sky since

More information

Earth-Based Support for the New Horizons Kuiper Extended Mission. Richard Binzel Alan Stern John Spencer 2016 DPS Meeting, Pasadena October18 th 2016

Earth-Based Support for the New Horizons Kuiper Extended Mission. Richard Binzel Alan Stern John Spencer 2016 DPS Meeting, Pasadena October18 th 2016 Earth-Based Support for the New Horizons Kuiper Extended Mission Richard Binzel Alan Stern John Spencer 2016 DPS Meeting, Pasadena October18 th 2016 Agenda Introduction to New Horizons Kuiper Belt Extended

More information

Planetary Motion from an Earthly Perspective

Planetary Motion from an Earthly Perspective 1 Planetary Motion from an Earthly Perspective Stars appear fixed from night-to-night providing the familiar background of the constellations and asterisms. We see the same star patterns that were visible

More information

Simulations of the Gaia final catalogue: expectation of the distance estimation

Simulations of the Gaia final catalogue: expectation of the distance estimation Simulations of the Gaia final catalogue: expectation of the distance estimation E. Masana, Y. Isasi, R. Borrachero, X. Luri Universitat de Barcelona GAIA DPAC - CU2 Introduction Gaia DPAC (Data Processing

More information

Properties of the Solar System

Properties of the Solar System Properties of the Solar System Dynamics of asteroids Telescopic surveys, especially those searching for near-earth asteroids and comets (collectively called near-earth objects or NEOs) have discovered

More information

Description of deliverable

Description of deliverable Deliverable H2020 COMPET-05-2015 project Small Bodies: Near And Far (SBNAF) Topic: COMPET-05-2015 - Scientific exploitation of astrophysics, comets, and planetary data Project Title: Small Bodies Near

More information

Time-series Photometry of Earth Flyby Asteroid 2012 DA14

Time-series Photometry of Earth Flyby Asteroid 2012 DA14 Time-series Photometry of Earth Flyby Asteroid 2012 DA14 Tsuyoshi Terai Subaru Telescope Asteroid populations Main-belt asteroids Dynamical evolution Near-Earth asteroids 1 Asteroids Spectral classification

More information

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements AST111, Lecture 1b Measurements of bodies in the solar system (overview continued) Orbital elements Planetary properties (continued): Measuring Mass The orbital period of a moon about a planet depends

More information

radar astronomy The basics:

radar astronomy The basics: 101955 (1999 RQ36) Michael Nolan, Ellen Howell, (Arecibo Observatory), Lance A. M. Benner,Steven J. Ostro (JPL/Caltech), Chris Magri (U. Maine, Farmington), R. Scott Hudson (U. Washington) radar astronomy

More information

SOLAR SYSTEM 2019 SAMPLE EXAM

SOLAR SYSTEM 2019 SAMPLE EXAM SOLAR SYSTEM 2019 SAMPLE EXAM Team Name: Team #: No calculators are allowed. All questions are of equal weight unless otherwise noted. Turn in all materials when you have completed the test! Make sure

More information

Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical

Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical Trigonometry p. 9 The Earth p. 12 The Celestial Sphere p. 14 The

More information

IMPROVING THE DECONVOLUTION METHOD FOR ASTEROID IMAGES: OBSERVING 511 DAVIDA, 52 EUROPA, AND 12 VICTORIA

IMPROVING THE DECONVOLUTION METHOD FOR ASTEROID IMAGES: OBSERVING 511 DAVIDA, 52 EUROPA, AND 12 VICTORIA IMPROVING THE DECONVOLUTION METHOD FOR ASTEROID IMAGES: OBSERVING 511 DAVIDA, 52 EUROPA, AND 12 VICTORIA Z Robert Knight Department of Physics and Astronomy University of Hawai`i at Hilo ABSTRACT Deconvolution

