Michele Punturo. ET scientific Coordinator. INFN Perugia and EGO On behalf of the ET design study team

Size: px
Start display at page:

Download "Michele Punturo. ET scientific Coordinator. INFN Perugia and EGO On behalf of the ET design study team"

Transcription

1 Michele Punturo ET scientific Coordinator INFN Perugia and EGO On behalf of the ET design study team

2 Talk Outline A 3 rd generation GW Observatory? Motivations Site and Infrastructures Technologies Perspectives Astro-GR@Mallorca 2

3 Sathya will describe the ET science reaches. Here I will try to demonstrate why we need a new Infrastructure Astro-GR@Mallorca 3

4 Motivations Current (lack of) understanding of the Universe Multi-messenger observation! To re-compose a photograph of the Universe we need to observe it with several eyes (or ears ): E.M. astronomy Neutrino astronomy Cosmic rays Gravitational waves Astro-GR@Mallorca 4

5 E.M. Astronomy Current e.m. telescopes are mapping almost the entire Universe Keywords: Map it in all the accessible wavelengths 408MHz Arecibo VLA Radio Telescopes 5

6 E.M. Astronomy Current e.m. telescopes are mapping almost the entire Universe Keywords: Map it in all the accessible wavelengths 408MHz WMAP WMAP (Microwaves telescope) Plank (Satellite) 6

7 E.M. Astronomy Current e.m. telescopes are mapping almost the entire Universe Keywords: Map it in all the accessible wavelengths 408MHz WMAP Infrared E-ELT (infrared telescope) 7

8 E.M. Astronomy Current e.m. telescopes are mapping almost the entire Universe Keywords: Map it in all the accessible wavelengths 408MHz WMAP Infrared visible VLT (Very Large Telescope) Galileo s telescope Astro-GR@Mallorca 8

9 E.M. Astronomy Current e.m. telescopes are mapping almost the entire Universe Keywords: Map it in all the accessible wavelengths 408MHz WMAP Infrared visible X-ray γ-ray Fermi (GLAST) telescope GRB 9

10 E.M. Astronomy Current e.m. telescopes are mapping almost the entire Universe Keywords: Map it in all the accessible wavelengths See as far as possible Galaxy UDFy in Ultra Deep Field image (Hubble Telescope) 13.1 Gly Infrared 408MHz visible WMAP X-ray γ-ray M. Trenti, Nature 467, (21 October 2010) GRB 10

11 GW Astronomy? Enlarge as much as possible the frequency range of GW detectors Pulsar Timing Arrays Hz Space based detectors (LISA, DECIGO) Hz Ground based detectors Hz Improve as much as possible the sensitivity to increase the detection volume (rate) and the observation SNR Infrared X-ray 408MHz visible WMAP γ-ray GW? GRB Astro-GR@Mallorca 11

12 GW interferometer past evolution Evolution of the GW detectors (Virgo example): Proof of the working principle Upper Limit physics Infrastructu re realization and detector assembling 2003 Same infrastructure 2008 Detection distance (a.u.) year 12

13 GW interferometer present evolution Evolution of the GW detectors (Virgo example): Proof of the working principle Upper Limit physics Infrastructu re realization and detector assembling enhanced detectors Same Same Same infrastructure infrastructure infrastructure First detection Initial astrophysics Detection distance (a.u.) year

14 Advanced detectors Advanced detectors are, for example, promising: An increase of the BNS detection distance up to 200 MPc Enhanced LIGO/Virgo+ arxiv: v2 [astro-ph.he] Virgo/LIGO 10 8 ly Adv. Virgo/Adv. LIGO Universe in 1 Gly Astro-GR@Mallorca Credit: R.Powell, B.Berger 14

15 Advanced detectors Advanced detectors are, for example, promising: An increase of the BNS detection distance up to 200 MPc Enhanced LIGO/Virgo+ Virgo/LIGO 10 8 ly One order of magnitude is missing to compete/collaborate with e.m. telescopes at all the distances Universe in 1 Gly Adv. Virgo/Adv. LIGO Astro-GR@Mallorca Credit: R.Powell, B.Berger 15

16 3 rd generation? Precision Astrophysics Evolution of the GW detectors (Virgo example): Proof of the working principle Upper Limit physics Infrastructu re realization and detector assembling 2003 Same Same Same Same Infrastructure infrastructure infrastructure infrastructure ( 20 years old for Virgo, even more for LIGO & GEO600) 2008 Limit of the current infrastructures First detection Initial astrophysics enhanced detectors 2011 Cosmology Detection distance (a.u.) year 16 Astro-GR@Mallorca

17 Target Sensitivity Target sensitivity of a new, 3 rd generation observatory (the Einstein Telescope, ET) is the result of the trade off between several requirements 1. Science Infrastructure targets & site costs 2. Available technologies (detector realization) 3. Infrastructure Science targets & site costs As starting point of our studies we defined two rough requirements: Improvement by a factor 10 the advanced sensitivities Access, as much as possible, to the 1-10Hz frequency range Astro-GR@Mallorca 17

18 A bit of history The ET design study is neither the first step nor the last one of the ET adventure The first successful attempt to setup a common path toward a pan-european GW project of 3 rd generation has been the I3 initiative ILIAS ( ), in FP6: STREGA (JRA3), thermal noise reduction beyond advanced detectors N5-WP3, future pan-european projects The right framework about the ET proposal born with the support of the European Science Foundation (ESF) Exploratory Workshop (2005, Perugia) Astro-GR@Mallorca 18

19 Achievements of the Design Study Evaluate the science reaches of ET Define the sensitivity and performance requirements Site requirements Infrastructures requirements Fundamental and (main) technical noise requirements Multiplicity requirements Draft the observatory specs Site candidates Main infrastructures characteristics Geometries Size, L-Shaped or triangular Topologies Michelson, Sagnac, Technologies Evaluate the (rough) cost of the infrastructure and of the observatory 19

