Rattlesnake Mountain Observatory

Size: px
Start display at page:

Download "Rattlesnake Mountain Observatory"

Transcription

1 The Alliance for the Advancement of Science Through Astronomy Engage... Encourage... Enlighten AASTA Home > (RMO) is a professional-class astronomical research facility located at the summit of Rattlesnake Mountain, about 27 km (17 miles) northwest of Richland, Washington. AASTA Home Contributors and Supporters Educational Initiative "Stars On-Line" Rattlesnake Mountain Observatory Image Gallery Geographic Details Longitude: W Latitude: N Height (above mean sea level): 1050 meters Local Standard Time = UTC - 8 hours The observatoryʼs primary astronomical instrument is a 0.8-meter Cassegrain-style reflecting telescope, housed in the large (24-foot diameter) dome in the lower portion of the photograph at left. The telescope was designed, constructed, and installed at the observatory in 1971 by scientists working at, what is now, Pacific Northwest National Laboratory (PNNL). Rattlesnake Mountain is the highest elevation within a 100-km (60-mile) radius. A significant portion, including the observatory, lies within the ecologically sensitve FitznerEberhardt Arid Lands Ecology (ALE) Reserve an area of shrub-steppe wilderness largely untouched by human activity. The photograph at right was taken from the lower portion of the access road which runs across the Reserve and up to the observatory. The semi-arid conditions of the Lower Columbia Basin provide some of the best climatic conditions for astronomical work in Washington State. The area enjoys over 200 clear days per year, low humidity, and less than 7 inches total annual precipitation. Although clear skies are quite common throughout the year, an especially clear period starts at the beginning of July and lasts well into October. 1 of 7 10/7/08 4:48 PM

2 One of the first uses of the telescope was to support the on-going studies of auroral phenomena in Earthʼs upper atmosphere high above the Pacific Northwest. Over the next several years, the instrument was key in other research projects many involving Saturnʼs moon Titan, white dwarf stars, and searches for black holes. Around the mid-1980s, much of the research activity had ceased, and for the next 10 or so years, the telescope, and the rest of the observatory, had been relegated to "mothballed" status. The mounting, the optics, the hardware for mechanically moving it to point at different objects in the sky, and the electronics for interacting with the hardware, were all custom-designed for this specific instrument. In essence, no other telescope precisely like it exists in the world. Moreover, this telescope was a pioneer in the use of friction rollers to effect its motion as opposed to gears. And it remains the largest, most powerful, optical research-grade telescope in Washington State. 2 of 7 10/7/08 4:48 PM

3 AASTA assumed management and operational authority of the observatory in 1996, with the goal of refurbishing and upgrading the telescope so that it may become a resource for enhancing opportunities science education. By this time, the telescope was showing significant deterioration. Rust spots were appearing on the outside of the tube, and the control electronics (below), while still functional, no longer provided reliable positional information of the telescope. The primary mirror (in the photograph below), at the base of the optical tube, had accumulated a layer of dust; its reflective coating was severely oxidized, and it had lost perhaps 50% of its original reflectivity. Still, the telescope was operational, and the roller mechanisims were mechanically sound (albeit with evidence that some creative repairs had been made over the years). At the time of the projectʼs inception, the World Wide Web was just beginning to see widespread use, and some promising software technologies, including Java applets, were coming into being. Remote access to the telescope was to be accomplished through the development of custom Java applets that would appear in the userʼs web browser. These applets would present a view of the telescope in way such that its operation was as intuitive as possible. User interactions would be communicated back over the Internet to the telescope control computer (TCC), which would activate the telescope hardware to carry out the userʼs command. Data, most likely in the form of images, would be transmitted back to the userʼs computer for processing and analysis. This approach has some distinct advantages. The applet code that provides the interface is resident on, and hosted by, a web server, which is under the control of observatory staff. No special software is needed on the userʼs computer other than one of the widely available (and free) web browsers, such as Microsoft Internet Explorer, Netscape Navigator, or Firefox. Modifications to the interface code, perhaps to correct undesired behavior, or to enhance the operation, could be applied at the observatoryʼs web server, without requiring software upgrades on the part of the end-user. The user would see the enhancements the very next time the telescope was accessed. Java applets, if developed properly, are write once, run anywhere, meaning that the same applet will run on any of the popular platforms, including Windows, Macintosh, and Linux. Separate versions of the applet for each platform are not needed. Moreover, it is entirely possible to tailor the interface according to the level of sophistication of the user. A classroom of students in a middle-school would see a different interface to the telescope than a graduate student in astronomy. Additionally, there is no geographic restriction to using the telescope; users from the other side of the globe would access it just as easily as those within the local community. Of course, this means a significant amount of work on the part of those operating the observatory. If the telescope is to function as a remote 3 of 7 10/7/08 4:48 PM