More information

SPACE OBJECT CHARACTERIZATION STUDIES AND THE MAGDALENA RIDGE OBSERVATORY S 2.4-METER TELESCOPE

SPACE OBJECT CHARACTERIZATION STUDIES AND THE MAGDALENA RIDGE OBSERVATORY S 2.4-METER TELESCOPE SPACE OBJECT CHARACTERIZATION STUDIES AND THE MAGDALENA RIDGE OBSERVATORY S 2.4-METER TELESCOPE Eileen V. Ryan and William H. Ryan Magdalena Ridge Observatory, New Mexico Institute of Mining and Technology

More information

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran The Gaia Mission Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany ISYA 2016, Tehran What Gaia should ultimately achieve high accuracy positions, parallaxes, proper motions e.g.

More information

Observations of extrasolar planets

Observations of extrasolar planets Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

More information

BERING A DEEP SPACE MISSION TO STUDY THE ORIGIN AND EVOLUTION OF THE ASTEROID MAIN BELT

BERING A DEEP SPACE MISSION TO STUDY THE ORIGIN AND EVOLUTION OF THE ASTEROID MAIN BELT BERING A DEEP SPACE MISSION TO STUDY THE ORIGIN AND EVOLUTION OF THE ASTEROID MAIN BELT Philip R. Bidstrup (1), Henning Haack (1), Anja C. Andersen (2,3), Rene Michelsen (4), and John Leif Jørgensen (4)

More information

X-ray Astronomy F R O M V - R O CKETS TO AT HENA MISSION. Thanassis Akylas

X-ray Astronomy F R O M V - R O CKETS TO AT HENA MISSION. Thanassis Akylas X-ray Astronomy F R O M V - R O CKETS TO AT HENA MISSION Thanassis Akylas Telescopes & Light Gallileo turned his telescope into the sky 400 years ago He enhanced his natural vision or the so called natural

More information

Contents. Section 1: The Sun s Energy. Section 2: The Solar System. Section 3: The Moon

Contents. Section 1: The Sun s Energy. Section 2: The Solar System. Section 3: The Moon Contents Section 1: The Sun s Energy 1. Earth s Powerhouse.... 3 2. Our Nuclear Furnace.... 7 3. Quiz 1.... 10 Section 2: The Solar System 4. Mercury, Venus, and Earth... 12 5. Mars and the Asteroid Belt....

More information

arxiv: v1 [astro-ph.ep] 7 Feb 2017

arxiv: v1 [astro-ph.ep] 7 Feb 2017 Astronomy & Astrophysics manuscript no. ADAM_all c ESO 2017 February 8, 2017 Volumes and bulk densities of forty asteroids from ADAM shape modeling J. Hanuš 1, 2, 3, M. Viikinkoski 4, F. Marchis 5, J.

More information

An optimal search strategy for Trojan asteroids and science follow-up of GAIA alerts with the Zadko Telescope, Western Australia

An optimal search strategy for Trojan asteroids and science follow-up of GAIA alerts with the Zadko Telescope, Western Australia An optimal search strategy for Trojan asteroids and science follow-up of GAIA alerts with the Zadko Telescope, Western Australia Michael Todd May 4, 2011 M. Todd 1, D. Coward 2 and M.G. Zadnik 1 Email:

More information

Measuring Asteroid Rotational Periods (Observational)

Measuring Asteroid Rotational Periods (Observational) Student Name Peter Caspari HET606 Student ID 6593658 Project Supervisor Eduardo Alvarez SAO Project Cover Page Project 141 Measuring Asteroid Rotational Periods (Observational) All of the work contained

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Observations of gravitational microlensing events with OSIRIS. A Proposal for a Cruise Science Observation

Observations of gravitational microlensing events with OSIRIS. A Proposal for a Cruise Science Observation Observations of gravitational microlensing events with OSIRIS A Proposal for a Cruise Science Observation Michael Küppers, Björn Grieger, ESAC, Spain Martin Burgdorf, Liverpool John Moores University,