20 Conceptual Design Document ET conceptual design document released: ~400 pages describing the main characteristics of the observatory To be sent to the European Commission at the end of September To be published on CQG 20

21 How a new infrastructure (and new technologies) pushes ET beyond the 2 nd generation? Seismic h(f) [1/sqrt(Hz)] Hz Frequency [Hz] 10 khz Astro-GR@Mallorca 21

22 Seismic noise Virgo and advanced Virgo seismic filtering is already close to the top of the possible performances Longer suspensions to facilitate the low frequency access Gravity gradient noise bypasses the seismic filtering NEWTONIAN NOISE SEISMIC NOISE G h ρ f const x f H( f) 0 ( ) =. 0( ) Astro-GR@Mallorca Credit M.Lorenzini 2 22

23 Seismic noise Virgo and advanced Virgo seismic filtering is already close to the top of the possible performances Gravity gradient noise bypasses the seismic filtering The only way to access the 1-10Hz range, i.e. appealing for IMBH, is to select a site with very low seismic noise We need to minimize Seismic noise Gravity Gradient Noise Environmental noises (wind, human activities, ) Astro-GR@Mallorca 23

24 Seismic noise model Peterson's background noise model 24

25 Current GW detectors seismic noise µ-seism in a very noisy day Astro-GR@Mallorca 25

26 The ET idea The main limitation for another jump of factor of 10 in sensitivity is then the infrastructure Where is it located? What needs to be realized? When? To go beyond the infrastructure limitation, at low frequency, there are three possibilities: 1. Go in the space 2. Go on the Moon 3. Go underground!!! LISA, DECIGO Crazy (up to now) LCGT, ET 26

27 Seismology network In ET we started the investigation using the support and the data of the ORFEUS* Network (>200 sites in Europe) * Observatories and Research Facilities for European Seismology Astro-GR@Mallorca 27

28 ET: Site search Underground sites (mines, labs, ) Seismometer (Nikhef) Astro-GR@Mallorca 28

29 WP1: Site search: Many sites visited in Europe 29

30 Underground Seismic noise Measurement 30

31 Day/Night variability vs population density 31

32 Site selection Single site selection was not one of the targets of the conceptual design study Our objective has been to define the requirements to understand the relationship between site characteristics, costs and performances To prepare a list of good candidates The selection of the site will be performed in a future phase and the scientific and technical arguments will be joint to the political and financial aspects Astro-GR@Mallorca 32

33 ET infrastructure: the keywords During the ET conceptual design study period we developed a new jargon For initial and advanced interferometer the right keyword is detection and these apparatuses are named detectors. ET aims to observe the GW sources and the keywords are different The target is an infrastructure operating for many decades with high duty cycle ET must be able to observe a wide range of frequencies ET must be able to host more than one detector (multiplicity) and accommodate the future evolutions, minimizing the suspension of the data taking (modularity) ET will operate embedded in a world wide network, but it should have scientific relevance if working alone (rough pointing capabilities, high SNR) Hence, ET will be an observatory (rather than a detector) Astro-GR@Mallorca 33

34 Implementing the infrastructure Schematic view Full infrastructure realized Initial detector(s) implementation 1 detector (2 ITF) Physics already possible in coincidence with the improved advanced detectors Progressive implementation 2 detector (4 ITF) Redundancy and crosscorrelation Full implementation 3 detector (6 ITF) Virtual interferometry 2 polarizations reconstruction Astro-GR@Mallorca 34

35 Artistic/Schematic views 35

36 Corner and ancillary halls 36

37 ~30km of Gilgel Gibe II Power Station headrace tunnel Şanlıurfa Irrigation Tunnels Kanayama-Nagoya Dome-mae Yada-Kanayama (Meijo Line) Hakkōda Tunnel(Tōhoku Shinkansen) tunnels? LEP Tunnel Dainichi-Nagahara (Tanimachi Line) Morden - East Finchley (Northern Line) Under Taihang construction Tunnel[4] or advanced plan Guadarrama Tunnel[3] Förbifart Stockholm[29] Fehmarn Belt Fixed Link Follo Line Musil Tunnel[27] Gaoligongshan Tunnel Mont d'ambin base tunnel Brenner Base Tunnel Marmaray Ceneri Base Tunnel Solan Tunnel[26] Mavi Tünel (Blue Tunnel)[25] Iiyama Tunnel[24] Pajares Base Tunnel Lainzer/Wienerwaldtunnel New Guanjiao Tunnel Koralm Tunnel Gotthard Base Tunnel New York City Water Tunnel#3 Prospekt Veteranov - Devyatkino (line 1) Parnas - Kupchino (line 2) Côte-Vertu - Montmorency (Line 2 Orange) Rathaus Spandau-Rudow (U7) Metro Madrid L-7: Hospital del Henares - Pitis Lötschberg Base Tunnel Medvedkovo - Novoyasenevskaya (line 6) Quabbin Aqueduct Kárahnjúkar Hydroelectric Powerplant Tocho-mae - Shiodome - Hikarigaoka (Toei Oedo Metro Madrid L-12: (Metro Sur) Altufyevo - Bulvar Dmitriya Donskogo (line 9) Seoul Subway: Line 5 Channel Tunnel Želivka Water Tunnel[2] Seikan Tunnel Bolmen Water Tunnel Orange Fish River Tunnel Dahuofang Water Tunnel Päijänne Water Tunnel Delaware Aqueduct Astro-GR@Mallorca

