Probing turbulence in ISM of galaxies with 21 cm line!

Size: px
Start display at page:

Download "Probing turbulence in ISM of galaxies with 21 cm line!"

Transcription

1 Probing turbulence in ISM of galaxies with 21 cm line! Bharadwaj and Ali (2005) Leonardo da Vinci Prasun Dutta! IISER Bhopal

2 Collaborators: Somnath Bharadwaj Jayaram N Chengalur Ayesha Begum Nirupam Roy Bharadwaj and Ali (2005)

3 Plan for today Turbulence in the ISM What do we need to know How do we try to know Neil Fleming

4 Turbulence in the ISM High velocity dispersion of HI in our galaxy and external galaxies (Agertz 2009) Scale height of the MW (Kalberla 2009) LAB survey: Karberla et al (2005) Star formation (Klessen 2001) Coherent structures Walter et al (2008)

5 Compressible Turbulence Compressible Solinoidal Energy :: [density, velocity] Injection scale Federrath et al (2010)

6 What do we observe?

7 What do we observe?

8 NHI power spectrum : MW

9 NHI power spectrum : MW Crovisior and Dickey (1983) Green (1993) : [ ] Elmegreen (2001)

10 NHI power spectrum : MW Solinoidal Compressive 3D : [ ] Elmegreen (2001)

11 NHI power spectrum : MW Compressive 3D 2D : [ ] Elmegreen (2001)

12 NHI power spectrum : MW Compressive 3D 2D : [ ] Elmegreen (2001)

13 NHI power spectrum : MW Observation suggests that there are scale free structures over length scales ranging 200 pc to sub parsecs. It is found that the slope of the density spectra is about -2.6, consistent with a supersonic turbulence driven by compressive forcing. It is believed that the energy input (forcing) into the turbulence is from supernovae shocks and self gravity.

14 NHI power spectrum : MW Observation suggests that there are scale free structures over length scales ranging 200 pc to sub parsecs. It is found that the slope of the density spectra is about -2.6, consistent with a supersonic turbulence driven by compressive forcing. What at the larger length scales? It is believed that the energy input (forcing) into the turbulence is from supernovae shocks and self gravity. Begum et al. (2006) and Dutta et al. (2009) for dwarf galaxies.

15 NHI power spectrum : THINGS 18 spiral galaxies from THINGS survey Power spectra follow power law at scales [ 600 pc to 16 kpc] Amplitude of the NHI fluctuations are of the order of 1/10th of the mean NHI density Dutta et al. (2009, 10, 13, 14)

16 NHI power spectrum : SPIRALS 2D 3D NGC 1058 HI Scale height ~ 500 pc Dutta et al. (2009)

17 Vturb power spectrum : MW Milky Way

18 Vturb power spectrum : MW Statistics of centroid of velocities (Lazarian and Esquivel 2003) Spectral Correlation function (Padoan et al. 1998) Velocity channel analysis! (Lazarian and Pogosyan 2000) Velocity coordinate spectrum (Lazarian and Pogosyan 2006)

19 Vturb power spectrum : MW Velocity channel analysis (3D)!! Lazarian and Pogosyan (2000)

20 Vturb power spectrum : MW Velocity channel analysis (3D)!! Slope of the velocity spectra is about -2 along the galactic plane and about in vertical directions. Energy input estimated from the amplitude of the spectra is what expected from supernovae.

21 Vturb power spectrum : SPIRALS Dutta (2015) External Galaxies Walter et al (2008)

22 Vturb power spectrum : SPIRALS Ensemble averaging of can not be done as we do not have statistical isotropy here. We can estimate the quantity without any bias.

23 Vturb power spectrum : SPIRALS

24 Vturb power spectrum : SPIRALS We do not need to use a mapping between line of sight velocity and distance. Estimator works (almost) entirely in the visibility plane. Challenge is to estimate the rotational velocity with sufficient accuracy. Effective for only galaxies with inclination angle < 45 degrees. Dutta (2015)

25 Summary At scales to 200 pc in our galaxy density power spectra is consistent with compressive forcing by supernovae. At larger scales of 10 kpc, observations from external galaxies suggest supersonic turbulence with compressive forcing operational at those scales. Key questions: Are the observed fluctuations at these two different scales result of a same physics or different. What gives energy input to the turbulence at large scales.