4 and automatic instrument, its operation must be smooth, reliable, and essentially fool-proof. It must be able to operate autonomously, scheduling observations according to the placement of objects in the sky, and deciding when weather conditions permit its safe operation. If a failure should occur, it must be able to detect it, put itself into a safe state, and alert observatory personnel to the situation. The telescope would be used primarily for science education, so the interface presented to the user must be intuitive. More often than not and this is particularly true within the software development realm if it is easy to use, it has been hard to make. A telescope designed and built with late-1960s and early-1970s technology, no matter how state-of-the-art at the time, is not what we today might call Internet-ready. Hardware incompatible with its new role would need to be removed and excessed; the remainder would need to be refurbished to operational quality, involving a great deal of mechanical and electrical work. Moreover, no commercial market exists that directly supports telescopes of this size; the collection of hardware devices that effect its operation is unique to this instrument. Any control software that was to operate the telescope hardware and the auxiliary systems, would have to be developed in-house. Despite the challenges, the team of dedicated and very talented individuals, working entirely as volunteers on behalf of AASTA, has made tremendous progress. Since the project inception, these volunteers have... Refurbished the optical encoders on each of the two axes of the telescope to provide precise positional information Replaced the old stepper-motor drive system with a high-quality servocontrolled motor system Identified, purchased, and installed an industrial-grade rack-mount computer (plus expansion cards) for controlling the telescope and its subsystems Upgraded the power to the dome, to accommodate the increased electrical demand of the new control systems Designed and developed software for interacting with the various systems, and integrating their behavior into a comprehensive control and automation system, with object selection and quick access to positional and other information from on-line star catalogues 4 of 7 10/7/08 4:48 PM

5 Designed and built a digital hand-paddle to enable local operation of the telescope by an observer at the eyepiece Replaced the mechanically-operated dome control system with one that can be computer controlled Installed a fiber-optic computer network and 11 Mbps and 256 kbaud radio-modem computer links to the PNNL, 17 miles away Redesigned the secondary mirror focus motor control Identified and purchased various optical elements (eyepieces, focuser, etc.) for local use at the telescope; Also identified and purchased a digital (CCD) camera, as well as astronomical video cameras for obtaining images (both static and dynamic) of celestial objects Cleaned the mechanical and optical components of the telescope, and repaired the neoprene sealing on the dome The concurrent fundraising and public outreach activities have supported the purchase of equipment, provided for teacher and student stipends, and paid the annual insurance bill. We have received cash and equipment grants from corporations such as Microsoft, Battelle, Hewlett-Packard, Numatec, and Bechtel-Hanford. The servo-based drive-motor system, worth about $36,000, was donated by the U.S. Department of Energy. We have received cash donations from over 300 members of the local community. We have hosted scores of tours at the observatory (as seen at right), each involving a couple dozen individuals. We have made many presentations to school, church, and community groups. To date, some $200,000 in donations, equipment, volunteer labor, grants, and in-kind contributions has been raised for this project. The current monetary value of the facility is estimated to be about $500, of 7 10/7/08 4:48 PM

6 The 0.8-meter telescope is now under local computerized control. An observer, located within the dome, can control the telescope and dome through interaction with the graphical interface on the telescope control computer. From the computer, the user may select a celestial object such as a star, major planet, the moon, star clusters, or galaxy from one of the programʼs on-line celestial databases, and invoke the telescope to go to that object. For each object chosen, the program calculates the effects of precession, nutation, and aberration to the coordinates of the object as read from the catalogue. It then reads the system clock, and (using the geographical location of the observatory and factoring in the effect of atmospheric refraction), calculates the position of the object in the local sky. In the case of solar system objects, such as the moon or one of the major planets, the program will first calculate the position of the object within its orbit around the sun. Depending on the object, these calculations may involve hundreds of terms. When the position of the object is determined, the program reads the position of the telescope, and (accounting for the rotation of the earth while moving to the new object) determines how far the telescope needs to move on each of its two axes. Simultaneously, the program instructs the dome to move to the azimuth position of the object. All these calculations take place within the span of a few milliseconds, imperceptible to the user. The telescope is then moved on each of its two axes in such a way as to eliminate the possibility that it is ever pointed below the horizon at any time during the move. When the target object has been reached, the program enters a tracking mode, whereby a small velocity is applied to one of the two drive motors in order to follow the object as it moves across the sky, due to the effect of the earthʼs rotation. A positional feedback algorithm within the program reads the encoders every 250 milliseconds, calculates the actual velocity of the telescope, and adjusts the speeds on the motors accordingly so as to maintain a constant tracking motion. During tracking, the user may use the hand paddle to adjust the position of the telescope. The program reads the state of the hand paddle several times per second and applies a velocity to the motors if it detects that one of the four directional buttons is pressed. A shift mode on the hand paddle allows the observer to rotate the dome. The program also includes utilities for testing the various hardware components, for calibrating the position of the telescope using observations of identifiable stars, and for determining the ratio of motor velocities to actual axis velocities. Additional utilities are needed for tuning the feedback algorithm this will ensure smoother, more efficient tracking and for quantifying and refining the pointing accuracy of the telescope. 6 of 7 10/7/08 4:48 PM

7 Having the telescope under local computerized control is the necessary prerequisite for remote access. The logic for moving the telescope from one target to the next is now in place, and the motion of the dome is synchronized with that of the telescope. The next step in this area is to provide the control program with the ability to receive and respond to commands which come from another computer. These commands would transmit the coordinates of the target to which to move the telescope, and theoretically could come from anywhere on the planet. In practice, measures will need to be taken that the commands received are originated from a trusted source, and that no command will be executed which threatens to place the telescope hardware into a dangerous state. It is highly likely that the selection of celestial targets will need to be separated out of the main control program and into its own separate application on another computer. This second computer would then act as the client to the telescope control computer, the latter then would have as its sole responsibility the accurate positioning and tracking of the telescope, and the operation of the auxiliary components, such as the dome or the secondary mirror for focusing the telescope. It would retain the graphical interface that reports the state of the telescope at any given instant. The client application would provide access to the databases of celestial objects, and allow the user to choose the object of interest and transmit it to the control computer. In essence, this client application would be the functional model for the eventual Java applet by which a user would interact with the telescope from a remote location, such as a classroom, via a web browser. Published 31 January 2007 Direct Comments and Inquiries to AASTA Webmaster Copyright 2007 The Alliance for the Advancement of Science Through Astronomy 7 of 7 10/7/08 4:48 PM

Telescopes come in three basic styles

Telescopes come in three basic styles Telescopes come in three basic styles Refracting telescopes use lenses Refractors are either achromatic (some color distortion) or apochromatic (very little if any color distortion). Apo refractors use

More information

» The observatory will be located uphill and north of the Reuter Center at the end of UNC Asheville s road-to-nowhere (Nut Hill Road).