38 ET: The technologies Seismic h(f) [1/sqrt(Hz)] Hz Frequency [Hz] 10 khz Astro-GR@Mallorca 38

39 Reduction of the thermal noise Thermal noise reduction is achievable through two handles Fluctuation dissipation theorem: Minimization of the mechanical losses in the (suspension and test mass) material and optimization of the suspension geometry Equipartition theorem: reduction of the thermal energy (low temperatures) Advanced detector are fully exploiting the first handle Third generation will benefit (as LCGT intends to do) of the second one: Cryogenics 39

40 Cryogenic plants and technologies A cryogenic design of the payload has been investigated in the design document Conceptual solutions identified but intense R&D needed for the next years Silicon optics Cryo-cooling techniques Coatings Astro-GR@Mallorca 40

41 Synergies with LCGT: ELiTES LCGT is pioneering the development of an underground infrastructure and of the cryogenic interferometer for GW detection We considered mandatory to profit of all the collaboration possibilities At the beginning of 2011 has been submitted a FP7-European proposal (ELiTES) for a 4 years exchange of scientist programme between Europe (ET-Science Team laboratories) and Japan (ICRR-UT)focused on cryogenics The proposal has been evaluated positively and now we are in the negotiation phase Astro-GR@Mallorca 41

42 Optical Configuration Optical topologies have been investigated in the design study Different geometries analyzed Compliance with the observatory keywords has been the crucial requirement 42

43 Optical Technologies Reduction of the quantum noise asks for new technologies to be developed in ET 1.55µm lasers, High power lasers Low absorption silicon and fused silica optics Higher mode cavities Frequency dependent squeezing Thermal compensation improvements 43

44 ASPERA tech forum A first small step to support the optical technology development for ET Astro-GR@Mallorca 44

45 ET as European Research Infrastructure ET is candidate to be a major infrastructure, fundamental brick of the European Research Area To transform this wish in reality, several achievements are needed The successful conclusion of the conceptual design phase, the enthusiastic participation of many scientists, well beyond the 8 beneficiaries, the international relevance achieved in these three years are a confirmation of the validity of the project and a good starting point But a long path is in front of us: Astro-GR@Mallorca 45

46 The worldwide scenario ET project is obviously fully immersed in the worldwide evolution of the GW detectors GWIC roadmap: 46

47 ET Conceptual design R&D Technical design First detection on advanced interferometers ET Site and infrastructures realisation ET Observatory Funding Site preparation Hardware production Components pre-commissioning and first ET detector commissioning First science data

48 END 48

Future underground gravitational wave observatories. Michele Punturo INFN Perugia

Future underground gravitational wave observatories. Michele Punturo INFN Perugia Future underground gravitational wave observatories Michele Punturo INFN Perugia Terrestrial Detectors Advanced detectors 2015-2025 GEO, Hannover, 600 m aligo Hanford, 4 km 2015 2016 AdV, Cascina, 3 km

More information

Overview of future interferometric GW detectors

Overview of future interferometric GW detectors Overview of future interferometric GW detectors Giovanni Andrea Prodi, University of Trento and INFN, many credits to Michele Punturo, INFN Perugia New perspectives on Neutron Star Interiors Oct.9-13 2017,

More information

Fulvio Ricci Università di Roma La Sapienza INFN Roma on behalf of the design study team

Fulvio Ricci Università di Roma La Sapienza INFN Roma on behalf of the design study team Fulvio Ricci Università di Roma La Sapienza INFN Roma on behalf of the design study team TAUP 2009 - Roma 1 !The ET project: organization and the road map! The ET scientific targets!conclusion TAUP 2009

More information

ET: Einstein Telescope

ET: Einstein Telescope ET: Einstein Telescope Michele Punturo INFN Perugia On behalf of the ET design study team ILIAS General meeting, Jaca Feb 2008 1 Evolution of the current GW detectors Current Gravitational Wave interferometric

More information

Gravitational Wave Detectors: Back to the Future

Gravitational Wave Detectors: Back to the Future Gravitational Wave Detectors: Back to the Future Raffaele Flaminio National Astronomical Observatory of Japan University of Tokyo, March 12th, 2017 1 Summary Short introduction to gravitational waves (GW)

More information

Michele Punturo. INFN Perugia and EGO On behalf of the Einstein Telescope Design Study Team

Michele Punturo. INFN Perugia and EGO On behalf of the Einstein Telescope Design Study Team Michele Punturo INFN Perugia and EGO On behalf of the Einstein Telescope Design Study Team http://www.et-gw.eu/ SIF - Bologna 2010 1 3 rd generation: Why? Evolution of the GW detectors (Virgo example):

More information

The Advanced LIGO detectors at the beginning of the new gravitational wave era

The Advanced LIGO detectors at the beginning of the new gravitational wave era The Advanced LIGO detectors at the beginning of the new gravitational wave era Lisa Barsotti MIT Kavli Institute LIGO Laboratory on behalf of the LIGO Scientific Collaboration LIGO Document G1600324 LIGO

More information

Gravitational Wave Detection from the Ground Up

Gravitational Wave Detection from the Ground Up Gravitational Wave Detection from the Ground Up Peter Shawhan (University of Maryland) for the LIGO Scientific Collaboration LIGO-G080393-00-Z From Simple Beginnings Joe Weber circa 1969 AIP Emilio Segre

More information

Advanced Virgo: Status and Perspectives. A.Chiummo on behalf of the VIRGO collaboration

Advanced Virgo: Status and Perspectives. A.Chiummo on behalf of the VIRGO collaboration Advanced Virgo: Status and Perspectives A.Chiummo on behalf of the VIRGO collaboration Advanced Virgo 2 Advanced Virgo What s that? 3 Advanced Virgo Advanced Virgo (AdV): upgrade of the Virgo interferometric