26

Investigating the structure and dynamics of the Interstellar Medium! from radio interferometric observations

Investigating the structure and dynamics of the Interstellar Medium! from radio interferometric observations Investigating the structure and dynamics of the Interstellar Medium! from radio interferometric observations Prasun Dutta IIT (BHU), Varanasi Collaborators: Somnath Bharadwaj Ayesha Begum Jayaram Chengalur

More information

POWER SPECTRUM TO PROBE TURBULENCE IN INTERSTELLAR MEDIUM USING 21CM LINE

POWER SPECTRUM TO PROBE TURBULENCE IN INTERSTELLAR MEDIUM USING 21CM LINE POWER SPECTRUM TO PROBE TURBULENCE IN INTERSTELLAR MEDIUM USING 21CM LINE A REPORT arxiv:1805.11464v1 [astro-ph.ga] 28 May 2018 submitted in partial fulfillment of the requirements for the award of the

More information

Diagnosing the Role of MHD Turbulence in Massive Star Forma:on

Diagnosing the Role of MHD Turbulence in Massive Star Forma:on Diagnosing the Role of MHD Turbulence in Massive Star Forma:on Blakesley Burkhart Einstein Fellow Harvard- Smithsonian Center for Astrophysics With Min Young- Lee, Alex Lazarian, David Collins, Jonathan

More information

Magnetic Fields & Turbulence: Observations. Mark Heyer University of Massachusetts

Magnetic Fields & Turbulence: Observations. Mark Heyer University of Massachusetts Magnetic Fields & Turbulence: Observations Mark Heyer University of Massachusetts Protostellar/Cluster Cores Alves etal 2 Tafalla etal 2006 Decoupled Cores Lombardi etal 2006 Goodman etal 1998 SIZE SIZE

More information

arxiv: v1 [astro-ph.ga] 1 Mar 2017 ABSTRACT

arxiv: v1 [astro-ph.ga] 1 Mar 2017 ABSTRACT The Nature of Turbulence in the LITTLE THINGS Dwarf Irregular Galaxies Erin Maier 1,2, Bruce G. Elmegreen 3, Deidre A. Hunter 4, Li-Hsin Chien 1, Gigja Hollyday 4,5, Caroline E. Simpson 6 arxiv:1703.00529v1

More information

Turbulence, kinematics & galaxy structure in star formation in dwarfs. Mordecai-Mark Mac Low Department of Astrophysics

Turbulence, kinematics & galaxy structure in star formation in dwarfs. Mordecai-Mark Mac Low Department of Astrophysics Turbulence, kinematics & galaxy structure in star formation in dwarfs Mordecai-Mark Mac Low Department of Astrophysics Outline Turbulence inhibits star formation, but slowly Interplay between turbulence

More information

arxiv: v1 [astro-ph.ga] 12 Dec 2011

arxiv: v1 [astro-ph.ga] 12 Dec 2011 Mon. Not. R. Astron. Soc., () Printed 13 December 11 (MN LAEX style file v.) On the gravitational stability of a galactic disc as a two-fluid system Mohsen Shadmehri and Fazeleh Khajenabi Department of

More information

Origin of Magnetic Fields in Galaxies

Origin of Magnetic Fields in Galaxies Lecture 4: Origin of Magnetic Fields in Galaxies Rainer Beck, MPIfR Bonn Generation and amplification of cosmic magnetic fields Stage 1: Field seeding Stage 2: Field amplification Stage 3: Coherent field

More information

Turbulence in the (Cold) ISM

Turbulence in the (Cold) ISM Turbulence in the (Cold) ISM P. Hily-Blant IPAG April 14th, 2011 Outline 1 Introduction 2 Introduction to turbulence 3 Turbulent Cascade 4 Structures 5 Dissipation 6 Flavors 7 Perspectives failed to catch

More information

Active Galaxies. Lecture Topics. Lecture 24. Active Galaxies. Potential exam topics. What powers these things? Lec. 24: Active Galaxies

Active Galaxies. Lecture Topics. Lecture 24. Active Galaxies. Potential exam topics. What powers these things? Lec. 24: Active Galaxies Active Galaxies Lecture 24 APOD: M82 (The Cigar Galaxy) 1 Lecture Topics Active Galaxies What powers these things? Potential exam topics 2 24-1 Active Galaxies Galaxies Luminosity (L MW *) Normal < 10

