CDM Controversies. James Bullock (UC Irvine)

Size: px
Start display at page:

Download "CDM Controversies. James Bullock (UC Irvine)"

Transcription

1 CDM Controversies James Bullock (UC Irvine)

2 Low stellar mass: feedback can t change DM Core Cusp Tollet et al Also: Governato+12; Penarrubia+12; Garrison-Kimmel+13, Di Cintio+14

3 Low stellar mass: feedback can t change DM looks like N-body feedback makes cored halos Tollet et al M M (M ) M Also: Governato+12; Penarrubia+12; Garrison-Kimmel+13, Di Cintio+14

4 Low stellar mass: feedback can t change DM looks like N-body feedback makes cored halos Below M ~10 6 M not enough energy from supernovae to alter DM structure Tollet et al M M (M ) M Also: Governato+12; Penarrubia+12; Garrison-Kimmel+13, Di Cintio+14

5 A different feedback scheme: similar picture FIRE: Hopkins, Keres, Onorbe, Faucher-Giguere, Quataert, Murray, JSB (2014) Onorbe+2015 Black = DM only Red = With Baryons mdm ~ 1000 M mgas ~ 250 M fres ~ 10 pc MHALO=10 10 M M =2.5x10 6 M

6 Dark matter core sizes: Rcore ~= R R MHALO= M M =10 4 M MHALO=10 10 M M =(2-3)x10 6 M Onorbe+2015

7 Very low mass galaxies: no observable core Onorbe+2015 MHALO= M M =10 4 M MHALO=10 10 M M =(2-3)x10 6 M

8 Consensus: Small galaxies => cuspy/dense halos Below M ~10 6 M not enough energy from supernovae to alter DM structure => MHALO=10 10 M or Vmax~40 km/s Governato+12; Penarrubia+12; Garrison-Kimmel +13, Di Cintio+14; Tollet+15; Onorbe+15; et al. Motivates the study of dwarf galaxies

9 MISSING SATELLITES (1999) Theory: N>>1000 Klypin et al. 1999; Moore et al Observation: N~10 M ~105-7

10 MISSING SATELLITES (2015) CVnII LeoIV UMaI Sextans Ursa Minor BootesI/II Coma Segue1 W1 Draco Herc UMaII Milky Way Sag LMC Carina SMC Sculptor Fornax Theory: N>>1000 Klypin et al. 1999; Moore et al Observation: N~50 M ~103-7

11 EASY ANSWER only the biggest clumps have enough stars to see? e.g. JSB, Kravtsov, & Weinberg 2000

12 EASY ANSWER only the biggest clumps have enough stars to see? e.g. JSB, Kravtsov, & Weinberg 2000

13 EASY ANSWER

14 TOO BIG TO FAIL PROBLEM Aquarius simulations (Springel et al.) Where are these massive halos? Theory Data Boylan-Kolchin, JSB, Kaplinghat+11,12

15 TOO BIG TO FAIL PROBLEM => MHALO=10 10 M or Vmax~40 km/s At critical scale: M ~10 6 M Where are these massive halos? Aquarius simulations (Springel et al.) Theory Data Boylan-Kolchin, JSB, Kaplinghat+11,12

16 TOO BIG TO FAIL IN THE MILKY WAY Boylan-Kolchin+2012 Median: ~10 missing per Milky Way. (Garrison-Kimmel+14). Only 4 of the classical dwarfs have have Mstar > Msun Same issue is present around Andromeda galaxy (Tollerud+14) NOTE: If Milky Way is low-mass 8.e11 Msun then the problem goes away, but then existence LMC/SMC is a new problem (Jiang & vdbosch 2015)

17 TOO BIG TO FAIL IN THE LOCAL FIELD Garrison-Kimmel Boylan-Kolchin+2012 Median: ~15 missing TBTF halos in Local Field. Only 11 galaxies known, 7 w/ Mstar> ELVIS

18 WHAT ABOUT MORE DISTANT GALAXIES (~10 Mpc)? Rodrıguez-Puebla+ (2016; Bolshoi-Planck) Galaxy counts look good for Vmax>60 km/s Bolshoi / Theory HI data Vmax~60 km/s

19 WHAT ABOUT MORE DISTANT GALAXIES (~10 Mpc)? Galaxy counts look low for Vmax<40 km/s Where are these massive halos? Papastergis & Shankar 2016 Bolshoi / Theory HI data Vmax~60 km/s

20 WHAT ABOUT MORE DISTANT GALAXIES (~10 Mpc)? Benefit of the doubt: VHI may be below halo Vmax Vmax VHI Papastergis & Shankar 2016

21 WHAT ABOUT MORE DISTANT GALAXIES (~10 Mpc)? This relation DEMANDS that the counts work Papastergis & Shankar 2016

22 WHAT ABOUT MORE DISTANT GALAXIES (~10 Mpc)? Do the measured densities work out? Papastergis & Shankar 2016

23 WHAT ABOUT MORE DISTANT GALAXIES (~10 Mpc)? Do the measured densities work out? Papastergis & Shankar 2016

24 WHAT ABOUT MORE DISTANT GALAXIES (~10 Mpc)? Do the measured densities work out? Papastergis & Shankar 2016

25 TOO BIG TO FAIL IN THE FIELD Under-dense Compares to di Cintio+14 profiles that include baryon feedback (core) correction. OK Papastergis & Shankar+15 Also: Papastergis+2014; Klypin+2014

