The Epoch of Experimentation Theory and Instrumentation Targeting Cosmological Reionization

Size: px
Start display at page:

Download "The Epoch of Experimentation Theory and Instrumentation Targeting Cosmological Reionization"

Transcription

1 The Epoch of Experimentation Theory and Instrumentation Targeting Cosmological Reionization The EOR is the next CMB (Loeb) only better Radio interferometers will (may) enable Direct imaging of the dominant baryonic component: HI 3-D representation of structure (cf. surface of last scattering) Study structure when the first stars/quasars formed HI datasets promise to be enormously richer - more bits Other probes are crude (Lyα, CO lines, IR/mm color) Signatures to keep in mind Global step in the background temperature Power spectra of HI fluctuations Structures (ionized regions around quasars, filaments ) 06 Dec 2005 LFRA/Reber Conference -Greenhill

2 ionized Neutral HI Brief History of the IGM z~6.2 ionized Epoch of Reionization (EOR) culmination of structure formation the first luminous struct ures Uncertainty motivates Epoch of study Experimentation(EoE)

3 EOR Key Science Reionization history of the universe Neutral fraction, f(hi) vs z History of reheating in the IGM and origins Were stars or quasars chiefly responsible? Fragmentation and collapse of Dark Matter / Halos How quickly did baryonic LSS, stars, and quasars form? How is the EOR studied today? Optical Gunn-Petersen trough quasars limited to line-of-sight measures; relatively insensitive in z substantially model dependent How might the EOR be studied tomorrow? HI emission (λ o =21cm) plane-of-sky measures resolved in z space

4 What do we know? Reionization at z>6.2 Deep Lyα spectra f(hi)>10-3 at z~6.3 Gunn-Petersen trough Can we do better? λ opt.

5 The Epoch of Experimentation Recent Progress in Theory and Instrumentation Targeting Cosmological Reionization The EOR is the next CMB (Loeb) only better Radio interferometers will enable (ultimately) Direct imaging of the dominant baryonic component: HI Study structure when the first stars/quasars formed 3-D representation of structure (cf. surface of last scattering) HI datasets promise to be enormously richer. Other EOR probes are crude (Lyα, CO lines, colors) Signatures to keep in mind Global step in the background temperature Power spectra of HI fluctuations Structures (HII regions around quasars, filaments )

6 HI Temperature History Origin of the global step T CMBR Spin HI in absorpt n Lyα heating HI in emiss n Hard to see DnR 1: z 6.2

7 Cosmic Web Power Spectra / Wide-field Imaging (1-2 ) Dark Matter distribution, z~6 Baryonic matter follows the DM COBE/WMAPstyle analysis Springel et al. ( Bowman et al.

8 Warm HI shells Around Quasars Narrow-field imaging ~few-10 Mpc

9 EOR Instruments Worldwide Project Site Style BW (MHz) ATNF AU Expt WSRT NL Facility FoV( ) M N ø A EOR ( m 2 ) 10-3 B (km) 1 14 N/A 2 3 VLA NM Facility GMRT IN Facility core PAPER MWA LFD US/AU AU Expt Expt (?) « PAST CN Expt LOFAR NL Facility hi-band 10 2 % <1km? core 20-4 %<1km? %<1 km? analog digital

10 ATNF PAPER VLA. PaST ~10 10 LOFAR (core) MWA/LFD

11 LF radio astronomy is all-sky imaging 55º 50º 45º 40º de Bruyn ; LFFE (Wb) 3C MHz No matter the config., foreground removal will be the greatest challenge. Line Galactic RRL Continuum - Compact (xgal) - Diffuse (gal) - Polarized 6 h 30 m 6 h 00 m 5 h 30 m 5 h 00 m

12 Diffuse Foregrounds (after de Bruyn) Why is it a potentially serious problem? dipole arrays have high (off-axis) instrumental polarization Faraday rotation makes these frequency dependent calibration residuals could easily be 1% What are Galactic polarization properties? T b (pol) ~ 3-4 K (350 MHz) over 1-10, K (140 MHz) How to deal with this? Beam, depth-depolarization, RM synthesis may lower the levels Observe polarization-ref areas (where are they?) Do a superb job in full Stokes calibration

13 Stokes I Stokes Q+U ~6 Haverkorn MHz ν -2.5

14 Cosmological Reionization Exp t. [ATNF - see poster and later talk] also [T-REX] Unique single aperture concept Measure mk spectral features in radio background Frequency independent log-spiral antenna Drift scan; 1 sr beam; 2 polz. Total and cross power Challenge Calibration is critical (e.g., bandpass) DnR ~ required Learn as you go Science goals Detect IGM reheating Absorption signature of HI on background Up to z~11.5 to start ( MHz) Luxor Sydney