» The observatory will be located uphill and north of the Reuter Center at the end of UNC Asheville s road-to-nowhere (Nut Hill Road). » The observatory will be located uphill and north of the Reuter Center at the end of UNC Asheville s road-to-nowhere (Nut Hill Road). UNC-Asheville Campus » With some tree removal, this location is a

More information

Earth s Atmosphere & Telescopes. Atmospheric Effects

Earth s Atmosphere & Telescopes. Atmospheric Effects Earth s Atmosphere & Telescopes Whether light is absorbed by the atmosphere or not depends greatly on its wavelength. Earth s atmosphere can absorb certain wavelengths of light so much that astronomers

More information

The Vaisala AUTOSONDE AS41 OPERATIONAL EFFICIENCY AND RELIABILITY TO A TOTALLY NEW LEVEL.

The Vaisala AUTOSONDE AS41 OPERATIONAL EFFICIENCY AND RELIABILITY TO A TOTALLY NEW LEVEL. The Vaisala AUTOSONDE AS41 OPERATIONAL EFFICIENCY AND RELIABILITY TO A TOTALLY NEW LEVEL. Weather Data Benefit For Society The four most important things about weather prediction are quality, reliability,

More information

AJJAR Astronomical Javascript/Java Applet Resource

AJJAR Astronomical Javascript/Java Applet Resource AJJAR Astronomical Javascript/Java Applet Resource Siobahn Morgan Department of Earth Science University of Northern Iowa Siobahn.Morgan@uni.edu Abstract The AJJAR (Astronomical Javascript/Java Applet

More information

Astronomy at Eastern University

Astronomy at Eastern University Astronomy at Eastern University DIGITAL UNIVERSE The Julia Fowler Planetarium offers an invaluable experience for Eastern University students and visitors alike. We host thousands of guests each year and

More information

A Unique Approach to Telescope Control

A Unique Approach to Telescope Control A Unique Approach to Telescope Control Brandt M. Westing The University of Texas at Austin, Electrical Engineering Dept., Austin, TX 78705 westing@ece.utexas.edu Abstract A new Graphical User Interface

More information

TEACHING OBSERVATIONAL METHODS IN ASTROPHYSICS: REMOTE OBSERVATIONS FROM THE SCHOOL

TEACHING OBSERVATIONAL METHODS IN ASTROPHYSICS: REMOTE OBSERVATIONS FROM THE SCHOOL TEACHING OBSERVATIONAL METHODS IN ASTROPHYSICS: REMOTE OBSERVATIONS FROM THE SCHOOL Paolo Santin, INAF - Astronomical Observatory of Trieste, Trieste, Italy Abstract The traditional way of teaching Astrophysics

More information

LIVE FROM MCDONALD OBSERVATORY PROGRAM PRE-CONFERENCE ACTIVITIES. Purpose

LIVE FROM MCDONALD OBSERVATORY PROGRAM PRE-CONFERENCE ACTIVITIES. Purpose LIVE FROM MCDONALD OBSERVATORY PROGRAM PRE-CONFERENCE ACTIVITIES Purpose The videoconference will be most meaningful for students whose teachers have "set the stage" for inquiry before their fieldtrip.

More information

How to buy a telescope for your institution

How to buy a telescope for your institution How to buy a telescope for your institution by Dr. Frank Melsheimer DFM Engineering, Inc. 1035 Delaware Avenue, Unit D Longmont, Colorado 80501 phone 303-678-8143 fax 303-772-9411 www.dfmengineering.com

More information

10 - Celestron Telescope II: Operation

10 - Celestron Telescope II: Operation 10 - Celestron Telescope II: Operation Purpose: Gain more experience setting up a 6 Celestron telescope, familiarize yourself with the software interface, and acquire an image with the CCD camera. Due:

More information

EXTENDED CLASSROOM Kopernik Observatory & Science Center

EXTENDED CLASSROOM Kopernik Observatory & Science Center Kopernik: Build Your Own STEM Program (Grades K-12) What do you need to reinforce in your classroom? Kopernik staff will plan with you the ultimate program for any STEM curriculum. Programs can also be

More information

What is the Right Answer?