26 TOO BIG TO FAIL IN THE FIELD IMPORTANT: Comparison uses baryon-affected profiles (Di Cintio+14) Under-dense Ferrero OK R Papastergis & Shankar15 Also: Papastergis+2014; Klypin+2014

27 Many galaxies <40 km/s appear to be under-dense at very large radii > R. WHY IS THIS SO TROUBLING? Current hydro-feedback models do not affect profiles at these large radii. Ferrero R

28 TOO BIG TO FAIL SUMMARY Exists in Andromeda, Local Field, & more distant field. Solutions that appeal to Milky Way mass or Milky Way environment (Brooks+13, Arraki+13) are probably not going to work. Halos with Vmax ~ km/s (Mvir ~ Msun ) are either Less Numerous and/or Less Dense than predicted in LCDM N-body simulations Stellar mass scale approaching the point where baryon feedback may not solve problem.

James Bullock UC Irvine

James Bullock UC Irvine Can Feedback Solve Too Big to Fail Problem? James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Collaborators Shea Garrison-Kimmel Mike Boylan-Kolchin Jose Oñorbe Jaspreet Lally Manoj Kaplinghat dsphs

More information

Where to Look for Dark Matter Weirdness

Where to Look for Dark Matter Weirdness Where to Look for Dark Matter Weirdness Dark Matter in Southern California (DaMaSC) - II James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Collaborators Mike Boylan-Kolchin U. Maryland Miguel Rocha

More information

Self-Interacting Dark Matter

Self-Interacting Dark Matter Self-Interacting Dark Matter James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Act I Motivations Missing Satellites Problem (1999) Theory: N>>1000 Klypin et al. 1999; Moore et al. 1999; Kauffmann

More information

Effects of baryons on the circular velocities of dwarf satellites

Effects of baryons on the circular velocities of dwarf satellites Effects of baryons on the circular velocities of dwarf satellites Anatoly Klypin, Kenza Arraki, Surhud More NMSU, U. Chicago August 15, 2012; Santa Cruz Galaxy Workshop LCDM and dwarfs: love to hate Missing

More information

Masses of Dwarf Satellites of the Milky Way

Masses of Dwarf Satellites of the Milky Way Masses of Dwarf Satellites of the Milky Way Manoj Kaplinghat Center for Cosmology UC Irvine Collaborators: Greg Martinez Quinn Minor Joe Wolf James Bullock Evan Kirby Marla Geha Josh Simon Louie Strigari

More information

Galaxies on FIRE: Burning up the small-scale crises of ΛCDM

Galaxies on FIRE: Burning up the small-scale crises of ΛCDM Galaxies on FIRE: Burning up the small-scale crises of ΛCDM Observed Starlight Molecular X-Rays Star Formation Cosmic evolution Shea Garrison-Kimmel (Einstein Fellow, Caltech) on behalf of Phil Hopkins

More information

Phys/Astro 689: Lecture 12. The Problems with Satellite Galaxies

Phys/Astro 689: Lecture 12. The Problems with Satellite Galaxies Phys/Astro 689: Lecture 12 The Problems with Satellite Galaxies The Problems with Satellites (1) The Missing Satellites Problem (2) The Too Big to Fail Problem We ll examine potential solutions to each

More information

Dwarf Galaxies as Cosmological Probes

Dwarf Galaxies as Cosmological Probes Dwarf Galaxies as Cosmological Probes Julio F. Navarro The Ursa Minor dwarf spheroidal First Light First Light The Planck Satellite The Cosmological Paradigm The Clustering of Dark Matter The Millennium

More information

Dark Matter Dominated Objects. Louie Strigari Stanford

Dark Matter Dominated Objects. Louie Strigari Stanford Dark Matter Dominated Objects Louie Strigari Stanford Milky Way Circa 2009 Satellite Year Discovered LMC 1519 SMC 1519 Sculptor 1937 Fornax 1938 Leo II 1950 Leo I 1950 Ursa Minor 1954 Draco 1954 Carina

More information

Cosmological Puzzles: Dwarf Galaxies and the Local Group

Cosmological Puzzles: Dwarf Galaxies and the Local Group Cosmological Puzzles: Dwarf Galaxies and the Local Group Julio F. Navarro Dark-matter-only simulations have highlighted a number of cosmological puzzles Local Group puzzles Missing satellites problem Satellite

More information

MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY

MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY Shea Garrison-Kimmel (UCI) Santa Cruz 2011 Collaborators: Jose Oñorbe (UCI), James Bullock (UCI), Mike Boylan-Kolchin (UCI), Ari Maller (CUNY) Majority of halos

More information

Reionization and the radial distribution of satellites

Reionization and the radial distribution of satellites Reionization and the radial distribution of satellites Andrew Graus (UC Irvine) Collaborators: James Bullock (UC Irvine) Tyler Kelley Oliver Elbert Claire Qi Michael Boylan-Kolchin (UT Austin) Alex Fitts