More information

The discovery of four small moons of Pluto with the Hubble Space Telescope

The discovery of four small moons of Pluto with the Hubble Space Telescope The discovery of four small moons of Pluto with the Hubble Space Telescope Max Mutchler Research & Instrument Scientist Space Telescope Science Institute Hubble Science Briefing 6 December 2012 Pluto Charon

More information

CHAPTER 6. The Solar System

CHAPTER 6. The Solar System CHAPTER 6 The Solar System 6.1 An Inventory of the Solar System The Greeks knew about 5 planets other than Earth They also knew about two other objects that were not planets or stars: meteors and comets

More information

Asteroid models for PACS and SPIRE calibration

Asteroid models for PACS and SPIRE calibration Asteroid models for PACS and SPIRE calibration Thomas Müller, MPE, Jan. 19, 2012 1. Asteroid calibration observations 2. Sample for flux calibration PACS & SPIRE results 3. Asteroids as prime calibrators

More information

An Asteroid and its Moon Observed with LGS at the SOR 1

An Asteroid and its Moon Observed with LGS at the SOR 1 An Asteroid and its Moon Observed with LGS at the SOR 1 Jack Drummond, Odell Reynolds, and Miles Buckman Air Force Research Laboratory, Directed Energy Directorate, RDSS 3550 Aberdeen Ave SE, Kirtland

More information

AIM RS: Radio Science Investigation with AIM

AIM RS: Radio Science Investigation with AIM Prepared by: University of Bologna Ref. number: ALMARS012016 Version: 1.0 Date: 08/03/2017 PROPOSAL TO ESA FOR AIM RS Radio Science Investigation with AIM ITT Reference: Partners: Radio Science and Planetary

More information

Astronomy. Astrophysics. Distribution of spin-axes longitudes and shape elongations of main-belt asteroids

Astronomy. Astrophysics. Distribution of spin-axes longitudes and shape elongations of main-belt asteroids A&A 596, A57 (16) DOI: 1.151/4-6361/16919 ESO 16 Astronomy & Astrophysics Distribution of spin-axes longitudes and shape elongations of main-belt asteroids H. Cibulková 1, J. Ďurech 1, D. Vokrouhlický

More information

Update on NASA NEO Program

Update on NASA NEO Program Near Earth Object Observations Program Update on NASA NEO Program Presentation to UN COPUOS Scientific & Technical Subcommittee Lindley Johnson Program Executive NASA HQ 3 February 2015 1 NASA s NEO Search

More information

Planets are plentiful

Planets are plentiful Extra-Solar Planets Planets are plentiful The first planet orbiting another Sun-like star was discovered in 1995. We now know of 209 (Feb 07). Including several stars with more than one planet - true planetary

More information

AST 103 Midterm 1 Review Exam is 3/3/08 in class

AST 103 Midterm 1 Review Exam is 3/3/08 in class AST 103 Midterm 1 Review Exam is 3/3/08 in class Exam is closed book/closed notes. Formulas will be provided. Bring a No. 2 pencil for the exam and a photo ID. Calculators are OK, but will not be needed.

More information

TNOs are Cool: A Survey of the Transneptunian Region. (39 members, 19 institutes, 9 countries)

TNOs are Cool: A Survey of the Transneptunian Region. (39 members, 19 institutes, 9 countries) TNOs are Cool: A Survey of the Transneptunian Region MPE Garching The TNOs-are-Cool Team (39 members, 19 institutes, 9 countries) Overview OT KP with 370 hours ( 15% executed) PACS and SPIRE photometric

More information

Characteristics and Large Bulk Density of the C-type Main- Belt Triple Asteroid (93) Minerva

Characteristics and Large Bulk Density of the C-type Main- Belt Triple Asteroid (93) Minerva Characteristics and Large Bulk Density of the C-type Main- Belt Triple Asteroid (93) Minerva F. Marchis,2, F. Vachier 2, J. Ďurech 3, J.E. Enriquez, A. W. Harris 4, P. A. Dalba,5, J. Berthier 2, J. P.