What is the Right Answer? What is the Right Answer??! Purpose To introduce students to the concept that sometimes there is no one right answer to a question or measurement Overview Students learn to be careful when searching for

More information

Calibration Routine. Store in HDD. Switch "Program Control" Ref 1/ Ref 2 Manual Automatic

Calibration Routine. Store in HDD. Switch Program Control Ref 1/ Ref 2 Manual Automatic 4.2 IMPLEMENTATION LABVIEW 4.2.1 LabVIEW features LabVIEW (short for Laboratory Virtual Instrument Engineering Workbench) originally released for the Apple Macintosh in 1986. It is a highly productive

More information

Remote Observing with HdA/MPIA's 50cm Telescope

Remote Observing with HdA/MPIA's 50cm Telescope Remote Observing with HdA/MPIA's 50cm Telescope Carolin Liefke AstroTechTalk May 5th 2017 Remote observing with HdA/MPIa's 50cm telescope The telescope and its instrumentation Remote observing how does

More information

Controlling a Three Meter Mirror Array Reflector to Track Stars

Controlling a Three Meter Mirror Array Reflector to Track Stars Controlling a Three Meter Mirror Array Reflector to Track Stars Benjamin Adams University of Utah Department of Physics and Astronomy August, 2009 Abstract The University of Utah Gamma Ray Group and the

More information

Guide to Polar Alignment of a Meade LX200GPS Telescope

Guide to Polar Alignment of a Meade LX200GPS Telescope Guide to Polar Alignment of a Meade By Dale A. Chamberlain dale@dchamberlain.net April 18, 2006 Page 1 of 11 1 Why Polar Align? After making an investment in a telescope such as the Meade LX200GPS, you

More information

Marsh W. White Award Proposal

Marsh W. White Award Proposal Marsh W. White Award Proposal Project Proposal Title Name of School Scoping Out Astronomy! United States Air Force Academy SPS Chapter Number 7502 Total Amount Requested $300.00 Abstract USAFA cadets and

More information

SOFT 423: Software Requirements

SOFT 423: Software Requirements SOFT 423: Software Requirements Week 11 Class 1 Telescope Example End-to-End SOFT 423 Winter 2015 1 Last Class CRUDO Activity Diagrams SOFT 423 Winter 2015 2 This Class Telescope System Example We won

More information

ENGINEERING ASPECTS OF THE 200-INCH HALE TELESCOPE. Bruce Rule Mount Wilson and Palomar Observatories

ENGINEERING ASPECTS OF THE 200-INCH HALE TELESCOPE. Bruce Rule Mount Wilson and Palomar Observatories ENGINEERING ASPECTS OF THE 200-INCH HALE TELESCOPE Bruce Rule Mount Wilson and Palomar Observatories The engineering designs of the 200-inch Hale Telescope were determined largely by the optical accuracy

More information

Why Use a Telescope?

Why Use a Telescope? 1 Why Use a Telescope? All astronomical objects are distant so a telescope is needed to Gather light -- telescopes sometimes referred to as light buckets Resolve detail Magnify an image (least important

More information

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings COSGC Space Research Symposium 2009 BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings BOWSER 1 Mission Premise 4.3 km above sea level 402.3km above sea level BOWSER 2 Information

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Clouds

More information

High Precision Astrometry of Occultation Asteroids

High Precision Astrometry of Occultation Asteroids High Precision Astrometry of Occultation Asteroids Sarah Estabrook, Victor Valley College Mentor: Dr. William M. Owen, Jr., JPL Advisor: Michael Butros, Victor Valley College ABSTRACT Using the 0.6-m telescope

More information

Life as an Astronomer:

Life as an Astronomer: 1. What do Astronomers Study? Planets Solar System Stars Star Stuff (Interstellar Medium) Galaxies AGN/Quasars Clusters Universe 1 1. What do Astronomers Study? Solar System Sun Solar Wind Planets Moons

More information

WeatherWatcher ACP. Astronomers Control Panel (V4 or >) Ambient Virtual Weather Station (Pro or Internet editions) ASCOM platform v4.

WeatherWatcher ACP. Astronomers Control Panel (V4 or >) Ambient Virtual Weather Station (Pro or Internet editions) ASCOM platform v4. WeatherWatcher ACP Software This is a minimum equipment list: Astronomers Control Panel (V4 or >) Ambient Virtual Weather Station (Pro or Internet editions) ASCOM platform v4.1 or higher Hardware Weather

More information

Swedish Institute of Space Physics Research Strategies

Swedish Institute of Space Physics Research Strategies Dnr 1.1-147/14 (replaces Dnr 1-309/04) Swedish Institute of Space Physics Research Strategies The Swedish Institute of Space Physics (IRF) is a national research institute under the auspices of the Swedish

More information

Dear Teacher, Overview Page 1

Dear Teacher, Overview Page 1 Dear Teacher, You are about to involve your students in one of the most exciting frontiers of science the search for other worlds and life in solar systems beyond our own! Using the MicroObservatory telescopes,

More information

The ALPO s Legacy. Preserving Our Astronomical Heritage

The ALPO s Legacy. Preserving Our Astronomical Heritage The ALPO s Legacy Preserving Our Astronomical Heritage This is the ALPO The Association of Lunar and Planetary Observers (ALPO) is an astronomical organization dedicated to the scientific study of Solar

More information

AWOS. Automated Weather Observing Systems COASTAL

AWOS. Automated Weather Observing Systems COASTAL AWOS Automated Weather Observing Systems COASTAL Environmental Systems Monitor Monitor Your Your World World Coastal s Experience & Expertise Since 1981, Coastal Environmental Systems, Inc. (Coastal) has

More information

Radio observations of the Milky Way from the classroom

Radio observations of the Milky Way from the classroom Radio observations of the Milky Way from the classroom Krzysztof T. Chyży 1 1. Obserwatorium Astronomiczne Uniwersytetu Jagiellońskiego ul. Orla 171, 30-244 Kraków, Poland We present the project to introduce

More information

SONOMA COUNTY ASTRONOMICAL SOCIETY

SONOMA COUNTY ASTRONOMICAL SOCIETY SONOMA COUNTY ASTRONOMICAL SOCIETY 2019 STRIKING SPARKS TELESCOPE AWARDS PROGRAM Previous Striking Sparks telescope winners, sponsors, mentors and teachers. Photo by Len Nelson. This will be the 34 nd