More information

Gravitational Wave Astronomy

Gravitational Wave Astronomy Gravitational Wave Astronomy Giles Hammond SUPA, University of Glasgow, UK on behalf of the LIGO Scientific Collaboration and the Virgo Collaboration 14 th Lomonosov conference on Elementary Particle Physics

More information

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Jan Harms INFN, Sezione di Firenze On behalf of LIGO and Virgo 1 Global Network of Detectors LIGO GEO VIRGO KAGRA LIGO 2 Commissioning

More information

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas 4 th international LISA Symposium July 22, 2002 @ Penn State University Seiji Kawamura National Astronomical

More information

LIGO: On the Threshold of Gravitational-wave Astronomy

LIGO: On the Threshold of Gravitational-wave Astronomy LIGO: On the Threshold of Gravitational-wave Astronomy Stan Whitcomb LIGO/Caltech IIT, Kanpur 18 December 2011 Outline of Talk Quick Review of GW Physics and Astrophysics LIGO Overview» Initial Detectors»

More information

Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA

Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA 29-March, 2009 JPS Meeting@Rikkyo Univ Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA Overview of This talk Science goal of LCGT First detection of

More information

The Status of KAGRA Underground Cryogenic Gravitational Wave Telescope

The Status of KAGRA Underground Cryogenic Gravitational Wave Telescope TAUP2017 @ Laurentian University Jul 26, 2017 The Status of KAGRA Underground Cryogenic Gravitational Wave Telescope Yuta Michimura Department of Physics, University of Tokyo on behalf of the KAGRA Collaboration

More information

Advanced LIGO, LIGO-Australia and the International Network

Advanced LIGO, LIGO-Australia and the International Network Advanced LIGO, LIGO-Australia and the International Network Stan Whitcomb LIGO/Caltech IndIGO - ACIGA meeting on LIGO-Australia 8 February 2011 Gravitational Waves Einstein in 1916 and 1918 recognized

More information

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

LIGO s Detection of Gravitational Waves from Two Black Holes

LIGO s Detection of Gravitational Waves from Two Black Holes LIGO s Detection of Gravitational Waves from Two Black Holes Gregory Harry Department of Physics, American University February 17,2016 LIGO-G1600274 GW150914 Early History of Gravity Aristotle Kepler Laplace

More information

Searching for gravitational waves

Searching for gravitational waves Searching for gravitational waves Matteo Barsuglia (barsuglia@apc.univ-paris7.fr) CNRS - Laboratoire Astroparticule et Cosmologie 1 The gravitational waves (GW) Perturbations of the space-time metrics

More information

Development of ground based laser interferometers for the detection of gravitational waves

Development of ground based laser interferometers for the detection of gravitational waves Development of ground based laser interferometers for the detection of gravitational waves Rahul Kumar ICRR, The University of Tokyo, 7 th March 2014 1 Outline 1. Gravitational waves, nature & their sources

More information

LIGOʼs first detection of gravitational waves and the development of KAGRA

LIGOʼs first detection of gravitational waves and the development of KAGRA LIGOʼs first detection of gravitational waves and the development of KAGRA KMI2017 Jan. 2017 Tokyo Institute of Technology Kentaro Somiya Self Introduction Applied Physics (U Tokyo) NAOJ 2000-04 Albert-Einstein

More information

Takaaki Kajita, JGRG 22(2012) Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22. November

Takaaki Kajita, JGRG 22(2012) Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22. November Takaaki Kajita, JGRG 22(2012)111402 Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22 November 12-16 2012 Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan RESCEU

More information

Review of LIGO Upgrade Plans

Review of LIGO Upgrade Plans Ando Lab Seminar April 13, 2017 Review of LIGO Upgrade Plans Yuta Michimura Department of Physics, University of Tokyo Contents Introduction A+ Voyager Cosmic Explorer Other issues on ISC Summary KAGRA+

More information

Michele Punturo INFN Perugia and EGO On behalf of the ET design team.

Michele Punturo INFN Perugia and EGO On behalf of the ET design team. Michele Punturo INFN Perugia and EGO On behalf of the ET design team http://www.et-gw.eu/ 58th Fujihara Seminar, May 2009 1 http://www.et-gw.eu/ ET is a design study of a 3 rd generation GW detector supported

More information

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04 LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04 Science Goals Physics» Direct verification of the most relativistic prediction of general relativity» Detailed tests of properties of gravitational

More information

Michele Punturo INFN Perugia and EGO On behalf of the ET design team.

Michele Punturo INFN Perugia and EGO On behalf of the ET design team. Michele Punturo INFN Perugia and EGO On behalf of the ET design team http://www.et-gw.eu/ 58th Fujihara Seminar, May 2009 1 http://www.et-gw.eu/ ET is a design study of a 3 rd generation GW detector supported

More information

Requirements for a 3G GW observatory

Requirements for a 3G GW observatory Requirements for a 3G GW observatory SOME THOUGHTS FOR DISCUSSION HARALD LÜCK 3G Observatory & 3G Network Requirements = f(science, funding, politics, ) requirements for an individual observatory and the

More information

LIGO Detection of Gravitational Waves. Dr. Stephen Ng

LIGO Detection of Gravitational Waves. Dr. Stephen Ng LIGO Detection of Gravitational Waves Dr. Stephen Ng Gravitational Waves Predicted by Einstein s general relativity in 1916 Indirect confirmation with binary pulsar PSR B1913+16 (1993 Nobel prize in physics)

More information

Gravitational Wave Astronomy using 0.1Hz space laser interferometer. Takashi Nakamura GWDAW-8 Milwaukee 2003/12/17 1

Gravitational Wave Astronomy using 0.1Hz space laser interferometer. Takashi Nakamura GWDAW-8 Milwaukee 2003/12/17 1 Gravitational Wave Astronomy using 0.1Hz space laser interferometer Takashi Nakamura GWDAW-8 Milwaukee 2003/12/17 1 In 2001 we considered what we can do using 0.1 hertz laser interferometer ( Seto, Kawamura