More information

Reionization. High-Redshift Galaxy UV Luminosity Function. Axion Dark Matter. Rosemary Wyse

Reionization. High-Redshift Galaxy UV Luminosity Function. Axion Dark Matter. Rosemary Wyse Reionization and the High-Redshift Galaxy UV Luminosity Function with Axion Dark Matter Rosemary Wyse Johns Hopkins University and University of Edinburgh Brandon Bozek, Doddy Marsh & Joe Silk Galaxy-scale

More information

UC Davis UC Davis Previously Published Works

UC Davis UC Davis Previously Published Works UC Davis UC Davis Previously Published Works Title RECONCILING DWARF GALAXIES with ΛcDM COSMOLOGY: SIMULATING A REALISTIC POPULATION of SATELLITES AROUND A MILKY WAY-MASS GALAXY Permalink https://escholarship.org/uc/item/1283x3xc

More information

arxiv: v2 [astro-ph.ga] 27 Jul 2015

arxiv: v2 [astro-ph.ga] 27 Jul 2015 Draft version July 28, 215 Preprint typeset using L A TEX style emulateapj v. 5/2/11 MATCHING THE DARK MATTER PROFILES OF DSPH GALAXIES WITH THOSE OF SIMULATED SATELLITES: A TWO PARAMETER COMPARISON Maarten

More information

Baryons MaEer: Interpre>ng the Dark MaEer Model

Baryons MaEer: Interpre>ng the Dark MaEer Model Baryons MaEer: Interpre>ng the Dark MaEer Model Alyson Brooks Rutgers, the State University of New Jersey In collabora>on with the University of Washington s N- body Shop makers of quality galaxies Most

More information

arxiv: v1 [astro-ph.ga] 21 Apr 2014

arxiv: v1 [astro-ph.ga] 21 Apr 2014 Mon. Not. R. Astron. Soc. 000, 1 16 (2013) Printed 23 April 2014 (MN LATEX style file v2.2) Too Big to Fail in the Local Group Shea Garrison-Kimmel 1, Michael Boylan-Kolchin 2, James S. Bullock 1, Evan

More information

Determining the Nature of Dark Matter with Astrometry

Determining the Nature of Dark Matter with Astrometry Determining the Nature of Dark Matter with Astrometry Louie Strigari UC Irvine Center for Cosmology Fermilab, 4.16.2007 Collaborators: James Bullock, Juerg Diemand, Manoj Kaplinghat, Michael Kuhlen, Piero

More information

Galaxy-Sized Monopoles as Dark Matter?

Galaxy-Sized Monopoles as Dark Matter? Galaxy-Sized Monopoles as Dark Matter? TPCSF Cosmology MiniWorkshop IHEP, May 23, 2012 WIMPs and Their Successes CDM WIMPs are the most successful dark matter model to date. The dark matter consists of

More information

Solving Cold Dark Matter s small scale crisis

Solving Cold Dark Matter s small scale crisis Solving Cold Dark Matter s small scale crisis Alyson Brooks Rutgers, the State University of New Jersey! In collabora>on with the University of Washington s N- body Shop makers of quality galaxies This

More information

The Self-Interacting Dark Matter Paradigm

The Self-Interacting Dark Matter Paradigm The Self-Interacting Dark Matter Paradigm Hai-Bo Yu University of California, Riverside UCLA Dark Matter 2016, February 17-19, 2016 Small Scale Issues Core VS. Cusp problem Too-big-to-fail problem s r

More information

Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies. Current Studies and Future Prospects

Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies. Current Studies and Future Prospects Observed MW satellites Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies Current Studies and Future Prospects http://marcelpawlowski.com/research/movies-astronomy/ Marcel

More information

Dark Matter Halos of M31. Joe Wolf

Dark Matter Halos of M31. Joe Wolf Dark Matter Halos of M31 Galaxies Joe Wolf TASC October 24 th, 2008 Dark Matter Halos of M31 Galaxies Joe Wolf Team Irvine: Louie Strigari, James Bullock, Manoj Kaplinghat TASC October 24 th, 2008 Dark

More information

Beyond Collisionless DM

Beyond Collisionless DM Beyond Collisionless DM Sean Tulin University of Michigan Based on: ST, Haibo Yu, Kathryn Zurek (1210.0900 + 1302.3898) Manoj Kaplinghat, ST, Haibo Yu (1308.0618 + 13xx.xxxx) Exploring the dark sector

More information

arxiv: v2 [astro-ph.ga] 17 Oct 2015

arxiv: v2 [astro-ph.ga] 17 Oct 2015 Mon. Not. R. Astron. Soc., () Printed October 15 (MN LATEX style file v.) Forged in FIRE: cusps, cores, and baryons in low-mass dwarf galaxies arxiv:15.3v [astro-ph.ga] 17 Oct 15 Jose Oñorbe 1,, Michael