More information

Spacewatch and Follow-up Astrometry of Near-Earth Objects

Spacewatch and Follow-up Astrometry of Near-Earth Objects Spacewatch and Follow-up Astrometry of Near-Earth Objects International Asteroid Warning Network Steering Group Meeting Cambridge, MA 2014 Jan 13 Robert S. McMillan1, T. H. Bressi1, J. A. Larsen2, J. V.

More information

Miami Dade County Public Schools Educational Transformation Office and the Division of Academics: Department of Science

Miami Dade County Public Schools Educational Transformation Office and the Division of Academics: Department of Science Unit 5 Assessment Comprehensive Science III Directions: Read through the questions carefully and select the best answer choice on your bubble sheet. 1. Space exploration has advanced our knowledge of the

More information

Escaping the Zodi Light! Harvey Moseley! NASA/GSFC! The View from 5 AU! March 26, 2010!

Escaping the Zodi Light! Harvey Moseley! NASA/GSFC! The View from 5 AU! March 26, 2010! Escaping the Zodi Light! Harvey Moseley! NASA/GSFC! The View from 5 AU! March 26, 2010! The Galaxy and the Zodi Light are the dominant sources of diffuse light in the night sky! Both are much brighter

More information

Future Ground-Based Solar System Research: a Prospective Workshop Summary

Future Ground-Based Solar System Research: a Prospective Workshop Summary Earth Moon Planet (2009) 105:391 396 DOI 10.1007/s11038-009-9318-7 Future Ground-Based Solar System Research: a Prospective Workshop Summary H. Boehnhardt Æ H. U. Käufl Received: 31 January 2009 / Accepted:

More information

Stellar Masses: Binary Stars

Stellar Masses: Binary Stars Stellar Masses: Binary Stars The HR Diagram Again A Diagram for People Q: What is happening here? A: People grow. They are born small, and then grow in height and mass as they age (with a fair bit of individual

More information

About Orbital Elements: Planning to Observe Comets and Minor Planets with Deep-Sky Planner 4

About Orbital Elements: Planning to Observe Comets and Minor Planets with Deep-Sky Planner 4 About Orbital Elements Page 1 About Orbital Elements: Planning to Observe Comets and Minor Planets with Deep-Sky Planner 4 Abstract Calculating an accurate position for a comet or minor planet (asteroid)

More information

S CIENCE O VERVIEW. 59 Lesson Plan. Standards Benchmarks. Science Overview. Lesson Overview. Answer Key. Resources. My Angle on Cooling ME S S EN G ER

S CIENCE O VERVIEW. 59 Lesson Plan. Standards Benchmarks. Science Overview. Lesson Overview. Answer Key. Resources. My Angle on Cooling ME S S EN G ER S CIENCE O VERVIEW There are many different ways to cope with being in the presence of a hot object. A familiar one is to move away from it so that you do not feel its heat as strongly. Another is to change

More information

The Planet Pluto. & Kuiper Belt. The Search for PLANET X Pluto Discovered. Note how Pluto Moved in 6 days. Pluto (Hades): King of the Underworld

The Planet Pluto. & Kuiper Belt. The Search for PLANET X Pluto Discovered. Note how Pluto Moved in 6 days. Pluto (Hades): King of the Underworld X The Planet Pluto & Kuiper Belt Updated May 9, 2016 The Search for PLANET X Recall Neptune was predicted from observed changes in orbit of Uranus Lowell & Pickering suggest small changes in Neptune s

More information

The Kepler Mission. NASA Discovery Mission # 10: Are there other planets, orbiting other stars, with characteristics similar to Earth?