More information

Ch. 25 In-Class Notes: Beyond Our Solar System

Ch. 25 In-Class Notes: Beyond Our Solar System Ch. 25 In-Class Notes: Beyond Our Solar System ES2a. The solar system is located in an outer edge of the disc-shaped Milky Way galaxy, which spans 100,000 light years. ES2b. Galaxies are made of billions

More information

The Hot Gaseous Halos of Spiral Galaxies. Joel Bregman, Matthew Miller, Edmund Hodges Kluck, Michael Anderson, XinyuDai

The Hot Gaseous Halos of Spiral Galaxies. Joel Bregman, Matthew Miller, Edmund Hodges Kluck, Michael Anderson, XinyuDai The Hot Gaseous Halos of Spiral Galaxies Joel Bregman, Matthew Miller, Edmund Hodges Kluck, Michael Anderson, XinyuDai Hot Galaxy Halos and Missing Baryons Dai et al. (2010) Rich clusters have nearly all

More information

Lecture 30. The Galactic Center

Lecture 30. The Galactic Center Lecture 30 History of the Galaxy Populations and Enrichment Galactic Evolution Spiral Arms Galactic Types Apr 5, 2006 Astro 100 Lecture 30 1 The Galactic Center The nature of the center of the Galaxy is

More information

Astrophysical Quantities

Astrophysical Quantities Astr 8300 Resources Web page: http://www.astro.gsu.edu/~crenshaw/astr8300.html Electronic papers: http://adsabs.harvard.edu/abstract_service.html (ApJ, AJ, MNRAS, A&A, PASP, ARAA, etc.) General astronomy-type

More information

Jodrell Bank Discovery Centre

Jodrell Bank Discovery Centre A-level Physics: Radio Telescopes Consolidation questions For these questions, we will be considering galaxy NGC 660 (below), a rare polar-ring galaxy in the constellation of Pisces. NGC 660 consists of

More information

Magnetic Fields in Evolving Spiral Galaxies and their Observation with the SKA

Magnetic Fields in Evolving Spiral Galaxies and their Observation with the SKA Magnetic Fields in Evolving Spiral Galaxies and their Observation with the SKA Rainer Beck MPIfR Bonn & SKA Science Working Group Fundamental magnetic questions When and how were the first fields generated?

More information

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way Figure 70.01 The Milky Way Wide-angle photo of the Milky Way Overview: Number of Stars Mass Shape Size Age Sun s location First ideas about MW structure Figure 70.03 Shapely (~1900): The system of globular

More information

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley)

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) w/ Todd Thompson & Eli Waxman Thompson, Quataert, & Waxman 2007, ApJ, 654, 219 Thompson,

More information

Lecture 23 Internal Structure of Molecular Clouds

Lecture 23 Internal Structure of Molecular Clouds Lecture 23 Internal Structure of Molecular Clouds 1. Location of the Molecular Gas 2. The Atomic Hydrogen Content 3. Formation of Clouds 4. Clouds, Clumps and Cores 5. Observing Molecular Cloud Cores References

More information

Turbulence simulations with ENZO and FLASH3

Turbulence simulations with ENZO and FLASH3 Turbulence simulations with ENZO and FLASH3... not yet Adaptive-mesh simulations with FLASH Christoph Federrath Institute for Theoretical Astrophysics Heidelberg Collaborators: Ralf Klessen, Robi Banerjee,

More information

The impact of stellar feedback on the density and velocity structure of the interstellar medium

The impact of stellar feedback on the density and velocity structure of the interstellar medium Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 1 August 2018 (MN LATEX style file v2.2) The impact of stellar feedback on the density and velocity structure of the interstellar medium Given the

More information

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 24 Astronomy Today 8th Edition Chaisson/McMillan Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble

More information

Regularity and Turbulence in Galactic Star Formation

Regularity and Turbulence in Galactic Star Formation Regularity and Turbulence in Galactic Star Formation APOD 10/9/11 Bruce G. Elmegreen IBM T.J. Watson Research Center Yorktown Heights, NY USA bge@us.ibm.com Overview HI to H 2 conversion Spiral wave star

More information

Clicker Question: Galaxy Classification. What type of galaxy do we live in? The Variety of Galaxy Morphologies Another barred galaxy

Clicker Question: Galaxy Classification. What type of galaxy do we live in? The Variety of Galaxy Morphologies Another barred galaxy Galaxies Galaxies First spiral nebula found in 1845 by the Earl of Rosse. Speculated it was beyond our Galaxy. 1920 - "Great Debate" between Shapley and Curtis on whether spiral nebulae were galaxies beyond