More information

Some like it warm. Andrea V. Macciò

Some like it warm. Andrea V. Macciò Some like it warm Andrea V. Macciò MPIA - Heidelberg D. Aderhalden, A. Schneider, B. Moore (Zurich), F. Fontanot (HITS), A. Dutton, J. Herpich, G. Stinson (MPIA), X. Kang (PMO) CDM problems, hence WDM

More information

Shea C. Garrison-Kimmel

Shea C. Garrison-Kimmel Curriculum Vitae Shea C. Garrison-Kimmel Einstein Postdoctoral Fellow Phone: (610) 731-6378 California Institute of Technology Email: sheagk@caltech.edu 1200 E. California Blvd., Pasadena, CA 91125 Homepage:

More information

Dark Matter in Galaxies

Dark Matter in Galaxies Dark Matter in Galaxies Garry W. Angus VUB FWO 3rd COSPA Meeting Université de Liège Ellipticals. Old stars. Gas poor. Low star formation rate. Spiral (disk) galaxies. Often gas rich => star formation.

More information

high density low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) Springel (2010)

high density low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) Springel (2010) GAS MIXES high density Springel (2010) low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) HOT HALO highest resolved density nth= 50x10

More information

Dark matter halos as particle colliders. Sean Tulin

Dark matter halos as particle colliders. Sean Tulin Dark matter halos as particle colliders Sean Tulin Cold collisionless dark matter paradigm Dark matter (DM) is about 25% of the Universe WMAP Bullet cluster Cold collisionless dark matter (CDM) provides

More information

Hunting for dark matter in the forest (astrophysical constraints on warm dark matter)

Hunting for dark matter in the forest (astrophysical constraints on warm dark matter) Hunting for dark matter in the forest (astrophysical constraints on warm dark matter) ICC, Durham! with the Eagle collaboration: J Schaye (Leiden), R Crain (Liverpool), R Bower, C Frenk, & M Schaller (ICC)

More information

IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context

IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context Simon White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al

More information

What Doesn t Quench Galaxy Formation?

What Doesn t Quench Galaxy Formation? What Doesn t Quench Galaxy Formation? Phil Hopkins Dusan Keres, Claude Faucher-Giguere, Jose Onorbe, Freeke van de Voort, Sasha Muratov, Xiangcheng Ma, Lena Murchikova, Norm Murray, Eliot Quataert, James

More information

arxiv: v2 [astro-ph.co] 21 Mar 2012

arxiv: v2 [astro-ph.co] 21 Mar 2012 Mon. Not. R. Astron. Soc. 000, 1 17 (2012) Printed 22 March 2012 (MN LATEX style file v2.2) The Milky Way s bright satellites as an apparent failure of ΛCDM Michael Boylan-Kolchin, James S. Bullock and

More information

The Mass of the Milky Way from its Satellites. Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler

The Mass of the Milky Way from its Satellites. Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler The Mass of the Milky Way from its Satellites Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler Introduction As seen earlier in this conference, the Bolshoi simulation + SHAM does

More information

Distinguishing Between Warm and Cold Dark Matter

Distinguishing Between Warm and Cold Dark Matter Distinguishing Between Warm and Cold Dark Matter Center for Cosmology Aspen Workshop Neutrinos in Physics & Astrophysics 2/2/2007 Collaborators: James Bullock, Manoj Kaplinghat astro-ph/0701581.. Motivations

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

Mergers and Mass Assembly of Dark Matter Halos & Galaxies

Mergers and Mass Assembly of Dark Matter Halos & Galaxies Mergers and Mass Assembly of Dark Matter Halos & Galaxies Chung-Pei Ma Onsi Fakhouri James McBride (UC Berkeley) Mike Boylan-Kolchin (MPA --> Southern UC) Claude-Andre Faucher-Giguere Dusan Keres (Harvard

More information

arxiv: v1 [astro-ph.ga] 27 Oct 2015

arxiv: v1 [astro-ph.ga] 27 Oct 2015 Draft version October 29, 2015 Preprint typeset using L A TEX style emulateapj v. 05/12/14 arxiv:1510.08060v1 [astro-ph.ga] 27 Oct 2015 ON THE PERSISTENCE OF TWO SMALL-SCALE PROBLEMS IN ΛCDM Marcel S.

More information

Insights into galaxy formation from dwarf galaxies

Insights into galaxy formation from dwarf galaxies Potsdam, August 2014 Insights into galaxy formation from dwarf galaxies Simon White Max Planck Institute for Astrophysics Planck CMB map: the IC's for structure formation Planck CMB map: the IC's for structure

More information

What do we need to know about galaxy formation?