More information

First Virgo Science Run. Press Conference - May 22, 2007 Cascina, Pisa, Italy PRESS INFORMATION

First Virgo Science Run. Press Conference - May 22, 2007 Cascina, Pisa, Italy PRESS INFORMATION First Virgo Science Run Press Conference - May 22, 2007 Cascina, Pisa, Italy PRESS INFORMATION Introduction On May 18 th, the Virgo interferometer started its first science run. This is a major milestone

More information

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago Gravitational wave cosmology Lecture 2 Daniel Holz The University of Chicago Thunder and lightning Thus far we ve only seen the Universe (and 95% of it is dark: dark matter and dark energy). In the the

More information

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Ed Daw - University of Sheffield On behalf of the LIGO Scientific Collaboration and the Virgo collaboration

More information

LIGO: The Laser Interferometer Gravitational Wave Observatory

LIGO: The Laser Interferometer Gravitational Wave Observatory LIGO: The Laser Interferometer Gravitational Wave Observatory Credit: Werner Benger/ZIB/AEI/CCT-LSU Michael Landry LIGO Hanford Observatory/Caltech for the LIGO Scientific Collaboration (LSC) http://www.ligo.org

More information

Ground-based GW detectors: status of experiments and collaborations

Ground-based GW detectors: status of experiments and collaborations Ground-based GW detectors: status of experiments and collaborations C.N.Man Univ. Nice-Sophia-Antipolis, CNRS, Observatoire de Cote d Azur A short history GW & how to detect them with interferometry What

More information

Nonequilibrium issues in macroscopic experiments

Nonequilibrium issues in macroscopic experiments Nonequilibrium issues in macroscopic experiments L. Conti, M. Bonaldi, L. Rondoni www.rarenoise.lnl.infn.it European Research Council Gravitational Wave detector Motivation: GWs will provide new and unique

More information

ELiTES. ET-LCGT Interferometric Telescopes Exchange of Scientists. KAGRA 11th Face to face meeting. E. Majorana

ELiTES. ET-LCGT Interferometric Telescopes Exchange of Scientists. KAGRA 11th Face to face meeting. E. Majorana ELiTES ET-LCGT Interferometric Telescopes Exchange of Scientists KAGRA 11th Face to face meeting E. Majorana February 5-7, 2015, Hongo Campus, The University of Tokyo Project No.: 295153: ELiTES WP1, WP2:Suspensions

More information

Searching for gravitational waves. with LIGO detectors

Searching for gravitational waves. with LIGO detectors Werner Berger, ZIB, AEI, CCT Searching for gravitational waves LIGO Hanford with LIGO detectors Gabriela González Louisiana State University On behalf of the LIGO Scientific Collaboration KITP Colloquium,

More information

Optical Techniques for Gravitational-Wave Detection

Optical Techniques for Gravitational-Wave Detection Optical Techniques for Gravitational-Wave Detection M. Tacca Nikhef - Amsterdam Nikhef- 2017 July 14th Born in Novara (Italy) Introducing Myself PostDoc Fellow @ Nikhef (since July 2017) Laurea & PhD @

More information

A UK ATOM INTERFEROMETER OBSERVATORY AND NETWORK (AION) FOR THE EXPLORATION OF ULTRA-LIGHT DARK MATTER AND MID-FREQUENCY GRAVITATIONAL WAVES

A UK ATOM INTERFEROMETER OBSERVATORY AND NETWORK (AION) FOR THE EXPLORATION OF ULTRA-LIGHT DARK MATTER AND MID-FREQUENCY GRAVITATIONAL WAVES A UK ATOM INTERFEROMETER OBSERVATORY AND NETWORK (AION) FOR THE EXPLORATION OF ULTRA-LIGHT DARK MATTER AND MID-FREQUENCY GRAVITATIONAL WAVES QUANTUM SENSORS FOR FUNDAMENTAL PHYSICS, ST. CATHERINE S COLLEGE,

More information

Finding Black Holes with Lasers

Finding Black Holes with Lasers Finding Black Holes with Lasers Andreas Freise Royal Institute of Great Brtitain 18.02.2013 [Image shows guide laser at Allgäu Public Observatory in Ottobeuren, Germany. Credit: Martin Kornmesser] LIGO-G1300827

More information

The gravitational waves detection: 20 years of research to deliver the LIGO/VIRGO mirrors. Christophe MICHEL on behalf of LMA Team

The gravitational waves detection: 20 years of research to deliver the LIGO/VIRGO mirrors. Christophe MICHEL on behalf of LMA Team Christophe MICHEL on behalf of LMA Team 1 The event February 11th 2016 LIGO and VIRGO announced the first direct detection of gravitational waves https://www.youtube.com/watch?v=vd1pak5f6gq http://journals.aps.org/prl/abstract/10.1103/physrevlett.1

More information

EINSTEIN TELESCOPE rd. 3 generation GW detector

EINSTEIN TELESCOPE rd. 3 generation GW detector EINSTEIN TELESCOPE rd 3 generation GW detector http://www.et-gw.eu/ Dorota Gondek-Rosińska University of Zielona Góra w imieniu polskiego ET konsorcjum (UW, UZG, UwB, PW, CAMK, IMPAN ) Gravitational wave

More information

B F Schutz AEI, Potsdam, Germany and Cardiff University, Wales, UK. The GWIC Roadmap

B F Schutz AEI, Potsdam, Germany and Cardiff University, Wales, UK. The GWIC Roadmap AEI, Potsdam, Germany and Cardiff University, Wales, UK The GWIC Roadmap GWIC (http://gwic.ligo.org) 2 GWIC The Gravitational Wave International Committee, was formed in 1997 to facilitate international

More information

Searching for Gravitational Waves from Coalescing Binary Systems

Searching for Gravitational Waves from Coalescing Binary Systems Searching for Gravitational Waves from Coalescing Binary Systems Stephen Fairhurst Cardiff University and LIGO Scientific Collaboration 1 Outline Motivation Searching for Coalescing Binaries Latest Results

More information

High energy neutrino astronomy with the ANTARES Cherenkov telescope

High energy neutrino astronomy with the ANTARES Cherenkov telescope High energy neutrino astronomy with the ANTARES Cherenkov telescope P.Vernin CEA/Irfu/SPP On behalf of the ANTARES collaboration IWARA 2009 Conference Maresias, Sao Paulo, Brazil, 4-8/10/2009 i r f u saclay

More information

How to listen to the Universe?