15 PAPER Precision Array to Probe the Epoch of Reionization [Berkeley, NRAO-CV, U. Virginia] Dipole array Phased design and construction Open ended concept Greenbank prototype ; WA c Application of new correlator design FPGA-based Werthimer concept Polyphase filterbank 8 bit, modular, broadly programmable Long range science goals 3 Mpc scale z~8 (6 or 0.2 MHz) HI around HII bubbles Power spectrum over a wide range of k and ν

16 Past (GB) 4 dipoles in min. redundancy config MHz, 1 polz correlation Prototype FPGA-based correlator 100 MHz BW; 1 polz MHz balun Near future (GB) 8(32) dipoles along an ellipse Full implementation of correlator 24 khz channels; full Stokes 10s dump Future (WA) Proven concept deployed to Mileura Challenges Foregrounds Correlator generalization to N»32 Assembly of greater collecting area CasA: 7.5 h 100:1 250m E-W config

17 PaST Primeval Structure Telescope [CMU, CITA, NAOC] Unique dipole array concept Very low cost Rapid deployment First on line (Ulastai) Simplicity Yagi antennas No-tracking (NCP) eases correlation Science goals Power spectrum (z~6-20) Structure for lower z range Cosmological parameters from GRB prompt emission

18 Near future (c. 02/06) 80 stations of ~100 antennas - configuration Dual polarization stations - not elements 2 channel correlator Challenges Quality of the NCP field Are we lucky? Calibration Foregrounds Polarization FOV (< MWA, LOFAR) Low cost system noise (at high frequencies) ~Today

19 MWA/LFD Mileura Wide-field Array - Low Freq Demonstrator [MIT/Haystack, SAO/Harvard, ANU, Curtin, Melbourne + ] Dipole array Large-N Dense uv-sampling Wide FOV (»20 ) via full correlation, all-sky (N N) No stations. 2 Gvis s -1 output Design emphasizes control over systematics Long range EOR science goals Power spectrum over a wide range of k (6.3<z<10) HI around HII bubbles

20 Challenges Pipeline processing of data flow Foregrounds Maintaining control over systematics Visualization of data products All radio sky pseudo-real time display in θ & z Collaboration with Harvard Initiative in Innovative Computing? Forging links to non-radio projects, e.g., LSST QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture.

21 LOFAR Greatest raw sensitivity Greatest collecting area Most sophisticated correlation scheme thus far Extensive preparatory work - LFFE Challenges Complexity (time for skakedown) Use of multi-beam mosaics to obtain wide FOV RFI (impact on array core) N+1 hierarchy in layout Management of dynamic station beams

22 VLA EOR Extension [SAO/Harvard, NRAO, Yale] Conventional approach Array of parabolic reflectors Leverage existing infrastructure Crash program Aperture, electronics, correlator Last peer review pending demo. (Jan.) Science goal Tight focus. Easy redshifts. 5 Mpc scale z~6.3 (15 or ~2 MHz) HI around HII bubbles ionized by SDSS quasars; 3 prospects Data acquisition in T Build experience with foreground removal [and RFI] Legacy science at z~7.5 feasible after T Components: & courtesy of NRAO/AUI Greenhill, Blundell, Carilli, Perley, SAO receiver lab, Loeb, Zaldarriaga, Furlanetto, Morales, Mitchell, Bowman, students, NRAO operations

23 First 195 MHz VLA Images SBS C295 (85 Jy) 3 antennas 0.78 MHz (TV10) 2.9 h S/N~300 RMS t -0.5 over 8 h Noise 10x thermal due to 3 element u,v coverage and source density on sky. No RFI impact - but it can only get worse

24 Traditional VLA receivers λ20 cm-λ7mm RX - Mating of dipole feed & mechanical antenna. - Similar to Wb/LFFE - In contrast to MWA, LOFAR, & PaST (purpose-built facilities) Feed

25 Dipole Hub Passive L/C balun Gen-{N} Feed Gen-{N-1} Receiver (ex Q-hybrid and notches)

26 Timeline 3 prototype receivers on the array for 8 months Production test units are being deployed now New feeds: holography (installed 11/11/05) New receivers: SEFD measures (to be installed 12/20/05) NRAO pre-deployment delta-review early in Jan (?) Challenges (just a few) Speed: design, test, deploy receivers in ~ 1 year The VLA correlator RFI excision strategy enforces inefficient bandwidths Calibration Cross-polarization response of feeds in situ Foregrounds RFI - coordination with broadcasters KCHF DTV-10; critical partner No DTV coordination possible after 2007! Gaining adequate obs./test time w/in a nat l obs tory

27 RFI: TV/translators Translator TV stn.

28 The Epoch of Experimentation. Diversity in approach! Evangelical Summary The EOR is a new frontier for astronomy, one along which LF radio astronomy will be in the vanguard. The EoE is an exciting time. But theory is in the lead. The real excitement will come when observation provides challenges.