What do we need to know about galaxy formation? What do we need to know about galaxy formation? rachel somerville University of Michigan Hubble Science Legacy Workshop April 2002 what s next? test the CDM paradigm constrain the nature of the dark matter

More information

The impact of Sagittarius on the disk of the Milky Way

The impact of Sagittarius on the disk of the Milky Way The impact of Sagittarius on the disk of the Milky Way David Law James Bullock (UC Irvine) The impact of Sagittarius on the disk of the Milky Way Chris Purcell (Irvine U Pittsburgh) Erik Tollerud (Irvine)

More information

Structure formation and sterile neutrino dark matter

Structure formation and sterile neutrino dark matter Structure formation and sterile neutrino dark matter Collaboration: Trujillo-Gomez, Papastergis Merle, Totzauer Aurel Schneider ETH Zurich Dark matter: explore all possibilities DM via annihilation/decay

More information

Complexities in the stellar kinematics of Local Group dwarf galaxies

Complexities in the stellar kinematics of Local Group dwarf galaxies Complexities in the stellar kinematics of Local Group dwarf galaxies Giuseppina Battaglia Ramon y Cajal fellow Instituto de Astrofisica de Canarias, Tenerife With thanks to: J.Bermejo-Climent, N.Kacharov,

More information

Dark matter. Anne Green University of Nottingham

Dark matter. Anne Green University of Nottingham Dark matter Anne Green University of Nottingham anne.green@nottingham.ac.uk 1. Observational evidence for DM and constraints on its properties Alternatives to dark matter (modified gravity) 2. The DM distribution

More information

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago The Milky Way in the cosmological context Andrey Kravtsov The University of Chicago Milky Way and Its Stars, KITP, 2 February 2015 Cosmological context: hierarchical structure formation from a Gaussian

More information

arxiv: v2 [astro-ph.co] 9 Dec 2013

arxiv: v2 [astro-ph.co] 9 Dec 2013 Draft version December 10, 2013 Preprint typeset using L A TEX style emulateapj v. 5/2/11 THE MASSES OF LOCAL GROUP DWARF SPHEROIDAL GALAXIES: THE DEATH OF THE UNIVERSAL MASS PROFILE Michelle L. M. Collins

More information

modified gravity? Chaire Galaxies et Cosmologie XENON1T Abel & Kaehler

modified gravity? Chaire Galaxies et Cosmologie XENON1T Abel & Kaehler Dark matter or modified gravity? Chaire Galaxies et Cosmologie Françoise Combes 11 December, 2017 XENON1T Abel & Kaehler Why modified gravity? CDM models beautifully account for LSS, CMB, galaxy formation

More information

NYU Nov 5, R isa Wechsler. The Dark Matter and Satellites in the Milky Way and its Twins

NYU Nov 5, R isa Wechsler. The Dark Matter and Satellites in the Milky Way and its Twins NYU Nov 5, 2010 R isa Wechsler The Dark Matter and Satellites in the Milky Way and its Twins What is the formation history of the Milky Way? Can we understand the population of satellites in the Milky

More information

Is gravity the only dark matter interaction that matters in the physics of galaxies?

Is gravity the only dark matter interaction that matters in the physics of galaxies? Is gravity the only dark matter interaction that matters in the physics of galaxies? Jesús Zavala Franco Faculty of Physical Sciences, University of Iceland 15th Potsdam Thinkshop, September 2018 Opening

More information

A unified multi-wavelength model of galaxy formation. Carlton Baugh Institute for Computational Cosmology

A unified multi-wavelength model of galaxy formation. Carlton Baugh Institute for Computational Cosmology A unified multi-wavelength model of galaxy formation Carlton Baugh Institute for Computational Cosmology M81 Angel Lopez Sanchez A unified multi-wavelength model of galaxy formation Lacey et al. 2015 arxiv:1509.08473

More information

arxiv: v1 [astro-ph.ga] 21 Jul 2016

arxiv: v1 [astro-ph.ga] 21 Jul 2016 Mon. Not. R. Astron. Soc. 000, 1 14 (16) Printed 25 July 16 (MN LATEX style file v2.2) The cold dark matter content of Galactic dwarf spheroidals: no cores, no failures, no problem arxiv:1607.06479v1 [astro-ph.ga]

More information

Galaxy formation in cold dark matter

Galaxy formation in cold dark matter Galaxy formation in cold dark matter Cheng Zhao Tsinghua Center for Astrophysics Oct 27, 2017 Main references: Press & Schechter, 1974 White & Rees, 1978 Galaxy formation mechanism Cosmological initial

More information

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Mia S. Bovill with Massimo Ricotti University of Maryland The Smallest Galaxies Minihalos DO NOT initiate gas condensation

More information

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS GALAXY FORMATION - Durham -18 July 2011 THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS JOEL PRIMACK, UCSC ΛCDM Cosmological Parameters for Bolshoi and BigBolshoi Halo Mass Function is 10x

More information

arxiv: v2 [astro-ph.ga] 11 May 2016

arxiv: v2 [astro-ph.ga] 11 May 2016 Astronomy & Astrophysics manuscript no. TBTF_vs_feedback c ESO 2018 October 20, 2018 An assessment of the too big to fail problem for field dwarf galaxies in view of baryonic feedback effects E. Papastergis

More information

Understanding isolated and satellite galaxies through simulations

Understanding isolated and satellite galaxies through simulations Understanding isolated and satellite galaxies through simulations Kenza Arraki! Blue Waters Graduate Fellow! New Mexico State University! Anatoly Klypin! Daniel Ceverino! Sebastian Trujillo-Gomez! Joel