More information

The formation of super-stellar clusters

The formation of super-stellar clusters The formation of super-stellar clusters François Boulanger Institut d Astrophysique Spatiale Cynthia Herrera, Edith Falgarone, Pierre Guillard, Nicole Nesvadba, Guillaume Pineau des Forets Outline How

More information

Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

More information

The turbulent formation of stars

The turbulent formation of stars The turbulent formation of stars Christoph Federrath Citation: Physics Today 71, 6, 38 (2018); doi: 10.1063/PT.3.3947 View online: https://doi.org/10.1063/pt.3.3947 View Table of Contents: http://physicstoday.scitation.org/toc/pto/71/6

More information

Galaxies and Hubble s Law

Galaxies and Hubble s Law Galaxies and Hubble s Law Some Important History: Charles Messier In the early 19 th century, Charles Messier was hunting for comets, but in the telescopes of the time, identifying comets was difficult

More information

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies Big Galaxies Are Rare! Potato Chip Rule: More small things than large things Big, bright spirals are easy to see, but least common Dwarf ellipticals & irregulars are most common Faint, hard to see Mostly

More information

The Milky Way Galaxy

The Milky Way Galaxy 1/5/011 The Milky Way Galaxy Distribution of Globular Clusters around a Point in Sagittarius About 00 globular clusters are distributed in random directions around the center of our galaxy. 1 1/5/011 Structure

More information

Lecture Outlines. Chapter 23. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 23. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 23 Astronomy Today 8th Edition Chaisson/McMillan Chapter 23 The Milky Way Galaxy Units of Chapter 23 23.1 Our Parent Galaxy 23.2 Measuring the Milky Way Discovery 23-1 Early Computers

More information

Structure formation and scaling relations in the ISM (large scale)

Structure formation and scaling relations in the ISM (large scale) Structure formation and scaling relations in the ISM (large scale) Bruce G. Elmegreen IBM T.J. Watson Research Center Yorktown Heights, NY 10598 USA bge@us.ibm.com February 2017 Gas velocity difference

More information

arxiv: v1 [astro-ph.ga] 8 Aug 2016

arxiv: v1 [astro-ph.ga] 8 Aug 2016 Turbulence and Star Formation in a Sample of Spiral Galaxies arxiv:1608.02321v1 [astro-ph.ga] 8 Aug 2016 Erin Maier erin-maier@uiowa.edu Department of Physics and Astronomy, Northern Arizona University

More information

The Galactic magnetic field

The Galactic magnetic field The Galactic magnetic field Marijke Haverkorn (Nijmegen/Leiden) ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) Big Questions: What is the origin of galactic magnetic fields?

More information

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2 Next Generation Very Large Array Working Group 2 HI in M74: Walter+ 08 CO in M51: Schinnerer+ 13 Continuum in M82: Marvil & Owen Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of

More information

arxiv: v1 [astro-ph.ga] 12 May 2016

arxiv: v1 [astro-ph.ga] 12 May 2016 Submitted to ApJ, October 5, 2018 Preprint typeset using L A TEX style emulateapj v. 5/2/11 SUPERNOVA DRIVING. III. SYNTHETIC MOLECULAR CLOUD OBSERVATIONS Paolo Padoan, ICREA & Institut de Ciències del

More information

COSMOLOGY PHYS 30392 OBSERVING THE UNIVERSE Part I Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - January 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

Impact of relativistic jets on the ISM of their host galaxy

Impact of relativistic jets on the ISM of their host galaxy Impact of relativistic jets on the ISM of their host galaxy Dipanjan Mukherjee Universita di Torino with Geoff Bicknell Alex Wagner Ralph Sutherland AGN feedback and galaxy AGN feedback crucial to match

More information

Schmidt-Kennicutt relations in SPH simulations of disc galaxies with effective SN thermal feedback

Schmidt-Kennicutt relations in SPH simulations of disc galaxies with effective SN thermal feedback Schmidt-Kennicutt relations in SPH simulations of disc galaxies with effective SN thermal feedback Pierluigi Monaco Università di Trieste & INAF-Osservatorio Astronomico di Trieste In collaboration with:

More information

Three Major Components

Three Major Components The Milky Way Three Major Components Bulge young and old stars Disk young stars located in spiral arms Halo oldest stars and globular clusters Components are chemically, kinematically, and spatially distinct