The Kepler Mission. NASA Discovery Mission # 10: Are there other planets, orbiting other stars, with characteristics similar to Earth? Kepler Update: 2016 http://www.nasa.gov/sites/default/files/styles/side_image/public/thumbnails/imag e/286257main_07-3348d1-kepler-4x3_226-170.jpg?itok=hvzfdmjc The Kepler Mission NASA Discovery Mission

More information

Studies of diffuse UV radiation

Studies of diffuse UV radiation Bull. Astr. Soc. India (2007) 35, 295 300 Studies of diffuse UV radiation N. V. Sujatha and Jayant Murthy Indian Institute of Astrophysics, Bangalore 560 034, India Abstract. The upcoming TAUVEX mission

More information

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects Transneptunian objects Minor bodies in the outer Solar System Planets and Astrobiology (2016-2017) G. Vladilo Around 1980 it was proposed that the hypothetical disk of small bodies beyond Neptune (called

More information

The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets!

The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets! The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets! Kepler Spacecraft Can we believe this result? What techniques and data were used to derive this important result? 1 How to

More information

ASTEROIDS, COMETS, AND TRANS-NEPTUNIAN OBJECTS:

ASTEROIDS, COMETS, AND TRANS-NEPTUNIAN OBJECTS: ASTEROIDS, COMETS, AND TRANS-NEPTUNIAN OBJECTS: SMALL BODIES IN THE SOLAR SYSTEM Rosemary E. Pike ASIAA TIARA Summer School 2018 On the Origins of the Solar System SMALL BODIES IN THE SOLAR SYSTEM Formation

More information

CONFUSION NOISE AND BACKGROUND

CONFUSION NOISE AND BACKGROUND Konkoly Infrared & Space Astronomy Group CONFUSION NOISE AND BACKGROUND Csaba Kiss Introduction Confusion noise was very important for the recent infrared space instruments (e.g. those of IRAS, ISO and

More information

Gaia ESA's billion star telescope

Gaia ESA's billion star telescope Gaia ESA's billion star telescope Gaia is an unmanned space observatory of the European Space Agency (ESA) designed for astrometry. The mission aims to compile a 3D space catalogue of approximately 1 billion

More information

Science from NEOs - Limitations and Perspectives

Science from NEOs - Limitations and Perspectives Science from NEOs - Limitations and Perspectives Daniel Hestroffer To cite this version: Daniel Hestroffer. Science from NEOs - Limitations and Perspectives. Institut de Mécanique Céleste et de Calcul

More information

Effective August 2007 All indicators in Standard / 14

Effective August 2007 All indicators in Standard / 14 8-4.1 Summarize the characteristics and movements of objects in the solar system (including planets, moons, asteroids, comets, and meteors). Taxonomy level: 2.4-B Understand Conceptual Knowledge Previous/Future

More information

Useful Formulas and Values

Useful Formulas and Values Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

Last Class. Today s Class 11/28/2017

Last Class. Today s Class 11/28/2017 Today s Class: The Jovian Planets & Their Water Worlds 1. Exam #3 on Thursday, Nov. 30 th! a) Covers all the reading Nov. 2-28. b) Covers Homework #6 and #7. c) Review Space in the News articles/discussions.

More information

The Sun s center is much hotter than the surface. The Sun looks large and bright in the sky. Other stars look much smaller.

The Sun s center is much hotter than the surface. The Sun looks large and bright in the sky. Other stars look much smaller. The Sun A star is a huge ball of hot, glowing gases. The Sun is a star. The width of the Sun is equal to the width of 100 Earths placed side by side. The Sun is extremely hot. The surface of the Sun has

More information

Large Synoptic Survey Telescope

Large Synoptic Survey Telescope Large Synoptic Survey Telescope Željko Ivezić University of Washington Santa Barbara, March 14, 2006 1 Outline 1. LSST baseline design Monolithic 8.4 m aperture, 10 deg 2 FOV, 3.2 Gpix camera 2. LSST science