More information

Phys/Astro 689: Lecture 8. Angular Momentum & the Cusp/Core Problem

Phys/Astro 689: Lecture 8. Angular Momentum & the Cusp/Core Problem Phys/Astro 689: Lecture 8 Angular Momentum & the Cusp/Core Problem Summary to Date We first learned how to construct the Power Spectrum with CDM+baryons. Found CDM agrees with the observed Power Spectrum

More information

A.Klypin. Dark Matter Halos

A.Klypin. Dark Matter Halos A.Klypin Dark Matter Halos 1 Major codes: GADET N-body Hydro Cooling/Heating/SF Metal enrichment Radiative transfer Multistepping/Multiple masses Springel, SDM White PKDGRAV - GASOLINE ART ENZO Quinn,

More information

Princeton December 2009 The fine-scale structure of dark matter halos

Princeton December 2009 The fine-scale structure of dark matter halos Princeton December 2009 The fine-scale structure of dark matter halos Simon White Max Planck Institute for Astrophysics The dark matter structure of CDM halos A rich galaxy cluster halo Springel et al

More information

The Structural Properties of Milky Way Dwarf Galaxies. Ricardo Muñoz (Universidad de Chile) Collaborators:

The Structural Properties of Milky Way Dwarf Galaxies. Ricardo Muñoz (Universidad de Chile) Collaborators: The Structural Properties of Milky Way Dwarf Galaxies Ricardo Muñoz (Universidad de Chile) Milky Way inner 100 kpc Collaborators: Marla Geha (Yale) Patrick Côté (HIA/DAO) Peter Stetson (HIA/DAO) Josh Simon

More information

Are most galaxies in the Universe TSTS:Too shy to shine?

Are most galaxies in the Universe TSTS:Too shy to shine? Are most galaxies in the Universe TSTS:Too shy to shine? R. Giovanelli UAT Workshop @ AO is grand Jan 2015 Some statistical tools with paucity of flashy pix (* ): The HI mass function which tells us the

More information

Structure and substructure in dark matter halos

Structure and substructure in dark matter halos Satellites and Tidal Streams ING IAC joint Conference La Palma, May 2003 Structure and substructure in dark matter halos Simon D.M. White Max Planck Institute for Astrophysics 500 kpc A CDM Milky Way Does

More information

arxiv: v2 [astro-ph.co] 19 Jan 2017

arxiv: v2 [astro-ph.co] 19 Jan 2017 Mon. Not. R. Astron. Soc., 1 22 (215) Printed 2 January 217 (MN LATEX style file v2.2) Baryonic impact on the dark matter distribution in Milky Way-size galaxies and their satellites arxiv:156.5537v2 [astro-ph.co]

More information

arxiv: v1 [astro-ph.ga] 6 Dec 2018

arxiv: v1 [astro-ph.ga] 6 Dec 2018 Mon. Not. R. Astron. Soc. 000, 1 (2018) Printed 10 December 2018 (MN LATEX style file v2.2) Be it therefore resolved: Cosmological Simulations of Dwarf Galaxies with Extreme Resolution Coral Wheeler 1,

More information

arxiv: v1 [astro-ph.ga] 7 Nov 2016

arxiv: v1 [astro-ph.ga] 7 Nov 2016 Preprint 9 November 2016 Compiled using MNRAS LATEX style file v3.0 FIRE in the Field: Simulating the Threshold of Galaxy Formation arxiv:1611.02281v1 [astro-ph.ga] 7 Nov 2016 Alex Fitts 1, Michael Boylan-Kolchin

More information

The Self-Interacting Dark Matter (SIDM) model MANOJ KAPLINGHAT UNIVERSITY OF CALIFORNIA, IRVINE

The Self-Interacting Dark Matter (SIDM) model MANOJ KAPLINGHAT UNIVERSITY OF CALIFORNIA, IRVINE The Self-Interacting Dark Matter (SIDM) model MANOJ KAPLINGHAT UNIVERSITY OF CALIFORNIA, IRVINE The predictions of the ΛCDM model agree well with the observed large-scale structure of the Universe. Visible

More information

Dark Matter: Observational Constraints

Dark Matter: Observational Constraints Dark Matter: Observational Constraints Properties of Dark Matter: What is it? And what isn t it? Leo Blitz UC Berkeley Stanford July 31, 2007 How much is there? WMAP results Rotation curves of Galaxies

More information

Small-scale problems of cosmology and how modified dynamics might address them

Small-scale problems of cosmology and how modified dynamics might address them Small-scale problems of cosmology and how modified dynamics might address them Marcel S. Pawlowski Email: marcel.pawlowski@case.edu Twitter: @8minutesold with support from the John Templeton Foundation

More information

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine)

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine) Connecting observations to simulations arxiv: 0908.2995 Joe Wolf (UC Irvine) September, 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Erik Tollerud Quinn Minor Team Irvine: Greg Martinez

More information

arxiv: v2 [astro-ph.co] 7 Jul 2014

arxiv: v2 [astro-ph.co] 7 Jul 2014 Mon. Not. R. Astron. Soc. 000, 1 6 (2014) Printed 31 October 2018 (MN LATEX style file v2.2) Near-field limits on the role of faint galaxies in cosmic reionization Michael Boylan-Kolchin, 1 James S. Bullock,