More information

2004 Pearson Education Inc., publishing as Addison-Wesley

2004 Pearson Education Inc., publishing as Addison-Wesley By tracing their orbits and using our understanding of gravity, we can conclude that the object these stars are orbiting (shown here as a 5- pointed star) must have a mass over 2.5 million times greater

More information

Active Galactic Nuclei-I. The paradigm

Active Galactic Nuclei-I. The paradigm Active Galactic Nuclei-I The paradigm An accretion disk around a supermassive black hole M. Almudena Prieto, July 2007, Unv. Nacional de Bogota Centers of galaxies Centers of galaxies are the most powerful

More information

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan)

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan) Recent Progress in Modeling of Galaxy Formation Oleg Gnedin (University of Michigan) In current simulations, galaxies look like this: 10 kpc Disk galaxy at z=3: stars, molecular gas, atomic gas (Zemp,

More information

Superbubble Feedback in Galaxy Formation

Superbubble Feedback in Galaxy Formation Superbubble Feedback in Galaxy Formation Ben Keller (McMaster University) James Wadsley, Samantha Benincasa, Hugh Couchman Paper: astro-ph/1405.2625 (Accepted MNRAS) Keller, Wadsley, Benincasa & Couchman

More information

3D Spectroscopy to Dissect Galaxies Down to Their Central Supermassive Black Holes. Kambiz Fathi. Stockholm University, Sweden

3D Spectroscopy to Dissect Galaxies Down to Their Central Supermassive Black Holes. Kambiz Fathi. Stockholm University, Sweden 3D Spectroscopy to Dissect Galaxies Down to Their Central Supermassive Black Holes Kambiz Fathi Stockholm University, Sweden Towards a better understanding of the Hubble Diagram Towards a better understanding

More information

The Magnetic Field of GMCs. Paolo Padoan (ICREA & Institute of Cosmos Sciences - University of Barcelona)

The Magnetic Field of GMCs. Paolo Padoan (ICREA & Institute of Cosmos Sciences - University of Barcelona) The Magnetic Field of GMCs Paolo Padoan (ICREA & Institute of Cosmos Sciences - University of Barcelona) Two different views of the magnetic field in MCs: 1. The old view (Shu et al. 1987) Strong mean

More information

Magnetic field structure from Planck polarization observations of the diffuse Galactic ISM

Magnetic field structure from Planck polarization observations of the diffuse Galactic ISM Magnetic field structure from Planck polarization observations of the diffuse Galactic ISM François Boulanger Institut d Astrophysique Spatiale on behalf of the Planck Consortium Outline The Planck data

More information

Modelling star formation in galaxy formation simulations

Modelling star formation in galaxy formation simulations Modelling star formation in galaxy formation simulations Vadim Semenov (U.Chicago) Andrey Kravtsov University of Chicago Carving through the codes Davos, Switzerland 16 February, 2017 Nick Gnedin (Fermilab)

More information

Lecture 25 The Milky Way Galaxy November 29, 2017

Lecture 25 The Milky Way Galaxy November 29, 2017 Lecture 25 The Milky Way Galaxy November 29, 2017 1 2 Size of the Universe The Milky Way galaxy is very much larger than the solar system Powers of Ten interactive applet 3 Galaxies Large collections of

More information

TeV Cosmic Ray Anisotropies at Various Angular Scales

TeV Cosmic Ray Anisotropies at Various Angular Scales TeV Cosmic Ray Anisotropies at Various Angular Scales Gwenael Giacinti University of Oxford, Clarendon Laboratory Based on : GG & G.Sigl GG, M.Kachelriess, D.Semikoz Phys. Rev. Lett. 109, 071101(2012)

More information

Exam 4 Review EXAM COVERS LECTURES 22-29

Exam 4 Review EXAM COVERS LECTURES 22-29 Exam 4 Review EXAM COVERS LECTURES 22-29 Theoretically is there a center of the universe? Is there an edge? Do we know where Earth is on this? There is no center to the Universe, What kind of light we

More information

arxiv: v2 [astro-ph.ga] 8 Jul 2010

arxiv: v2 [astro-ph.ga] 8 Jul 2010 Draft version December 19, 2017 Preprint typeset using L A TEX style emulateapj v. 11/12/01 A TEST OF STAR FORMATION LAWS IN DISK GALAXIES Jonathan C. Tan 1 1 Dept. of Astronomy, University of Florida,

More information

AstroDavos New challenges in computational astrophysics. Carving though the codes: AstroDavos 17

AstroDavos New challenges in computational astrophysics. Carving though the codes: AstroDavos 17 AstroDavos 2017 New challenges in computational astrophysics Organisation Many thanks to Pedro R. Capelo, Joanna Drazkowska, Valentin Perret, Alireza Rahmati, Clement Surville, Judit Szulagyi, Sebastian

More information

Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis

Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3574 Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis 1 Interpretation of the deep sea measurement Wallner et

More information

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes.