29 R.F.I. VLA RFI environment analog TV/translators -ch8-11 digital TV - ch 9, 10 (soon 8) internal signals military transmissions Mitigation involves coordination - ch 9, 10, military filtration MHz BPF -ch11 subtraction

30 Internal / External RFI See also talk by Perley

31 But RFI is not always that bad A B Internal RFI that does not correlate C

32 T sys ~200 K (195 MHz). Wb obtains ε~ 30%; Tsys~400 K ± VLA Prototype Performance Measured Goal Primary Beam 4.3 Beam sidelobes A few % T sys / ε K (prototype receiver) Receiver X-polz 10-40% Line RMS/450 h Impact: λ20cm Impact: λ92cm 3.6 mk@15 1±1% < 0% K 10% (NB gal. foreground) Prior to RFI subtraction. Corresponds to ε~ 30%;

33 What does the VLA EOR ext. look like? - Mating of dipole feed & mechanical antenna. - Similar to Westerbork. - Contrast to MWA- LFD, LOFAR, & PAST purpose- built facilities Traditional VLA receivers λ20 cm-λ7mm

34 Long-term Goal: HIIR 250 h - D-array / Tsys=180 / η e =0.4 / 0.8 MHz / warm IGM / f(hi)=

35 Long-term Goal: Fluctuations 30 3 Zaldarriaga & Carilli See also e.g., Zaldarriaga, Furlanetto, & Hernquist 04

36 Progression of EOR Theory Physics of Population III stars (M»10 2 M ) Loeb 2003 HII regions excited by quasars Wyithe & Loeb 2004a,b Wyithe, Loeb, & Barnes 2005 Preliminary evidence: Gunn-Petersen troughs in Lyα spectra Dominance of * s over quasars in reionization Details of power spectra Velocity anisotropies (cite)

Search for 21cm Reionization

Search for 21cm Reionization Search for 21cm Reionization Ue-Li Pen Xiang-Ping Wu, Jeff Peterson Beacons of Darkness Reionizing sources create a network of billions of holes in the diffuse 21cm background with precise redshifts Can

More information

MURCHISON WIDEFIELD ARRAY

MURCHISON WIDEFIELD ARRAY MURCHISON WIDEFIELD ARRAY STEPS TOWARDS OBSERVING THE EPOCH OF RE-IONIZATION Ravi Subrahmanyan Raman Research Institute INDIA View from Earth: cosmic radio background from cosmological evolution in gas

More information

21 cm Cosmology. Miguel F. Morales Boulder, October 5 th, 2010

21 cm Cosmology. Miguel F. Morales Boulder, October 5 th, 2010 21 cm Cosmology Miguel F. Morales Boulder, October 5 th, 2010 See invited ARAA review Reionization and Cosmology with 21-cm Fluctuations Miguel F. Morales 1 and J. Stuart B. Wyithe 2 1 Department of Physics,

More information

VLA OBSERVING APPLICATION

VLA OBSERVING APPLICATION VLA OBSERVING APPLICATION DEADLINES: 1st of Feb., June., Oct. for next configuration following review INSTRUCTIONS: Each numbered item must have an entry or N/A E-MAIL TO: propsoc@nrao.edu (different for

More information

Future Radio Interferometers

Future Radio Interferometers Future Radio Interferometers Jim Ulvestad National Radio Astronomy Observatory Radio Interferometer Status in 2012 ALMA Covers much of 80 GHz-1 THz band, with collecting area of about 50% of VLA, for a

More information

Instruments for studying the Epoch of Reionization (EOR) Presentation to CORF by Alan Rogers 27 May 09

Instruments for studying the Epoch of Reionization (EOR) Presentation to CORF by Alan Rogers 27 May 09 Instruments for studying the Epoch of Reionization (EOR) Presentation to CORF by Alan Rogers 27 May 09 Summary The Epoch of Reionization (EOR) What are the theoretical predictions for what we might be

More information

Foregrounds for observations of the high redshift global 21 cm signal

Foregrounds for observations of the high redshift global 21 cm signal Foregrounds for observations of the high redshift global 21 cm signal Geraint Harker 28/10/2010 Fall Postdoc Symposium 1 The hydrogen 21cm line The hydrogen 21cm (1420MHz) transition is a forbidden transition