More information

Triumphs and tribulations of ΛCDM, the double dark theory

Triumphs and tribulations of ΛCDM, the double dark theory 00077_a 2012-09-18.6909 1 Ann. Phys. (Berlin) 524, No. 9 10, 535 544 (2012) / DOI 10.1002/andp.201200077 Triumphs and tribulations of ΛCDM, the double dark theory Joel R. Primack Received 1 April 2012,

More information

Formation and evolution of CDM halos and their substructure

Formation and evolution of CDM halos and their substructure Formation and evolution of CDM halos and their substructure 1) cold dark matter and structures on all scales 2) via lactea, z=0 results 3) subhalo evolution Jürg Diemand UC Santa Cruz 4) DM annihilation

More information

Cosmological Merger Rates

Cosmological Merger Rates Cosmological Merger Rates C. Brook, F. Governato, P. Jonsson Not Phil Hopkins Kelly Holley-Bockelmann Vanderbilt University and Fisk University k.holley@vanderbilt.edu Why do we care so much about the

More information

Impact of Stellar Feedback in Dwarf Galaxy formation and the CGM

Impact of Stellar Feedback in Dwarf Galaxy formation and the CGM Impact of Stellar Feedback in Dwarf Galaxy formation and the CGM Sijing Shen IMPS fellow, UC Santa Cruz Kavli Institute of Theoretical Physics, UCSB June 24, 2014 In collaboration with: Piero Madau, Jason

More information

c Copyright 2015 Alexander Bastidas Fry

c Copyright 2015 Alexander Bastidas Fry c Copyright 2015 Alexander Bastidas Fry Self-Interacting Dark Matter in Cosmological Simulations Alexander Bastidas Fry A dissertation submitted in partial fulfillment of the requirements for the degree

More information

PHYSICAL COSMOLOGY & COMPLEXITY

PHYSICAL COSMOLOGY & COMPLEXITY PHYSICAL COSMOLOGY & COMPLEXITY The Quest for the Invisible Universe Pier Stefano Corasaniti CNRS & Observatoire de Paris OUTLINE Epistemological Perspective: Invisible Universe and Cosmic Structure Formation:

More information

Dwarf galaxies and the formation of the Milky Way

Dwarf galaxies and the formation of the Milky Way Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and

More information

arxiv: v2 [astro-ph.co] 11 Dec 2013

arxiv: v2 [astro-ph.co] 11 Dec 2013 Mon. Not. R. Astron. Soc. 000, 1 17 (2013) Printed 26 September 2018 (MN LATEX style file v2.2) Effects of baryon removal on the structure of dwarf spheroidal galaxies Kenza S. Arraki 1, Anatoly Klypin

More information

Some useful spherically symmetric profiles used to model galaxies

Some useful spherically symmetric profiles used to model galaxies Some useful spherically symmetric profiles used to model galaxies de Vaucouleurs R 1/4 law for ellipticals and bulges A good fit to the light profile of many ellipticals and bulges: (constant such that

More information

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine)

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine) Connecting observations to simulations arxiv: 0908.2995 Joe Wolf (UC Irvine) University of Maryland December 8 th, 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Erik Tollerud Quinn Minor

More information

Sterile Neutrino Candidates for the 3.5 kev Line. Kevork Abazajian University of California, Irvine

Sterile Neutrino Candidates for the 3.5 kev Line. Kevork Abazajian University of California, Irvine Sterile Neutrino Candidates for the 3.5 kev Line Kevork Abazajian University of California, Irvine UCLA Dark Matter 2016 February 18, 2016 Sterile Neutrinos as Dark Matter: History Super-weak neutrinos

More information

WHERE ARE ALL THE GAS-BEARING LOCAL DWARF GALAXIES? QUANTIFYING POSSIBLE IMPACTS OF REIONIZATION

WHERE ARE ALL THE GAS-BEARING LOCAL DWARF GALAXIES? QUANTIFYING POSSIBLE IMPACTS OF REIONIZATION Draft version March 6, 2018 Preprint typeset using L A TEX style AASTeX6 v. 1.0 WHERE ARE ALL THE GAS-BEARING LOCAL DWARF GALAXIES? QUANTIFYING POSSIBLE IMPACTS OF REIONIZATION Erik J. Tollerud 1, J.E.G.