More information

Spitzer Space Telescope Calibration Strategy: The Use of Asteroids

Spitzer Space Telescope Calibration Strategy: The Use of Asteroids Spitzer Space Telescope Calibration Strategy: The Use of Asteroids 1, J. Stansberry 2, C. Engelbracht 2, M. Blaylock 2, A. Noriega-Crespo 1 2004 December 3 Herschel Calibration Workshop, Leiden, The Netherlands

More information

Detecting Near Earth Asteroids with a Constellation of Cubesats with Synthetic Tracking Cameras. M. Shao, S. Turyshev, S. Spangelo, T. Werne, C.

Detecting Near Earth Asteroids with a Constellation of Cubesats with Synthetic Tracking Cameras. M. Shao, S. Turyshev, S. Spangelo, T. Werne, C. Detecting Near Earth Asteroids with a Constellation of Cubesats with Synthetic Tracking Cameras M. Shao, S. Turyshev, S. Spangelo, T. Werne, C. Zhai Introduction to synthetic tracking Synthetic tracking

More information

Ross (née, CAESAR) Presentation to SBAG. Beau Bierhaus, Ben Clark, Josh Hopkins 18 January 2018

Ross (née, CAESAR) Presentation to SBAG. Beau Bierhaus, Ben Clark, Josh Hopkins 18 January 2018 Ross (née, CAESAR) Presentation to SBAG Beau Bierhaus, Ben Clark, Josh Hopkins 18 January 2018 First, A Word on Names Our proposal was named Cubesat Asteroid Encounters for Science And Reconnaissance (CAESAR)

More information

Lightcurve inversion of asteroid (585) Bilkis with Lommel-Seeliger ellipsoid method

Lightcurve inversion of asteroid (585) Bilkis with Lommel-Seeliger ellipsoid method Research in Astron. Astrophys. 202 Vol. X No. XX, 000 000 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Lightcurve inversion of asteroid (585) Bilkis

More information

AST111 PROBLEM SET 4 SOLUTIONS. Ordinarily the binary has a magnitude of 10 and this is due to the brightness of both stars.

AST111 PROBLEM SET 4 SOLUTIONS. Ordinarily the binary has a magnitude of 10 and this is due to the brightness of both stars. AST111 PROBLEM SET 4 SOLUTIONS Homework problems 1. On Astronomical Magnitudes You observe a binary star. Ordinarily the binary has a magnitude of 10 and this is due to the brightness of both stars. The

More information

MS-ESS1-1 Earth's Place in the Universe

MS-ESS1-1 Earth's Place in the Universe MS-ESS1-1 Earth's Place in the Universe Students who demonstrate understanding can: MS-ESS1-1. Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses

More information

The Inferior Planets. Culpeper Astronomy Club Meeting October 23, 2017

The Inferior Planets. Culpeper Astronomy Club Meeting October 23, 2017 The Inferior Planets Culpeper Astronomy Club Meeting October 23, 2017 Overview Introductions Dark Matter (Ben Abbott) Mercury and Venus Stellarium Constellations: Aquila, Cygnus Observing Session (?) Image

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

Mony a Mickle Maks a Muckle:

Mony a Mickle Maks a Muckle: Noname manuscript No. (will be inserted by the editor) Mony a Mickle Maks a Muckle: Minor Body Observations with Optical Telescopes of All Sizes Colin Snodgrass Received: date / Accepted: date Abstract

More information

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion?