More information

An Introduction to ASKAP Bringing Radio Interferometers Into the Multi-pixel Era

An Introduction to ASKAP Bringing Radio Interferometers Into the Multi-pixel Era An Introduction to ASKAP Bringing Radio Interferometers Into the Multi-pixel Era Aidan Hotan and Lisa Harvey-Smith 3 rd October 2014 CSIRO ASTRONOMY AND SPACE SCIENCE Introducing ASKAP The Australian SKA

More information

PRECISION ARRAY TO PROBE THE EPOCH OF REIONIZATION

PRECISION ARRAY TO PROBE THE EPOCH OF REIONIZATION PRECISION ARRAY TO PROBE THE EPOCH OF REIONIZATION PAPER Team: R. Bradley (Co PI), E. Mastrantonio, C. Parashare, N. Gugliucci, D. Boyd, P. Reis (NRAO & UVA); A. Parsons, M. Wright, D. Werthimer, CASPER

More information

Parkes 21 cm Intensity Mapping Experiments

Parkes 21 cm Intensity Mapping Experiments Parkes 21 cm Intensity Mapping Experiments Jonghwan Rhee (ICRAR/UWA) In collaboration with: Lister Staveley-Smith (ICRAR/UWA), Laura Wolz (Univ. of Melbourne), Stuart Wyithe (Univ. of Melbourne), Chris

More information

Design Reference Mission for SKA1 P. Dewdney System Delta CoDR

Design Reference Mission for SKA1 P. Dewdney System Delta CoDR Phasing of SKA science: Design Reference Mission for SKA1 P. Dewdney System Delta CoDR Feb. 23, 2011 21 st Century Astrophysics National Aeronautics and Space Administration Jet Propulsion Laboratory California

More information

Thoughts on LWA/FASR Synergy

Thoughts on LWA/FASR Synergy Thoughts on LWA/FASR Synergy Namir Kassim Naval Research Laboratory 5/27/2003 LWA-FASR 1 Ionospheric Waves 74 MHz phase 74 MHz model Ionosphere unwound (Kassim et al. 1993) Ionospheric

More information

The SKA Molonglo Prototype (SKAMP) progress & first results. Anne Green University of Sydney

The SKA Molonglo Prototype (SKAMP) progress & first results. Anne Green University of Sydney The SKA Molonglo Prototype (SKAMP) progress & first results Anne Green University of Sydney SKA2010 SKAMP Objectives & Goals Project Goal: A new low-frequency spectral line & polarisation instrument. Objectives:

More information

CHIME. Kendrick Smith on behalf of the CHIME collaboration Barcelona, September 2015

CHIME. Kendrick Smith on behalf of the CHIME collaboration Barcelona, September 2015 CHIME Kendrick Smith on behalf of the CHIME collaboration Barcelona, September 2015 *Mandana*Amiri* *Philippe*Berger* *Kevin*Bandura* *Dick*Bond* *JeanEFrancois*Cliche* *Liam*Connor* *Meiling*Deng* *Nolan*Denman*

More information

Foregrounds for EoR 21cm signals: their properties, effects and strategies to deal with them

Foregrounds for EoR 21cm signals: their properties, effects and strategies to deal with them Foregrounds for EoR 21cm signals: their properties, effects and strategies to deal with them Ger de Bruyn Groningen Reionization meeting, 29 jun 05 ASTRON, Dwingeloo & Kapteyn Institute, Groningen Outline

More information

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004 Probing the End of Dark Ages with High-redshift Quasars Xiaohui Fan University of Arizona Dec 14, 2004 High-redshift Quasars and the End of Cosmic Dark Ages Existence of SBHs at the end of Dark Ages BH

More information

=> most distant, high redshift Universe!? Consortium of international partners

=> most distant, high redshift Universe!? Consortium of international partners LOFAR LOw Frequency Array => most distant, high redshift Universe!? Consortium of international partners Dutch ASTRON USA Haystack Observatory (MIT) USA Naval Research Lab `best site = WA Novel `technology

More information

Probing the Dark Ages with 21 cm Absorption

Probing the Dark Ages with 21 cm Absorption May 13, 2008 Probing the Dark Ages with 21 cm Absorption Emil Polisensky (UMD/NRL) ABSTRACT A brief overview of detecting neutral hydrogen gas during the cosmic Dark Ages in absorption against the background

More information

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Rupert Croft. QuickTime and a decompressor are needed to see this picture. Rupert Croft QuickTime and a decompressor are needed to see this picture. yesterday: Plan for lecture 1: History : -the first quasar spectra -first theoretical models (all wrong) -CDM cosmology meets the

More information

Probing Into The Dark Ages with a Low Frequency Interferometer on the Moon

Probing Into The Dark Ages with a Low Frequency Interferometer on the Moon Probing Into The Dark Ages with a Low Frequency Interferometer on the Moon Jack Burns Center for Astrophysics and Space Science University of Colorado, Boulder (with contributions from A. Loeb, J. Hewitt,

More information

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory Cross-correlations of CMB lensing as tools for cosmology and astrophysics Alberto Vallinotto Los Alamos National Laboratory Dark matter, large scales Structure forms through gravitational collapse......