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes. Distances to galaxies Cepheids used by Hubble, 1924 to show that spiral nebulae like M31 were further from the Sun than any part of the Milky Way, therefore galaxies in their own right. Review of Cepheids

More information

24.1 Hubble s Galaxy Classification

24.1 Hubble s Galaxy Classification Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble s Law 24.4 XXActive Galactic Nuclei XXRelativistic Redshifts and Look-Back

More information

The Milky Way Galaxy (ch. 23)

The Milky Way Galaxy (ch. 23) The Milky Way Galaxy (ch. 23) [Exceptions: We won t discuss sec. 23.7 (Galactic Center) much in class, but read it there will probably be a question or a few on it. In following lecture outline, numbers

More information

Revealing new optically-emitting extragalactic Supernova Remnants

Revealing new optically-emitting extragalactic Supernova Remnants 10 th Hellenic Astronomical Conference Ioannina, September 2011 Revealing new optically-emitting extragalactic Supernova Remnants Ioanna Leonidaki (NOA) Collaborators: P. Boumis (NOA), A. Zezas (UOC, CfA)

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

GraspIT Questions AQA GCSE Physics Space physics

GraspIT Questions AQA GCSE Physics Space physics A. Solar system: stability of orbital motions; satellites (physics only) 1. Put these astronomical objects in order of size from largest to smallest. (3) Fill in the boxes in the correct order. the Moon

More information

HI clouds near the Galactic Center:

HI clouds near the Galactic Center: PHISCC 217 February 7th, Pune HI clouds near the Galactic Center: Possible tracers for a Milky-Way nuclear wind? Enrico Di Teodoro Research School of Astronomy and Astrophysics Australian National University

More information

Radio Continuum: Cosmic Rays & Magnetic Fields. Rainer Beck MPIfR Bonn

Radio Continuum: Cosmic Rays & Magnetic Fields. Rainer Beck MPIfR Bonn Radio Continuum: Cosmic Rays & Magnetic Fields Rainer Beck MPIfR Bonn Synchrotron emission Beam angle: Ψ/2=1/γ=E o /E Radio continuum tools to study GeV Cosmic ray electrons (CRE) Synchrotron spectrum:

More information

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg THE GALACTIC CORONA In honor of Jerry Ostriker on his 80 th birthday Chris McKee Princeton 5/13/2017 with Yakov Faerman Amiel Sternberg A collaboration that began over 40 years ago and resulted in a lifelong

More information

arxiv:astro-ph/ v1 27 May 2004

arxiv:astro-ph/ v1 27 May 2004 Star Formation in the Interstellar Medium ASP Conference Series, Vol. XXX, 2004 XXX Gravity, Turbulence, and Star Formation arxiv:astro-ph/0405555v1 27 May 2004 Bruce Elmegreen IBM Research Division, T.J.

More information

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Chapter 6 Distances 6.1 Preliminaries Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Absolute distance measurements involve objects possibly unique

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

Galactic dynamics reveals Galactic history

Galactic dynamics reveals Galactic history Galactic dynamics reveals Galactic history Author: Ana Hočevar Advisor: dr. Tomaž Zwitter Department of Physics, University of Ljubljana March 18, 2006 Abstract Galaxy formation theory which predicts canibalism

More information

The Turbulent WIM: Distribution and MHD Simulations

The Turbulent WIM: Distribution and MHD Simulations The Turbulent WIM: Distribution and MHD Simulations Alex S. Hill University of Wisconsin-Madison Collaborators: Robert A. Benjamin, Grzegorz Kowal, Ronald J. Reynolds, L. Matthew Haffner, Alex Lazarian

More information

Dust Formation History with Galaxy Evolution

Dust Formation History with Galaxy Evolution Dust Formation History with Galaxy Evolution Tsutomu T. TAKEUCHI Division of Particle and Astrophysical Science, Nagoya University, Japan ESTEC, 14 Nov., 2014, the Netherlands 1. Introduction What are