More information

INTERNATIONAL. Member Observatory. The Boquete Optical SETI Observatory. (11/5/15)

INTERNATIONAL. Member Observatory. The Boquete Optical SETI Observatory. (11/5/15) INTERNATIONAL Member Observatory The Boquete Optical SETI Observatory. (11/5/15) Boquete, Panama is located about 25 miles south of the Panama/Costa Rica Border on the slopes of Vulcan Baru, the tallest

More information

How do they work? Chapter 5

How do they work? Chapter 5 Telescopes How do they work? Chapter 5 1. History 2. Lenses & Hardware 3. Reflecting Telescopes 4. Refracting Telescopes History Hans Lippershey Middleburg, Holland invented the refractor telescope in

More information

Computerization of a telescope at secondary education

Computerization of a telescope at secondary education Highlights on Spanish Astrophysics IX, Proceedings of the XII Scientific Meeting of the Spanish Astronomical Society held on July 18 22, 2016, in Bilbao, Spain. S. Arribas, A. Alonso-Herrero, F. Figueras,

More information

Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization

Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization Objectives Describe characteristics of the universe in terms of time, distance, and organization Identify the visible and nonvisible parts of the electromagnetic spectrum Compare refracting telescopes

More information

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

PHYS/ASTR 2060 Popular Observational Astronomy(3) Syllabus

PHYS/ASTR 2060 Popular Observational Astronomy(3) Syllabus PHYS/ASTR 2060 Popular Observational Astronomy(3) Syllabus Instructor: Prof. Wayne Springer (wayne.springer@utah.edu) Office: 226 INSCC (Office Hours: T 3PM-5PM or by appt.) Phone: 801-585-1390 TA: Jinqi

More information

Vaisala AviMet Automated Weather Observing System

Vaisala AviMet Automated Weather Observing System Vaisala AviMet Automated Weather Observing System Solutions to meet your challenges Our mission: to help you operate succesfully Safe, economical, reliable and flexible operation of your airport is ensured

More information

NATIONAL RADIO ASTRONOMY OBSERVATORY MEMORANDUM

NATIONAL RADIO ASTRONOMY OBSERVATORY MEMORANDUM NATIONAL RADIO ASTRONOMY OBSERVATORY MEMORANDUM DATE: September 16, 1996 TO: M. Clark, B. Garwood, D. Hogg, H. Liszt FROM: Ron Maddalena SUBJECT: GBT and Aips++ requirements for traditional, all-sky pointing

More information

in the Mediterranean

in the Mediterranean PIRATE in the Mediterranean Ulrich Kolb 1, Robert Lucas 1, Vadim Burwitz 2 (1) picetl & OU Physics & Astronomy (2) MPE Garching PIRATE The picetlrobotic Astronomical Telescope Explorer Ulrich Kolb, Robert

More information

MEDIAGLOBE-III Feature 1 Highest resolution and contrast ratio as small sizes digital planetarium system

MEDIAGLOBE-III Feature 1 Highest resolution and contrast ratio as small sizes digital planetarium system MEDIAGLOBE-III is the latest model of Konica Minolta MEDIAGLOBE, the world s first full-color single-lens digital planetarium. MEDAIGLOBE-III provides the best quality full dome image as small size digital

More information

Telescope Network. Dr. Paul S. Hardersen North Dakota Space Grant National Space Grant Meeting

Telescope Network. Dr. Paul S. Hardersen North Dakota Space Grant National Space Grant Meeting The Space Grant Internet Telescope Network Dr. Paul S. Hardersen North Dakota Space Grant National Space Grant Meeting Washington, D.C. March 3, 2007 The concept What? Establish a national network of Internet

More information

StreamStats: Delivering Streamflow Information to the Public. By Kernell Ries

StreamStats: Delivering Streamflow Information to the Public. By Kernell Ries StreamStats: Delivering Streamflow Information to the Public By Kernell Ries U.S. Department of the Interior U.S. Geological Survey MD-DE-DC District 410-238-4317 kries@usgs.gov StreamStats Web Application

More information

Grades 9-12: Earth Sciences

Grades 9-12: Earth Sciences Grades 9-12: Earth Sciences Earth Sciences...1 Earth s Place in the Universe...1 Dynamic Earth Processes...2 Energy in the Earth System...2 Biogeochemical cycles...4 Structure and Composition of the Atmosphere...4

More information

D = telescope aperture h = wavelength of light being observed D and h must be in the same units.

D = telescope aperture h = wavelength of light being observed D and h must be in the same units. the diameter or aperture. Because stars are extremely far away, they appear as point sources of light even with a telescope. Their brightness in the telescope depends only on the size of the aperture.

More information

THE APL TIME AND FREQUENCY LAB

THE APL TIME AND FREQUENCY LAB THE APL TIME AND FREQUENCY LAB R. A. Dragonette, M. Miranian, and M. J. Reinhart Johns Hopkins University, Applied Physics Laboratory Laurel, MD 20723-6099, USA Abstract The APL Time and Frequency Laboratory

More information

TWO SMALL PIECES OF GLASS A Space Science Program for Grades 5-12

TWO SMALL PIECES OF GLASS A Space Science Program for Grades 5-12 Teacher Idea Kit TWO SMALL PIECES OF GLASS A Space Science Program for Grades 5-12 Presented by Funded in part by: Two Small Pieces of Glass Suggested for Grades 5-12 Objectives After visiting the planetarium