More information

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm Analysis of differential observations of the cosmological radio background: studying the SZE-21cm Charles Mpho Takalana Supervisor: Prof Sergio Colafrancesco University of the Witwatersrand November 28,

More information

HOW TO GET LIGHT FROM THE DARK AGES

HOW TO GET LIGHT FROM THE DARK AGES HOW TO GET LIGHT FROM THE DARK AGES Anthony Smith Lunar Seminar Presentation 2/2/2010 OUTLINE Basics of Radio Astronomy Why go to the moon? What should we find there? BASICS OF RADIO ASTRONOMY Blackbody

More information

Reionization constraints post Planck-15

Reionization constraints post Planck-15 Reionization constraints post Planck-15 Tirthankar Roy Choudhury National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune CMB Spectral Distortions from Cosmic Baryon Evolution

More information

HI across cosmic time

HI across cosmic time HI across cosmic time Hubble-ITC Fellow CfA Avi Loeb (CfA) Steve Furlanetto (UCLA) Stuart Wyithe (Melbourne) Mario Santos (Portugal) Hy Trac (CMU) Alex Amblard (Ames) Renyue Cen (Princeton) Asanthe Cooray

More information

Large Field of View Radio Astronomy; relevant for many KSP s

Large Field of View Radio Astronomy; relevant for many KSP s Large Field of View Radio Astronomy; relevant for many KSP s SKA Key Science Drivers ORIGINS Probing the Dark Ages When & how were the first stars formed? Cosmology and Galaxy Evolution Galaxies, Dark

More information

Spectral Line Intensity Mapping with SPHEREx

Spectral Line Intensity Mapping with SPHEREx Spectral Line Intensity Mapping with SPHEREx Tzu-Ching Chang (JPL/Caltech) SPHEREx Science Team Hao-Yi Heidi Wu (Ohio State) Olivier Doré Cosmology and First Light - December 2015 1 Line Intensity Mapping

More information

E-MERLIN and EVN/e-VLBI Capabilities, Issues & Requirements

E-MERLIN and EVN/e-VLBI Capabilities, Issues & Requirements E-MERLIN and EVN/e-VLBI Capabilities, Issues & Requirements e-merlin: capabilities, expectations, issues EVN/e-VLBI: capabilities, development Requirements Achieving sensitivity Dealing with bandwidth,

More information

Statistical inversion of the LOFAR Epoch of Reionization experiment data model

Statistical inversion of the LOFAR Epoch of Reionization experiment data model Statistical inversion of the LOFAR Epoch of Reionization experiment data model ASTRON, Oude Hoogeveensedijk 4, 7991 PD, Dwingeloo, the Netherlands Kapteyn Astronomical Institute, Landleven 12, 9747 AD,

More information

Low-frequency radio astronomy and wide-field imaging

Low-frequency radio astronomy and wide-field imaging Low-frequency radio astronomy and wide-field imaging James Miller-Jones (NRAO Charlottesville/Curtin University) ITN 215212: Black Hole Universe Many slides taken from NRAO Synthesis Imaging Workshop (Tracy

More information

Pulsars with LOFAR The Low-Frequency Array

Pulsars with LOFAR The Low-Frequency Array Pulsars with LOFAR The Low-Frequency Array Ben Stappers ASTRON, Dwingeloo With assistance from Jason Hessels,, Michael Kramer, Joeri van Leeuwen and Dan Stinebring. Next generation radio telescope Telescope

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

What We Can Learn and How We Should Do It

What We Can Learn and How We Should Do It What We Can Learn and How We Should Do It Tom Oosterloo Netherlands Institute for Radio Astronomy, Dwingeloo, NL Kapteyn Institute, Groningen, NL NGC 6946 H I (WSRT) and optical (DSS) What can we learn

More information

Imaging HII Regions from Galaxies and Quasars During Reionisation with SKA

Imaging HII Regions from Galaxies and Quasars During Reionisation with SKA Imaging HII Regions from Galaxies and Quasars During Reionisation with SKA, Paul M. Geil, Hansik Kim School of Physics, The University of Melbourne, Parkville, Vic 31, Australia E-mail: swyithe@unimelb.edu.au

More information

Simulating cosmic reionization at large scales

Simulating cosmic reionization at large scales Simulating cosmic reionization at large scales I.T. Iliev, G. Mellema, U. L. Pen, H. Merz, P.R. Shapiro and M.A. Alvarez Presentation by Mike Pagano Nov. 30th 2007 Simulating cosmic reionization at large