More information

SPACE- AND TIME-CORRELATIONS IN THE SUPERNOVA DRIVEN INTERSTELLAR MEDIUM

SPACE- AND TIME-CORRELATIONS IN THE SUPERNOVA DRIVEN INTERSTELLAR MEDIUM DRAFT VERSION MARCH 5, 2017 Preprint typeset using L A TEX style emulateapj v. 05/12/14 SPACE- AND TIME-CORRELATIONS IN THE SUPERNOVA DRIVEN INTERSTELLAR MEDIUM J. F. HOLLINS, 1 G. R. SARSON, 1 A. SHUKUROV,

More information

68 Star Formation Laws in LITTLE THINGS Dwarfs: The case of DDO133 and DDO168. Dana Ficut-Vicas

68 Star Formation Laws in LITTLE THINGS Dwarfs: The case of DDO133 and DDO168. Dana Ficut-Vicas 68 Star Formation Laws in LITTLE THINGS Dwarfs: The case of DDO133 and DDO168 Dana Ficut-Vicas Little Things Project LITTLE: Local Irregulars That Trace Luminosity Extremes THINGS: The HI Nearby Galaxy

More information

ASTR 200 : Lecture 22 Structure of our Galaxy

ASTR 200 : Lecture 22 Structure of our Galaxy ASTR 200 : Lecture 22 Structure of our Galaxy 1 The 'Milky Way' is known to all cultures on Earth (perhaps, unfortunately, except for recent city-bound dwellers) 2 Fish Eye Lens of visible hemisphere (but

More information

Clusters: Observations

Clusters: Observations Clusters: Observations Last time we talked about some of the context of clusters, and why observations of them have importance to cosmological issues. Some of the reasons why clusters are useful probes

More information

Astrofysikaliska Dynamiska Processer

Astrofysikaliska Dynamiska Processer Astrofysikaliska Dynamiska Processer VT 2008 Susanne Höfner hoefner@astro.uu.se Aims of this Course - understanding the role and nature of dynamical processes in astrophysical contexts and how to study

More information

The Fractal Dimension of Star-forming Regions in M33

The Fractal Dimension of Star-forming Regions in M33 The Fractal Dimension of Star-forming Regions in M33 Mary Crone Odekon, Skidmore College Collaborators: Néstor Sánchez and Emilio J. Alfaro, Instituto de Astrofísica de Andalucía, Granada, Spain Neyda

More information

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas tbisbas@gmail.com University of Virginia Outline of the presentation 1. Introduction 2.

More information

The Structure of Galactic Gas at High Latitudes: the Southern Polar Cap

The Structure of Galactic Gas at High Latitudes: the Southern Polar Cap Astronomy Letters, Vol. 3, No. 4, 24, pp. 232 239. Translated from Pis ma v Astronomicheskiĭ Zhurnal, Vol. 3, No. 4, 24, pp. 268 276. Original Russian Text Copyright c 24 by Gosachinskij, Il in, Prozorov.

More information

Our Solar System: A Speck in the Milky Way

Our Solar System: A Speck in the Milky Way GALAXIES Lesson 2 Our Solar System: A Speck in the Milky Way The Milky Way appears to be curved when we view it but in reality it is a straight line. It is curved due to the combination of pictures taken

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

More information

Laboratory: Milky Way

Laboratory: Milky Way Department of Physics and Geology Laboratory: Milky Way Astronomy 1402 Equipment Needed Quantity Equipment Needed Quantity Milky Way galaxy Model 1 Ruler 1 1.1 Our Milky Way Part 1: Background Milky Way

More information

Radio Observations of TeV and GeV emitting Supernova Remnants

Radio Observations of TeV and GeV emitting Supernova Remnants Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline

More information

(Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture

(Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture (Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture A.D. 125? Ptolemy s geocentric model Planets ( ) wander among stars ( ) For more info: http://aeea.nmns.edu.tw/aeea/contents_list/universe_concepts.html

More information

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México 1 Javier Ballesteros-Paredes Centro de Radioastronomía y Astrofísica, UNAM, México 2 Collaborators: Javier Ballesteros-Paredes

More information

Addition to the Lecture on Galactic Evolution

Addition to the Lecture on Galactic Evolution Addition to the Lecture on Galactic Evolution Rapid Encounters In case the encounter of two galaxies is quite fast, there will be not much dynamical friction due to lack of the density enhancement The

More information

Chapter 23 The Milky Way Galaxy Pearson Education, Inc.