How to listen to the Universe? How to listen to the Universe? Optimising future GW observatories for astrophysical sources Stefan Hild NIKHEF, May 2009 Overview Microphones to detect gravitational waves Why haven t we heard GW so far?

More information

Next Generation Interferometers

Next Generation Interferometers Next Generation Interferometers TeV 06 Madison Rana Adhikari Caltech 1 Advanced LIGO LIGO mission: detect gravitational waves and initiate GW astronomy Next detector» Should have assured detectability

More information

Gravity -- Studying the Fabric of the Universe

Gravity -- Studying the Fabric of the Universe Gravity -- Studying the Fabric of the Universe Barry C. Barish Caltech "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) AAAS Annual Meeting Denver, Colorado 17-Feb-03

More information

Exploring the Warped Side of the Universe

Exploring the Warped Side of the Universe Exploring the Warped Side of the Universe Nergis Mavalvala Department of Physics Massachusetts Institute of Technology MIT Alumni Club, Washington DC October 2014 Einstein s legacies A story about our

More information

Advanced VIRGO EXPERIMENT

Advanced VIRGO EXPERIMENT Advanced VIRGO EXPERIMENT Advanced VIRGO Interferometer: a second generation detector for Gravitational Waves observation F. Frasconi for the VIRGO Collaboration 16 th Lomonosov Conference Moscow State

More information

Status and Prospects for LIGO

Status and Prospects for LIGO Status and Prospects for LIGO Crab Pulsar St Thomas, Virgin Islands Barry C. Barish Caltech 17-March-06 LIGO Livingston, Louisiana 4 km 17-March-06 Confronting Gravity - St Thomas 2 LIGO Hanford Washington

More information

Gravitational waves and fundamental physics

Gravitational waves and fundamental physics Gravitational waves and fundamental physics Michele Maggiore Département de physique théorique Avignon, April 2008 Experimental situation Timeframe: present (LIGO, Virgo) ~2011-2014 advanced LIGO/Virgo

More information

Advanced LIGO Status Report

Advanced LIGO Status Report Advanced LIGO Status Report Gregory Harry LIGO/MIT On behalf of the LIGO Science Collaboration 22 September 2005 ESF PESC Exploratory Workshop Perugia Italy LIGO-G050477 G050477-00-R Advanced LIGO Overview

More information

Michele Punturo INFN Perugia and EGO

Michele Punturo INFN Perugia and EGO Michele Punturo INFN Perugia and EGO CSNII workshop - April, 06-07, 2009 1 ET is a design study supported by the European Commission under the Framework Programme 7 (FP7) It is a ~3 years project supported

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Ray Frey, University of Oregon 1. GW Physics and Astrophysics 2. How to detect GWs The experimental challenge 3. Prospects June 16, 2004 R. Frey QNet 1 General Relativity Some

More information

Search for Gravitational Wave Transients. Florent Robinet On behalf of the LSC and Virgo Collaborations

Search for Gravitational Wave Transients. Florent Robinet On behalf of the LSC and Virgo Collaborations Search for Gravitational Wave Transients On behalf of the LSC and Virgo Collaborations 1 Gravitational Waves Gravitational waves = "ripples" in space time Weak field approximation : g = h h 1 Wave equation,

More information

Gravitational waves from the early Universe

Gravitational waves from the early Universe Gravitational waves from the early Universe Part 1 Sachiko Kuroyanagi (Nagoya University) 26 Aug 2017 Summer Institute 2017 What is a Gravitational Wave? What is a Gravitational Wave? 11 Feb 2016 We have

More information

The international SKA project

The international SKA project The international SKA project - Towards a giant global radio telescope - Wim van Driel Paris Observatory - GEPI 3 rd MCCT SKADS School, Paris, 24/08/2009 SKA - Square Kilometre Array Necessary for a breakthrough

More information

The Dawn of Gravitational Wave Astronomy

The Dawn of Gravitational Wave Astronomy The Dawn of Gravitational Wave Astronomy KMI colloquium Apr. 26, 2017 Nagoya University, Nagoya, Japan Seiji Kawamura (ICRR, UTokyo) 1 SXS Outline: Gravitational wave and detector Existing detectors -

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves Barry C. Barish Caltech Crab Pulsar Georgia Tech 26-April-06 General Relativity the essential idea G μν = 8πΤ μν Gravity is not a force, but a property of space

More information

Prospects of continuous gravitational waves searches from Fermi-LAT sources

Prospects of continuous gravitational waves searches from Fermi-LAT sources S. Mastrogiovanni for the LIGO Scientific Collaboration and the Virgo Collaboration Prospects of continuous gravitational waves searches from Fermi-LAT sources Outline Aim of the talk: I would like to

More information

Long-term strategy on gravitational wave detection from European groups

Long-term strategy on gravitational wave detection from European groups Longterm strategy on gravitational wave detection from European groups Barry Barish APPEC Meeting London, UK 29Jan04 International Interferometer Network Simultaneously detect signal (within msec) LIGO