More information

BINGO simulations and updates on the performance of. the instrument

BINGO simulations and updates on the performance of. the instrument BINGO simulations and updates on the performance of BINGO telescope the instrument M.-A. Bigot-Sazy BINGO collaboration Paris 21cm Intensity Mapping Workshop June 2014 21cm signal Observed sky Credit:

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

Square Kilometer Array

Square Kilometer Array Square Kilometer Array YERVANT TERZIAN CORNELL UNIVERSITY The Big Bang Space Time A rich history of discovery Many discoveries over the past 50yr Pulsars

More information

Cosmic Dawn/EoR SWG. Cathryn Trott

Cosmic Dawn/EoR SWG. Cathryn Trott Cosmic Dawn/EoR SWG Cathryn Trott EoR and Cosmic Dawn Cosmic Dawn z ~ 12 - > 28 Growth of structure; high sky temp. (1000s K); completely unchartered territory Epoch of HeaOng Epoch of ReionisaOon Framed

More information

Imaging the Sun with The Murchison Widefield Array

Imaging the Sun with The Murchison Widefield Array Imaging the Sun with The Murchison Widefield Array Divya Oberoi 1,2, Lynn D. Matthews 2, Leonid Benkevitch 2 and the MWA Collaboration 1 National Centre for Radio Astrophysics, Tata Institute for Fundamental

More information

PoS(Cosmology2009)022

PoS(Cosmology2009)022 and 21cm Observations Max Planck Institute for Astrophysics E-mail: ciardi@mpa-garching.mpg.de With the advent in the near future of radio telescopes as LOFAR, a new window on the highredshift universe

More information

Future radio galaxy surveys

Future radio galaxy surveys Future radio galaxy surveys Phil Bull JPL/Caltech Quick overview Radio telescopes are now becoming sensitive enough to perform surveys of 107 109 galaxies out to high z 2 main types of survey from the

More information

Lyman-alpha intensity mapping during the Epoch of Reionization

Lyman-alpha intensity mapping during the Epoch of Reionization Lyman-alpha intensity mapping during the Epoch of Reionization Mário G. Santos CENTRA IST (Austin, May 15, 2012) Marta Silva, Mario G. Santos, Yan Gong, Asantha Cooray (2012), arxiv:1205.1493 Intensity

More information

Telescopes of the future: SKA and SKA demonstrators

Telescopes of the future: SKA and SKA demonstrators Telescopes of the future: SKA and SKA demonstrators Elaine Sadler, University of Sydney Aperture synthesis techniques have now been in use for over 40 years (1974 Nobel prize to Martin Ryle) - what next?

More information

The Canadian Hydrogen Intensity. Mapping Experiment. Matt Dobbs

The Canadian Hydrogen Intensity. Mapping Experiment. Matt Dobbs The Canadian Hydrogen Intensity Mapping Experiment Matt Dobbs today (slide adapted from NASA publicity figure) Matt.Dobbs@McGill.ca, CHIME Overview 2013-04 4 today (slide adapted from NASA publicity figure)

More information

Extracting a signal from the

Extracting a signal from the Extracting a signal from the epoch of reionization with LOFAR Geraint Harker Kapteyn Institute, Groningen, the Netherlands Collaborators: Ger de Bruyn; Michiel Brentjens, Leon Koopmans, Saleem Zaroubi;

More information

The First Stars John Wise, Georgia Tech

The First Stars John Wise, Georgia Tech z=1100 The First Stars John Wise, Georgia Tech z~20-30 z~6 > (P=kT b Δν) Courtesy of J. Pritchard Adapted from Pritchard & Loeb, 2010, Phys. Rev. D, 82, 023006 A great mystery now confronts us: When and

More information

Rotation Measure Synthesis of the Local Magnetized ISM

Rotation Measure Synthesis of the Local Magnetized ISM Rotation Measure Synthesis of the Local Magnetized ISM Maik Wolleben Covington Fellow, DRAO Outline Polarization, Faraday Rotation, and Rotation Measure Synthesis The Data: GMIMS The Global Magneto Ionic

More information

(Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!)

(Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!) (Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!) Welcome back! (four pictures on class website; add your own to http://s304.photobucket.com/albums/nn172/rugbt/) Results:

More information

Large-aperture Experiment to Detect the Dark Ages

Large-aperture Experiment to Detect the Dark Ages Large-aperture Experiment to Detect the Dark Ages Science: Directly constrain 30 > z > 15 heating of IGM HI total-power measurement (absorption) Technology: Total-power elements embedded in an array Status:

More information

Baryonic acoustic oscillations in 21-cm emission: a probe of dark energy out to high redshifts

Baryonic acoustic oscillations in 21-cm emission: a probe of dark energy out to high redshifts Mon. Not. R. Astron. Soc. 383, 1195 129 (28) doi:1.1111/j.1365-2966.27.12631.x Baryonic acoustic oscillations in 21-cm emission: a probe of dark energy out to high redshifts J. Stuart B. Wyithe, 1 Abraham

More information

Observations of First Light

Observations of First Light Image from Space Telescope Science Institute Observations of First Light Betsy Barton (UC Irvine) Member, TMT SAC Project Scientist, IRIS on TMT Microwave Background What reionized the universe? The End

More information

Quasar Absorption Lines

Quasar Absorption Lines Tracing the Cosmic Web with Diffuse Gas DARK MATTER GAS STARS NEUTRAL HYDROGEN Quasar Absorption Lines use quasars as bright beacons for probing intervening gaseous material can study both galaxies and

More information

ASKAP. and phased array feeds in astronomy. David McConnell CASS: ASKAP Commissioning and Early Science 16 November 2017

ASKAP. and phased array feeds in astronomy. David McConnell CASS: ASKAP Commissioning and Early Science 16 November 2017 ASKAP and phased array feeds in astronomy David McConnell CASS: ASKAP Commissioning and Early Science 16 November 2017 Image credit: Alex Cherney / terrastro.com 1 Credits ASKAP Commissioning & Early Science

More information

Molongl O o b Observatory Google Map

Molongl O o b Observatory Google Map The SKA Molonglo Prototype (SKAMP) Project Anne Green Sydney Institute for Astronomy School of Physics University of Sydney Molonglo l Observatory Google Map Molonglo Observatory Timeline Past: Mills Cross

More information

The Epoch of Reionization: Observational & Theoretical Topics

The Epoch of Reionization: Observational & Theoretical Topics The Epoch of Reionization: Observational & Theoretical Topics Lecture 1 Lecture 2 Lecture 3 Lecture 4 Current constraints on Reionization Physics of the 21cm probe EoR radio experiments Expected Scientific

More information

National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China xuyd at nao.cas.cn

National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China   xuyd at nao.cas.cn Max Planck Institute for Astrophysics, Garching, Germany E-mail: ciardi at mpa-garching.mpg.de Susumu Inoue Institute for Cosmic Ray Research, University of Tokyo, Tokyo, Japan E-mail: sinoue at icrr.u-tokyo.ac.jp

More information

Parkes MHz Rotation Measure Survey

Parkes MHz Rotation Measure Survey Parkes 300-900 MHz Rotation Measure Survey Maik Wolleben E. Carretti, J. Dickey, A. Fletcher, B. Gaensler, J. L. Han, M. Haverkorn, T. Landecker, J. Leahy, N. McClure-Griffiths, D. McConnell, W. Reich,

More information

SKA Precursors and Pathfinders. Steve Torchinsky

SKA Precursors and Pathfinders. Steve Torchinsky SKA Precursors and Pathfinders Steve Torchinsky steve.torchinsky@obspm.fr A square kilometre of collecting area for each of three frequency bands SKA Low frequency 50MHz to 450MHz to be built in Western

More information

Fast Radio Transients and Next- Generation Instruments In Search of the Rare and Elusive. Jean-Pierre Macquart

Fast Radio Transients and Next- Generation Instruments In Search of the Rare and Elusive. Jean-Pierre Macquart Fast Radio Transients and Next- Generation Instruments In Search of the Rare and Elusive Jean-Pierre Macquart Scientific Motivation Fast timescale transients probe high brightness temperature emission

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11177 S1. Description of the simulation code We developed our own code that implements a hybrid method to produce instances of the expected three-dimensional distribution of the first

More information

SKA - The next steps...

SKA - The next steps... SKA - The next steps... An update on planning for the Square Kilometre Array: Jan 2002: Level 1 science drivers (unique, highpriority science) for SKA identified by ISAC working groups July 2002: Release

More information

arxiv:astro-ph/ v1 27 Aug 2001

arxiv:astro-ph/ v1 27 Aug 2001 AMiBA 2001: High-z Clusters, Missing Baryons, and CMB Polarization ASP Conference Series, Vol. 999, 2002 L-W Chen, C-P Ma, K-W Ng and U-L Pen, eds ATCA and CMB anisotropies arxiv:astro-ph/0108409v1 27

More information

Surveying the magnetic field of the Milky Way with SKA1

Surveying the magnetic field of the Milky Way with SKA1 Surveying the magnetic field of the Milky Way with SKA1 Image: JPL PlanetQuest Dominic Schnitzeler (MPIfR), 23/1/2014 schnitzeler@mpifr-bonn.mpg.de Overview What are the hot topics? Which tools do we have