Chapter 23 The Milky Way Galaxy Pearson Education, Inc. Chapter 23 The Milky Way Galaxy The Milky Way is our own galaxy viewed from the inside. It is a vast collection of more than 200 billion stars, planets, nebulae, clusters, dust and gas. Our own sun and

More information

Powering Active Galaxies

Powering Active Galaxies Powering Active Galaxies Relativity and Astrophysics ecture 35 Terry Herter Bonus lecture Outline Active Galaxies uminosities & Numbers Descriptions Seyfert Radio Quasars Powering AGN with Black Holes

More information

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México 1 Collaborators: CRyA UNAM: Abroad: Javier Ballesteros-Paredes Pedro Colín Gilberto Gómez Recent PhDs: Alejandro González

More information

Direct Evidence for Two Fluid Effects in Molecular Clouds. Dinshaw Balsara & David Tilley University of Notre Dame

Direct Evidence for Two Fluid Effects in Molecular Clouds. Dinshaw Balsara & David Tilley University of Notre Dame Direct Evidence for Two Fluid Effects in Molecular Clouds Dinshaw Balsara & David Tilley University of Notre Dame 1 Outline Introduction earliest stages of star formation Theoretical background Magnetically

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy 18. Stellar Birth Star observations & theories aid understanding Interstellar gas & dust in our galaxy Protostars form in cold, dark nebulae Protostars evolve into main-sequence stars Protostars both gain

More information

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya Galaxies, AGN and Quasars Physics 113 Goderya Chapter(s): 16 and 17 Learning Outcomes: Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes

More information

Rotation Measure Synthesis of the Local Magnetized ISM

Rotation Measure Synthesis of the Local Magnetized ISM Rotation Measure Synthesis of the Local Magnetized ISM Maik Wolleben Covington Fellow, DRAO Outline Polarization, Faraday Rotation, and Rotation Measure Synthesis The Data: GMIMS The Global Magneto Ionic

More information

There are three main ways to derive q 0 :

There are three main ways to derive q 0 : Measuring q 0 Measuring the deceleration parameter, q 0, is much more difficult than measuring H 0. In order to measure the Hubble Constant, one needs to derive distances to objects at 100 Mpc; this corresponds

More information

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris Gamma rays from supernova remnants in clumpy environments!! Stefano Gabici APC, Paris Overview of the talk Galactic cosmic rays Gamma rays from supernova remnants Hadronic or leptonic? The role of gas

More information

80 2 Observational Cosmology L and the mean energy

80 2 Observational Cosmology L and the mean energy 80 2 Observational Cosmology fluctuations, short-wavelength modes have amplitudes that are suppressed because these modes oscillated as acoustic waves during the radiation epoch whereas the amplitude of

More information

Soma De Post-doctoral Fellow, Arizona State University presentation at 27th Texas Symposium, Dec 11,2013

Soma De Post-doctoral Fellow, Arizona State University presentation at 27th Texas Symposium, Dec 11,2013 Linear Polarization of CMB and 21cm & Circular Polarization of CMB Soma De Post-doctoral Fellow, Arizona State University presentation at 27th Texas Symposium, Dec 11,2013 Collaboration: Levon Pogosian

More information

HI 21-cm Study of Supernova Remnants in SKA Era

HI 21-cm Study of Supernova Remnants in SKA Era 2015. 11. 3. SKA Meeting HI 21-cm Study of Supernova Remnants in SKA Era Bon-Chul Koo (SNU, KIAS) Supernova Explosions SN explosions play a major role in the ecology and evolution of galaxies by supplying

More information

The Milky Way & Galaxies

The Milky Way & Galaxies The Milky Way & Galaxies The Milky Way Appears as a milky band of light across the sky A small telescope reveals that it is composed of many stars (Galileo again!) Our knowledge of the Milky Way comes

More information

50 Years of Understanding Galactic Atomic Hydrogen with Parkes. Naomi McClure-Griffiths CSIRO Astronomy & Space Science

50 Years of Understanding Galactic Atomic Hydrogen with Parkes. Naomi McClure-Griffiths CSIRO Astronomy & Space Science 50 Years of Understanding Galactic Atomic Hydrogen with Parkes Naomi McClure-Griffiths CSIRO Astronomy & Space Science Outline Parkes surveys of Galactic HI Large-scale distribution of HI in the Milky

More information