More information

Virtually everything you and I know about the Cosmos has been discovered via electromagnetic

Virtually everything you and I know about the Cosmos has been discovered via electromagnetic Gravitational Waves Gravitational wave astronomy Virtually everything you and I know about the Cosmos has been discovered via electromagnetic observations. Some inormation has recently been gleaned rom

More information

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics Gravitational Wave Astronomy the sound of spacetime Marc Favata Kavli Institute for Theoretical Physics What are gravitational waves? Oscillations in the gravitational field ripples in the curvature of

More information

LIGO Observational Results

LIGO Observational Results LIGO Observational Results Patrick Brady University of Wisconsin Milwaukee on behalf of LIGO Scientific Collaboration LIGO Science Goals Direct verification of two dramatic predictions of Einstein s general

More information

Status of the International Second-generation Gravitational-wave Detector Network

Status of the International Second-generation Gravitational-wave Detector Network Status of the International Second-generation Gravitational-wave Detector Network Albert Lazzarini Deputy Director, LIGO Laboratory California Institute of Technology On behalf of the LIGO Scientific Collaboration

More information

Cherenkov Telescope Array ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP

Cherenkov Telescope Array ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP Cherenkov Telescope Array A SENSITIVE PROBE OF EXTREME UNIVERSE ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP 2015 1 The CTA Observatory SST ( 4m) LST ( 23m) MST ( 12m) South North

More information

Synergy with Gravitational Waves

Synergy with Gravitational Waves Synergy with Gravitational Waves Alexandre Le Tiec and Jérôme Novak Laboratoire Univers et Théories Observatoire de Paris / CNRS LIGO, Virgo, ( elisa, ET,... ( What is a gravitational wave? A gravitational

More information

Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration

Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration LIGO Hanford, WA LIGO Livingston, LA Virgo (Cascina, Italy) What

More information

Gravity s Standard Sirens. B.S. Sathyaprakash School of Physics and Astronomy

Gravity s Standard Sirens. B.S. Sathyaprakash School of Physics and Astronomy Gravity s Standard Sirens B.S. Sathyaprakash School of Physics and Astronomy What this talk is about Introduction to Gravitational Waves What are gravitational waves Gravitational wave detectors: Current

More information

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA/GSFC Summer School on Nuclear and Particle Astrophysics: Connecting

More information

AN OVERVIEW OF LIGO Adapted from material developed by Brock Wells Robert L. Olds Junior High School, Connell, WA August 2001

AN OVERVIEW OF LIGO Adapted from material developed by Brock Wells Robert L. Olds Junior High School, Connell, WA August 2001 AN OVERVIEW OF LIGO Adapted from material developed by Brock Wells Robert L. Olds Junior High School, Connell, WA August 2001 The purpose of this guide is to provide background about the LIGO project at

More information

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics Remi Geiger, SYRTE for the MIGA consortium EGAS 46, July 3rd 2014, Lille, France http://syrte.obspm.fr/tfc/capteurs_inertiels

More information

by Bill Gabella 26 June 2018

by Bill Gabella 26 June 2018 Detection of Gravitational Wave Event GW170817 is First with Electromagnetic Signature ---from a Binary Neutron Star Merger detected by the Laser Interferometric Gravitational Wave Observatory (LIGO) by

More information

COSMOLOGY AND GRAVITATIONAL WAVES. Chiara Caprini (APC)

COSMOLOGY AND GRAVITATIONAL WAVES. Chiara Caprini (APC) COSMOLOGY AND GRAVITATIONAL WAVES Chiara Caprini (APC) the direct detection of GW by the LIGO interferometers has opened a new era in Astronomy - we now have a new messenger bringing complementary informations

More information

Overview of Gravitational Wave Observations by LIGO and Virgo

Overview of Gravitational Wave Observations by LIGO and Virgo Overview of Gravitational Wave Observations by LIGO and Virgo Giovanni Andrea Prodi Virgo Group at Padova-Trento, LIGO Scientific Collaboration and Virgo Collaboration Vulcano Workshop 2016, May 23 Published

More information

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G1201293 Outline Introduction: What are Gravitational Waves? The brief

More information

The Virgo interferometer for Gravitational Wave detection. Francesco Fidecaro Toulouse, September 11, 2009

The Virgo interferometer for Gravitational Wave detection. Francesco Fidecaro Toulouse, September 11, 2009 The Virgo interferometer for Gravitational Wave detection Francesco Fidecaro Toulouse, September 11, 2009 Outline Gravitational waves: sources and detection The Virgo interferometer The global network

More information

LIGO workshop What Comes Next for LIGO May 7-8, 2015, Silver Spring, MD KAGRA KAGRA. Takaaki Kajita, ICRR, Univ. of Tokyo for the KAGRA collaboration

LIGO workshop What Comes Next for LIGO May 7-8, 2015, Silver Spring, MD KAGRA KAGRA. Takaaki Kajita, ICRR, Univ. of Tokyo for the KAGRA collaboration LIGO workshop What Comes Next for LIGO May 7-8, 2015, Silver Spring, MD KAGRA KAGRA Takaaki Kajita, ICRR, Univ. of Tokyo for the KAGRA collaboration Outline Introduction: Overview of KAGRA Status of the

More information

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M Laser Interferometer Gravitationalwave Observatory LIGO 2000 Industrial Physics Forum Barry Barish 7 November 2000 Sir Isaac Newton Perhaps the most important scientist of all time! Invented the scientific

More information

The Status of Enhanced LIGO.