More information

Chandra Fun Facts. Chandra Fun Facts. Chandra Fun Facts. Chandra Fun Facts. Chandra Fun Facts. Chandra Fun Facts

Chandra Fun Facts. Chandra Fun Facts. Chandra Fun Facts. Chandra Fun Facts. Chandra Fun Facts. Chandra Fun Facts What Space Shuttle was launched aboard? was launched aboard Space Shuttle Columbia on July 23, 1999 from the Kennedy Space Center in Florida. How high does orbit? flies more than 1/3 of the way to the

More information

UNIWERSAŁ observatory dome

UNIWERSAŁ observatory dome -see the best with us- UNIWERSAŁ observatory dome sofware manual UNIWERSAŁ the oldest and best known manufacturer of top-quality astronomy and optical equipment in Poland System requirements : - windows

More information

Weighing a Supermassive Black Hole Marc Royster & Andrzej Barski

Weighing a Supermassive Black Hole Marc Royster & Andrzej Barski Weighing a Supermassive Black Hole Marc Royster & Andrzej Barski Purpose The discovery of Kepler s Laws have had a tremendous impact on our perspective of the world as a civilization. Typically, students

More information

A. Project Description

A. Project Description THE SCHOOL OF GALACTIC RADIO ASTRONOMY A. Project Description Introduction The School of Galactic Radio Astronomy (SGRA) takes its name from the source SGR-A, the center of the Milky Way Galaxy. SGRA is

More information

The Galilean Moons of Jupiter

The Galilean Moons of Jupiter The Galilean Moons of Jupiter Image credit: NASA/JPL Mokusei Ver 1.04 This manual is provided in English language only. The author is not a native speaker of English. The author assumes and provides that

More information

Telescope Fundamentals

Telescope Fundamentals Telescope Fundamentals The focus of this presentation is to provide an overview of popular equipment available to the amateur astronomy community, as well as the equipment s applicability to differing

More information

More Optical Telescopes

More Optical Telescopes More Optical Telescopes There are some standard reflecting telescope designs used today All have the common feature of light entering a tube and hitting a primary mirror, from which light is reflected

More information

Lecture 8. October 25, 2017 Lab 5

Lecture 8. October 25, 2017 Lab 5 Lecture 8 October 25, 2017 Lab 5 News Lab 2 & 3 Handed back next week (I hope). Lab 4 Due today Lab 5 (Transiting Exoplanets) Handed out and observing will start Friday. Due November 8 (or later) Stellar

More information

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Learning Objectives Upon completing this chapter you should be able to: 1. Classify the

More information

Developed and Published by. AIMS Education Foundation

Developed and Published by. AIMS Education Foundation Probing Space Developed and Published by AIMS Education Foundation This book contains materials developed by the AIMS Education Foundation. AIMS (Activities Integrating Mathematics and Science) began in

More information

Coma Correction. Diagram. Introduction

Coma Correction. Diagram. Introduction Starlight Instruments, LLC 2380 E. Cardinal Drive, Columbia City, Indiana 46725 USA t: 260.244.0020 f.260.244.3077 e: sales@starlightinstruments.com web: starlightinstruments.com Introduction Thank you

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Activitydevelop SPACE PRO BES What is a space probe? What is its

More information

GRADES To Our Solar System and Back. Discover the STEM Behind Sustainable Rocketry DIGITAL EXPLORATION EDUCATOR GUIDE

GRADES To Our Solar System and Back. Discover the STEM Behind Sustainable Rocketry DIGITAL EXPLORATION EDUCATOR GUIDE GRADES 6 12 To Our Solar System and Back Discover the STEM Behind Sustainable Rocketry DIGITAL EXPLORATION EDUCATOR GUIDE Using this Digital Exploration, students will act as planetary scientists who have

More information

Chapter 18: Studying Space Astronomy: The Original Science

Chapter 18: Studying Space Astronomy: The Original Science Chapter 18: Studying Space 18.1 Astronomy: The Original Science What is Astronomy? Astronomy is the study of the universe People in ancient cultures used the seasonal cycles of the stars, planets, and

More information

Doing astronomy with SDSS from your armchair

Doing astronomy with SDSS from your armchair Doing astronomy with SDSS from your armchair Željko Ivezić, University of Washington & University of Zagreb Partners in Learning webinar, Zagreb, 15. XII 2010 Supported by: Microsoft Croatia and the Croatian

More information

Observation: NOT OBSERVING Either Not observing, Waiting, On Source, On reference, Scanning etc.

Observation: NOT OBSERVING Either Not observing, Waiting, On Source, On reference, Scanning etc. JODRELL BANK OBSERVATORY 7-M RADIO TELESCOPE: OBSERVING MANUAL The Jodrell Bank internet Observatory (JBiO) is a web interface to Jodrell Bank's 7-m radio telescope. The telescope itself is actually controlled

More information

Light and Telescopes

Light and Telescopes Light and Telescopes The key thing to note is that light and matter interact. This can happen in four principal ways: 1) emission a hot object such as the filament in a light bulb emits visible light 2)

More information

Solar Observations Using Total Stations Phenomenal Results by: Sayed R. Hashimi, Professor Surveying Engineering Department Ferris State University

Solar Observations Using Total Stations Phenomenal Results by: Sayed R. Hashimi, Professor Surveying Engineering Department Ferris State University Phenomenal Results by: Sayed R. Hashimi, Professor Surveying Engineering Department Ferris State University Abstract Today s electronic total stations have all the features that make them the most desirable