More information

Feedback from massive stars in dwarf galaxy formation

Feedback from massive stars in dwarf galaxy formation Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L. M. Lara, V. Quilis, and

More information

arxiv: v1 [astro-ph.co] 23 Sep 2010

arxiv: v1 [astro-ph.co] 23 Sep 2010 1 Notes on the Missing Satellites Problem James. S. Bullock (UC Irvine) arxiv:1009.4505v1 [astro-ph.co] 23 Sep 2010 Abstract The Missing Satellites Problem (MSP) broadly refers to the overabundance of

More information

Azadeh Fattahi B.Sc., Sharif University of Technology, A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Azadeh Fattahi B.Sc., Sharif University of Technology, A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of The Local Group and its dwarf galaxy members in the standard model of cosmology by Azadeh Fattahi B.Sc., Sharif University of Technology, 2011 A Dissertation Submitted in Partial Fulfillment of the Requirements

More information

Dark Matter Lecture 1: Evidence and Gravitational Probes

Dark Matter Lecture 1: Evidence and Gravitational Probes Dark Matter Lecture 1: Evidence and Gravitational Probes Tracy Slatyer ICTP Summer School on Cosmology Trieste 6 June 2016 Goals (Lecture I) Explain the arguments for particle dark matter. Outline current

More information

Dwarf Spheroidal Galaxies : From observations to models and vice versa. Yves Revaz

Dwarf Spheroidal Galaxies : From observations to models and vice versa. Yves Revaz Dwarf Spheroidal Galaxies : From observations to models and vice versa Yves Revaz The good reasons to study dsphs : Test for the LCDM paradigm : small structures are predicted in abundance Galaxy luminosity

More information

DEEP-Theory Meeting 30 October 2017 Expected at 4 pm: Elliot Eckholm; Not coming today: Vivian Tang, Graham Vanbenthuysen Prolate galaxies:

DEEP-Theory Meeting 30 October 2017 Expected at 4 pm: Elliot Eckholm; Not coming today: Vivian Tang, Graham Vanbenthuysen Prolate galaxies: DEEP-Theory Meeting 30 October 2017 Expected at 4 pm: Elliot Eckholm; Not coming today: Vivian Tang, Graham Vanbenthuysen Prolate galaxies: observation-simulation comparison Haowen Zhang and Vivian Tang:

More information

arxiv: v1 [astro-ph.ga] 30 Mar 2015

arxiv: v1 [astro-ph.ga] 30 Mar 2015 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 11 October 2018 (MN LATEX style file v2.2) The Milky Way system in ΛCDM cosmological simulations Qi Guo 1,2, Andrew Cooper 2, Carlos Frenk 2, John

More information

Structure of Dark Matter Halos

Structure of Dark Matter Halos Structure of Dark Matter Halos Dark matter halos profiles: DM only: NFW vs. Einasto Halo concentration: evolution with time Dark matter halos profiles: Effects of baryons Adiabatic contraction Cusps and

More information

Veilleux! see MBW ! 23! 24!

Veilleux! see MBW ! 23! 24! Veilleux! see MBW 10.4.3! 23! 24! MBW pg 488-491! 25! But simple closed-box model works well for bulge of Milky Way! Outflow and/or accretion is needed to explain!!!metallicity distribution of stars in

More information

Formation and growth of galaxies in the young Universe: progress & challenges

Formation and growth of galaxies in the young Universe: progress & challenges Obergurgl. April 2014 Formation and growth of galaxies in the young Universe: progress & challenges Simon White Max Planck Institute for Astrophysics Ly α forest spectra and small-scale initial structure

More information

Solving. Andrey Kravtsov The University of Chicago Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics

Solving. Andrey Kravtsov The University of Chicago Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics Solving Constraining galaxy formation with gaseous halos Andrey Kravtsov The University of Chicago Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics X-ray Vision workshop:

More information

Too small to succeed: the difficulty of sustaining star formation in low-mass haloes

Too small to succeed: the difficulty of sustaining star formation in low-mass haloes Advance Access publication 2017 February 8 doi:10.1093/mnras/stx315 Too small to succeed: the difficulty of sustaining star formation in low-mass haloes Claire R. Cashmore, 1 Mark I. Wilkinson, 1 Chris

More information

arxiv: v2 [astro-ph.co] 16 Jan 2012

arxiv: v2 [astro-ph.co] 16 Jan 2012 Mon. Not. R. Astron. Soc. 000,?? 8 (2011) Printed 22 October 2018 (MN LATEX style file v2.2) The haloes of bright satellite galaxies in a warm dark matter universe arxiv:1104.2929v2 [astro-ph.co] 16 Jan

More information

Chap.6 Formation and evolution of Local Group galaxies

Chap.6 Formation and evolution of Local Group galaxies Chap.6 Formation and evolution of Local Group galaxies Properties of LG galaxies Formation history of LG galaxies Models to solve missing satellites problem Formation of Andromeda galaxy Future prospects

More information

Lecture 7: the Local Group and nearby clusters

Lecture 7: the Local Group and nearby clusters Lecture 7: the Local Group and nearby clusters in this lecture we move up in scale, to explore typical clusters of galaxies the Local Group is an example of a not very rich cluster interesting topics include:

More information

Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter

Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter doi:10.1093/mnras/stu1713 Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter Mark Vogelsberger, 1 Jesus Zavala, 2 Christine Simpson 3 and Adrian Jenkins 4 1

More information

Diverse Galactic Rotation Curves & Self-Interacting Dark Matter

Diverse Galactic Rotation Curves & Self-Interacting Dark Matter Diverse Galactic Rotation Curves & Self-Interacting Dark Matter Hai-Bo Yu University of California, Riverside TeVPA, August 7, 2017 See Anna Kwa s talk Review for Physics Reports: Sean Tulin, HBY arxiv:

More information