The Status of Enhanced LIGO. The Status of Enhanced LIGO. Aidan Brooks. December 2008 AIP Congress 2008, Adelaide, Australia 1 Outline Gravitational Waves» Potential sources» Initial LIGO interferometer Enhanced LIGO upgrades» Increased

More information

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves M. Tacca Laboratoire AstroParticule et Cosmologie (APC) - Paris Journée GPhys - 2016 July 6th General

More information

From the VLT to ALMA and to the E-ELT

From the VLT to ALMA and to the E-ELT From the VLT to ALMA and to the E-ELT Mission Develop and operate world-class observing facilities for astronomical research Organize collaborations in astronomy Intergovernmental treaty-level organization

More information

ONDE GRAVITAZIONALI la nuova era della fisica

ONDE GRAVITAZIONALI la nuova era della fisica ONDE GRAVITAZIONALI la nuova era della fisica Andrea Chincarini Istituto Nazionale di Fisica Nucleare Collaborazione LIGO-VIRGO 14 Sep 2015: First detection of Gravitational Waves! 229,000 paper downloads

More information

Status of the KAGRA Project

Status of the KAGRA Project Status of the KAGRA Project Takaaki Kajita, for the KAGRA collaboration (~230 members) ICRR, Univ. of Tokyo Kajita_at_icrr.u-tokyo.ac.jp GWPAW2015 June, 2015, Osaka Outline Introduction: Overview of KAGRA

More information

LIGO I status and advanced LIGO proposal

LIGO I status and advanced LIGO proposal LIGO I status and advanced LIGO proposal Hiro Yamamoto LIGO Lab / Caltech LIGO I» basic design» current status advanced LIGO» outline of the proposal» technical issues GW signals and data analysis ICRR

More information

Present and Future. Nergis Mavalvala October 09, 2002

Present and Future. Nergis Mavalvala October 09, 2002 Gravitational-wave Detection with Interferometers Present and Future Nergis Mavalvala October 09, 2002 1 Interferometric Detectors Worldwide LIGO TAMA LISA LIGO VIRGO GEO 2 Global network of detectors

More information

Gravitational Waves & Precision Measurements

Gravitational Waves & Precision Measurements Gravitational Waves & Precision Measurements Mike Smith 1 -20 2 HOW SMALL IS THAT? Einstein 1 meter 1/1,000,000 3 1,000,000 smaller Wavelength of light 10-6 meters 1/10,000 4 10,000 smaller Atom 10-10

More information

Preparation of the data analysis of the gravitational wave space antenna.

Preparation of the data analysis of the gravitational wave space antenna. Preparation of the data analysis of the gravitational wave space antenna. 1) LISA (Laser Interferometer Space Antenna) Why? 2)How? 1 Frequency Limitation Seismic noise cannot be cancelled at low-frequency

More information

Searches for Gravitational waves associated with Gamma-ray bursts

Searches for Gravitational waves associated with Gamma-ray bursts Searches for Gravitational waves associated with Gamma-ray bursts Raymond Frey University of Oregon for the LIGO Scientific Collaboration and the Virgo Collaboration 1 Current network of groundbased GW

More information

Gravitational Waves: From Einstein to a New Science

Gravitational Waves: From Einstein to a New Science Gravitational Waves: From Einstein to a New Science LIGO-G1602199 Barry C Barish Caltech - LIGO 1.3 Billion Years Ago 2 Black Holes Regions of space created by super dense matter from where nothing can

More information

Status of ILIAS and FP7 prospective

Status of ILIAS and FP7 prospective Status of ILIAS and FP7 prospective Geppo Cagnoli (ILIAS Project Scientist) INFN and U. of Glasgow 5 th RADIONET Board Meeting 21 st Apr. 2006 Volterra ILIAS Integrated Large Infrastructures for Astroparticle

More information

ASTERICS Astronomy ESFRI & Research Infrastructure Cluster

ASTERICS Astronomy ESFRI & Research Infrastructure Cluster ASTERICS Astronomy ESFRI & Research Infrastructure Cluster Giuseppe Cimò Joint Institute for VLBI - ERIC (JIVE) Netherlands Institute for Radio Astronomy (ASTRON) 1 what is ASTERICS? A major collaboration

More information

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1 Fundamental Physics in Space S. Vitale, University of Trento Vitale@science.unitn.it ESO-Garching-15-09-03 S. Vitale 1 Using Space to Investigate Fundamental Laws of Physics: Quantum measurements, entanglement,

More information

Searching for Stochastic Gravitational Wave Background with LIGO

Searching for Stochastic Gravitational Wave Background with LIGO Searching for Stochastic Gravitational Wave Background with LIGO Vuk Mandic University of Minnesota 09/21/07 Outline LIGO Experiment:» Overview» Status» Future upgrades Stochastic background of gravitational

More information

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves. Gravitational Wave Astronomy With LISA Rajesh Kumble Nayak, IISER-Kolkata Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

More information

arxiv: v1 [astro-ph.he] 20 Jul 2015

arxiv: v1 [astro-ph.he] 20 Jul 2015 Electromagnetic follow-up of gravitational wave candidates: perspectives in INAF - Italy arxiv:1507.05451v1 [astro-ph.he] 20 Jul 2015 S. Piranomonte a, E. Brocato a, M. Branchesi b,c, S. Campana d, E.

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) Barry C. Barish Caltech Argonne National Laboratory 16-Jan-04 LIGO-G030523-00-M

More information

+56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish

+56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish +56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish .$'46 +056'+0 +45##%'9610 Perhaps the most important scientist of all time! Invented the scientific method in Principia Greatest

More information

Plans for Advanced Virgo

Plans for Advanced Virgo Plans for Advanced Virgo Raffaele Flaminio Laboratoire des Materiaux Avances CNRS/IN2P3 On behalf of the Virgo-IN2P3 groups (APC, LAL, LAPP, LMA) SUMMARY - Scientific case - Detector design - The IN2P3

More information