More information

THE SKY IN YOUR HANDS: TAKING ASTRONOMY TO VISUALLY IMPAIRED STUDENTS

THE SKY IN YOUR HANDS: TAKING ASTRONOMY TO VISUALLY IMPAIRED STUDENTS THE SKY IN YOUR HANDS: TAKING ASTRONOMY TO VISUALLY IMPAIRED STUDENTS The sky in your hands is a project created in 2009, during the International Year of Astronomy, with the goal to create an image of

More information

FIRST CONTACT. Astronomy 101, Section 4 at the Domed Theater Professor Neil McFadden Professor John McGraw

FIRST CONTACT. Astronomy 101, Section 4 at the Domed Theater Professor Neil McFadden Professor John McGraw FIRST CONTACT Astronomy 101, Section 4 at the Domed Theater Professor Neil McFadden Professor John McGraw Ladies and Gentlemen Welcome to Astronomy 101, Section 004, Course Number (CRN#) 44736, taught

More information

Answer Key for Exam C

Answer Key for Exam C Answer Key for Exam C 1 point each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Answer Key for Exam B

Answer Key for Exam B Answer Key for Exam B 1 point each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Robotic Telescopes to Science and Public Outreach

Robotic Telescopes to Science and Public Outreach Astronomical Instruments for Robotic Telescopes Ensenada-México, 03 Sep 2012 Robotic Telescopes to Science and Public Outreach Dr. Luis Cuesta Grupo Telescopios Robóticos Centro de Astrobiología INDEX

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Review of Monday s Class Spherical Trigonometry Review plane trigonometry Concepts in Spherical Trigonometry Distance measures Azimuths and bearings Basic formulas:

More information

Navigating by the Stars and Planets

Navigating by the Stars and Planets Navigating by the Stars and Planets (Finding your location from measured altitudes of celestial bodies) Presented to: Chagrin Valley Astronomical Society September 1, 2012 By Ron Baker, CVAS member Historical

More information

Geometry of Earth Sun System

Geometry of Earth Sun System 12S56 Geometry of Earth Sun System Figure below shows the basic geometry Northern Hemisphere Winter ω equator Earth s Orbit Ecliptic ω ω SUN equator Northern Hemisphere Spring Northern Hemisphere Fall

More information

The Zadko Telescope: the Australian Node of a Global Network of Fully Robotic Follow-up Telescopes

The Zadko Telescope: the Australian Node of a Global Network of Fully Robotic Follow-up Telescopes The Zadko Telescope: the Australian Node of a Global Network of Fully Robotic Follow-up Telescopes David Coward, Myrtille Laas-Bourez, Michael Todd To cite this version: David Coward, Myrtille Laas-Bourez,

More information

AST 101 Intro to Astronomy: Stars & Galaxies

AST 101 Intro to Astronomy: Stars & Galaxies AST 101 Intro to Astronomy: Stars & Galaxies Telescopes Mauna Kea Observatories, Big Island, HI Imaging with our Eyes pupil allows light to enter the eye lens focuses light to create an image retina detects

More information

Quick Start Guide. The ieq45 GoTo German Equatorial Mount # 8000C

Quick Start Guide. The ieq45 GoTo German Equatorial Mount # 8000C Quick Start Guide The ieq45 GoTo German Equatorial Mount # 8000C PACKAGE CONTENTS Telescope Mount (with built-in GPS) 3.5 Vixen type dovetail saddle (installed on the mount) 8 Losmandy-D type dovetail

More information

Optics and Telescope. Chapter Six

Optics and Telescope. Chapter Six Optics and Telescope Chapter Six ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap.

More information

Table of Contents and Executive Summary Final Report, ReSTAR Committee Renewing Small Telescopes for Astronomical Research (ReSTAR)

Table of Contents and Executive Summary Final Report, ReSTAR Committee Renewing Small Telescopes for Astronomical Research (ReSTAR) For the complete report, see http://www.noao.edu/system/restar 1 TableofContentsandExecutiveSummary FinalReport,ReSTARCommittee RenewingSmallTelescopesforAstronomical Research(ReSTAR) ForthecompletereportandmoreinformationabouttheReSTARcommittee,

More information

Other than Hydro Rocketry, students also exhibited other Astronomy club activities which are as follows:

Other than Hydro Rocketry, students also exhibited other Astronomy club activities which are as follows: SALWAN PUBLIC SCHOOL Sector 15, Gurugram February 17, 2018 ASTRONOMY DAY ASTRONOMY DAY is the culmination of SPACE Astronomy club, where club students get a platform to showcase their learning through

More information

SimpleDreamEQ2. Upgrade kit equatorial mounts Synta EQ2, Celestron CG3. User guide. Micro GoTo system. Micro GoTo system

SimpleDreamEQ2. Upgrade kit equatorial mounts Synta EQ2, Celestron CG3. User guide. Micro GoTo system. Micro GoTo system SimpleDreamEQ2 Upgrade kit equatorial mounts Synta EQ2, Celestron CG3 User guide Micro GoTo system Micro GoTo system AstroGadget 2017 1. DESCRIPTION The kit consists of a control unit and a set of drives

More information

Study Guide for Test 2. Chapter How does refraction allow a lens to bring parallel rays of light to a focus?