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? These small, rocky worlds orbit the sun generally between the orbits of

More information

V. Astronomy Section

V. Astronomy Section EAS 100 Planet Earth Lecture Topics Brief Outlines V. Astronomy Section 1. Introduction, Astronomical Distances, Solar System Learning objectives: Develop an understanding of Earth s position in the solar

More information

Small binary asteroids and prospects for their observations with Gaia

Small binary asteroids and prospects for their observations with Gaia Small binary asteroids and prospects for their observations with Gaia P. Pravec a, P. Scheirich a, a Astronomical Institute, Academy of Sciences of the Czech Republic, Fričova 1, CZ-25165 Ondřejov, Czech

More information

Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization

Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization Objectives Describe characteristics of the universe in terms of time, distance, and organization Identify the visible and nonvisible parts of the electromagnetic spectrum Compare refracting telescopes

More information

The solar system pt 2 MR. BANKS 8 TH GRADE SCIENCE

The solar system pt 2 MR. BANKS 8 TH GRADE SCIENCE The solar system pt 2 MR. BANKS 8 TH GRADE SCIENCE Dwarf planets Following the discovery of multiple objects similar to Pluto (and one that was even bigger than Pluto) a new classification for planets

More information

Astroinformatics: massive data research in Astronomy Kirk Borne Dept of Computational & Data Sciences George Mason University

Astroinformatics: massive data research in Astronomy Kirk Borne Dept of Computational & Data Sciences George Mason University Astroinformatics: massive data research in Astronomy Kirk Borne Dept of Computational & Data Sciences George Mason University kborne@gmu.edu, http://classweb.gmu.edu/kborne/ Ever since humans first gazed

More information

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona LEARNING ABOUT THE OUTER PLANETS Can see basic features through Earth-based telescopes. Hubble Space Telescope especially useful because of sharp imaging. Distances from Kepler s 3 rd law, diameters from

More information

Transneptunian Binaries and Collision Families: Probes of our Local Dust Disk

Transneptunian Binaries and Collision Families: Probes of our Local Dust Disk Transneptunian Binaries and Collision Families: Probes of our Local Dust Disk Susan D. Benecchi, STScI Collaborators: Keith Noll, Will Grundy, Denise Stephens, Hal Levison, and the Deep Ecliptic Survey

More information

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC Exploring the giant planet - brown dwarf connection with astrometry ESA Research Fellow at ESAC Who s Who, Paris - 2 July 215 IS MASS A GOOD DEMOGRAPHIC INDICATOR? 2MASSWJ127334 393254 first image of a

More information

Lecture Outlines. Chapter 14. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 14. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 14 Astronomy Today 7th Edition Chaisson/McMillan Chapter 14 Solar System Debris Units of Chapter 14 14.1 Asteroids What Killed the Dinosaurs? 14.2 Comets 14.3 Beyond Neptune 14.4

More information

Monitoring LMXBs with the Faulkes Telescopes

Monitoring LMXBs with the Faulkes Telescopes Monitoring LMXBs with the Faulkes Telescopes 1 We will always be able to keep you in the dark Fraser Lewis LCOGT, Open University, Cardiff University, University of Glamorgan Thesis Title Temporal Fluctuations

More information

Igor Soszyński. Warsaw University Astronomical Observatory

Igor Soszyński. Warsaw University Astronomical Observatory Igor Soszyński Warsaw University Astronomical Observatory SATELLITE vs. GROUND-BASED ASTEROSEISMOLOGY SATELLITE: Outstanding precision! High duty cycle (no aliases) HST MOST Kepler CoRoT Gaia IAU GA 2015,

More information

VLT/SPHERE Spies Rocky and Icy Worlds

VLT/SPHERE Spies Rocky and Icy Worlds VLT/SPHERE Spies Rocky and Icy Worlds P. Vernazza (LAM), B. Carry, F. Marchis, M. Marsset, J. Hanus, M. Viikinkoski, L. Jorda, T. Santana-Ros, T. Fusco, C. Dumas, B. Yang, M. Birlan, E. Jehin, J. Durech,

More information

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017 Lecture 2: Motions of the Earth and Moon Astronomy 111 Wednesday August 30, 2017 Reminders Online homework #1 due Monday at 3pm Labs start next week Motions of the Earth ASTR111 Lecture 2 Observation:

More information