Study Guide for Test 2. Chapter How does refraction allow a lens to bring parallel rays of light to a focus? Study Guide for Test 2 1. What is refraction? Chapter 6 2. How does refraction allow a lens to bring parallel rays of light to a focus? 3. Can a mirror also be used to bring parallel rays of light to a

More information

TELESCOPE POINTING ERRORS AND CORRECTIONS

TELESCOPE POINTING ERRORS AND CORRECTIONS TELESCOPE POINTING ERRORS AND CORRECTIONS Alan Buckman B.Sc FRAS Revision 2 31st October 2002 AWR Technology www.awr.tech.dial.pipex.com With the widespread use of digital readout devices for telescope

More information

Boy Scout Badge Workshop ASTRONOMY

Boy Scout Badge Workshop ASTRONOMY Boy Scout Badge Workshop ASTRONOMY Welcome to the Schenectady Museum & Suits-Bueche Planetarium! During this workshop, you will explore the museum, see a show in the planetarium, and try out some other

More information

Sea Ice and Satellites

Sea Ice and Satellites Sea Ice and Satellites Overview: Students explore satellites: what they are, how they work, how they are used, and how to interpret satellite images of sea ice using Google Earth. (NOTE: This lesson may

More information

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

More information

A Life in Balance: A Tribute to Bill McLellan by Dan McKenna

A Life in Balance: A Tribute to Bill McLellan by Dan McKenna A Life in Balance: A Tribute to Bill McLellan by Dan McKenna If I could turn back time, I wish that all of you would have had the opportunity to meet Bill McLellan, who recently passed on. I suspect that

More information

TELESCOPES An overview of the main tools used by astronomers to study the universe.

TELESCOPES An overview of the main tools used by astronomers to study the universe. Lesson 203: TELESCOPES An overview of the main tools used by astronomers to study the universe. Fundamental Questions Attempting to give thorough and reasonable answers to the following questions will

More information

Introduction to Astronomy Laboratory Exercise #1. Intro to the Sky

Introduction to Astronomy Laboratory Exercise #1. Intro to the Sky Introduction to Astronomy Laboratory Exercise #1 Partners Intro to the Sky Date Section Purpose: To develop familiarity with the daytime and nighttime sky through the use of Stellarium. Equipment: Computer

More information

Pole searching algorithm for Wide-field all-sky image analyzing monitoring system

Pole searching algorithm for Wide-field all-sky image analyzing monitoring system Contrib. Astron. Obs. Skalnaté Pleso 47, 220 225, (2017) Pole searching algorithm for Wide-field all-sky image analyzing monitoring system J. Bednář, P. Skala and P. Páta Czech Technical University in

More information

Colorado Academic Standards for High School Science Earth Systems Science

Colorado Academic Standards for High School Science Earth Systems Science A Correlation of Pearson 12 th Edition 2015 Colorado Academic Standards Introduction This document demonstrates the alignment between, 12 th Edition, 2015, and the, Earth Systems Science. Correlation page

More information

SOLAR ENERGY: THAT S HOT Grades 4-6

SOLAR ENERGY: THAT S HOT Grades 4-6 NJCCCS: 5.1, 5.2, 5.4 SOLAR ENERGY: THAT S HOT Grades 4-6 Field Trip Overview: This program illuminates the various ways in which our nearest star affects life on Earth. Students will learn about the apparent

More information

Everything YOU wanted to know about Teaching High School Astronomy

Everything YOU wanted to know about Teaching High School Astronomy Everything YOU wanted to know about Teaching High School Astronomy MARY KAY HEMENWAY NATASCHA COX KEELY FINKELSTEIN JODY HARKRIDER KAREN GREEN DELIA POSEY This presentation is supported by McDonald Observatory

More information

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system.

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system. UNIT 2 UNIT 2 LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME Goals After mastery of this unit, you should: a. understand the basic concepts needed for any astronomical coordinate system. b. understand

More information

What do we do with the image?

What do we do with the image? Astro 150 Spring 2018: Lecture 7 page 1 Reading: Chapter 6, Sect. 6.4; Chapter 14 + assignment posted on Astro 150 website Homework: questions on special reading - answers due in lecture Thursday Exam

More information

Telescopes and Observatories. Parent Guide, page 1 of 2. OurStory: Exploring the Sky. Read the Directions sheets for step-by-step instructions.

Telescopes and Observatories. Parent Guide, page 1 of 2. OurStory: Exploring the Sky. Read the Directions sheets for step-by-step instructions. Parent Guide, page 1 of 2 Read the Directions sheets for step-by-step instructions. SUMMARY In this activity, children and adults will watch and discuss a short video about how people use telescopes. WHY

More information

The Sky is Not the Limit

The Sky is Not the Limit The Sky is Not the Limit news.stthomas.edu/the-sky-is-not-the-limit/ March 15, 2010 Astronomy is one of those topics that naturally generates enthusiasm. Contemplating the sheer scale of the universe and

More information

How Light Beams Behave. Light and Telescopes Guiding Questions. Telescopes A refracting telescope uses a lens to concentrate incoming light at a focus

How Light Beams Behave. Light and Telescopes Guiding Questions. Telescopes A refracting telescope uses a lens to concentrate incoming light at a focus Light and Telescopes Guiding Questions 1. Why is it important that telescopes be large? 2. Why do most modern telescopes use a large mirror rather than a large lens? 3. Why are observatories in such remote

More information

A Ramble Through the Night Sky

A Ramble Through the Night Sky 1 2 Contents of Talk What is up there? Moon, stars, planets, comets, aurora, nebulae, galaxies How can I find my way around? Magazines, books, planisphere, software What if I want to see more? Binoculars,

More information

Planetary Science Unit Map Grade 8

Planetary Science Unit Map Grade 8 Planetary Science Unit Map Grade 8 Course Goal and Description: In Planetary Science students study the Earth as a celestial object before progressing to lunar science/exploration, and then to Solar System

More information