More information

CMB interferometry (20 April 2012)

CMB interferometry (20 April 2012) CMB interferometry (20 April 2012) Clive Dickinson (Jodrell Bank CfA, U. Manchester) CMB power spectrum measurements We have come a long way in just a few years! Interferometers have made a big impact

More information

SCIENTIFIC CASES FOR RECEIVERS UNDER DEVELOPMENT (OR UNDER EVALUATION)

SCIENTIFIC CASES FOR RECEIVERS UNDER DEVELOPMENT (OR UNDER EVALUATION) SCIENTIFIC CASES FOR RECEIVERS UNDER DEVELOPMENT (OR UNDER EVALUATION) C.STANGHELLINI (INAF-IRA) Part I Infrastructure 1 Main characteristics and status of the Italian radio telescopes 2 Back-ends, opacity

More information

Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization

Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization Mon. Not. R. Astron. Soc. 418, 516 535 (2011) doi:10.1111/j.1365-2966.2011.19509.x Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen

More information

The international SKA project

The international SKA project The international SKA project - Towards a giant global radio telescope - Wim van Driel Paris Observatory - GEPI 3 rd MCCT SKADS School, Paris, 24/08/2009 SKA - Square Kilometre Array Necessary for a breakthrough

More information

Radio Aspects of the Transient Universe

Radio Aspects of the Transient Universe Radio Aspects of the Transient Universe Time domain science: the transient sky = frontier for all λλ Less so at high energies BATSE, RXTE/ASM, Beppo/Sax, SWIFT, etc. More so for optical, radio LSST = Large

More information

The Long Wavelength Array

The Long Wavelength Array The Long Wavelength Array Greg Taylor (UNM ) New Mexico Symposium November 5, 2010 http://lwa.unm.edu and see Poster by Joe Craig et al. Astrophysics LWA Science Ionospheric Physics Cosmology Observing

More information

Sky Mapping: Continuum and polarization surveys with single-dish telescopes

Sky Mapping: Continuum and polarization surveys with single-dish telescopes 1.4 GHz Sky Mapping: Continuum and polarization surveys with single-dish telescopes Wolfgang Reich Max-Planck-Institut für Radioastronomie (Bonn) wreich@mpifr-bonn.mpg.de What is a Survey? A Survey is

More information

LOFAR Key Science Projects and Science Network in Germany

LOFAR Key Science Projects and Science Network in Germany LOFAR Key Science Projects and Science Network in Germany Rainer Beck MPIfR Bonn LOFAR A revolution in radio telescope design: Software telescope: no moving parts, no mirrors, simultaneous multi-beaming,

More information

From LOFAR to SKA, challenges in distributed computing. Soobash Daiboo Paris Observatory -LESIA

From LOFAR to SKA, challenges in distributed computing. Soobash Daiboo Paris Observatory -LESIA From LOFAR to SKA, challenges in distributed computing Soobash Daiboo Paris Observatory -LESIA Overview LOFAR telescope Data processing with LOFAR NenuFar SKA Summary LOFAR science drivers Key science

More information

Square Kilometre Array: World s Largest Radio Telescope Design and Science drivers

Square Kilometre Array: World s Largest Radio Telescope Design and Science drivers Square Kilometre Array: World s Largest Radio Telescope Design and Science drivers Miroslava Dessauges Geneva Observatory, University of Geneva With my thanks to Philip Diamond (SKA director-general),

More information

Simulating HI 21-cm Signal from EoR and Cosmic Dawn. Kanan K. Datta Presidency University, Kolkata

Simulating HI 21-cm Signal from EoR and Cosmic Dawn. Kanan K. Datta Presidency University, Kolkata Simulating HI 21-cm Signal from EoR and Cosmic Dawn Kanan K. Datta Presidency University, Kolkata Plan of the talk Why simulations?! Dynamic ranges of simulations! Basic flowchart for simulation! Various

More information

OBSERVING GALAXY CLUSTERS WITH NEXT GENERATION RADIO TELESCOPES. Melanie Johnston-Hollitt Victoria University of Wellington

OBSERVING GALAXY CLUSTERS WITH NEXT GENERATION RADIO TELESCOPES. Melanie Johnston-Hollitt Victoria University of Wellington OBSERVING GALAXY CLUSTERS WITH NEXT GENERATION RADIO TELESCOPES Melanie Johnston-Hollitt Victoria University of Wellington Radio Renaissance Radio astronomy is currently undergoing a renaissance in terms

More information

Preliminary Rejection of Global 21-cm Models with EDGES High-Band (ongoing work)

Preliminary Rejection of Global 21-cm Models with EDGES High-Band (ongoing work) Preliminary Rejection of Global 21-cm Models with EDGES High-Band (ongoing work) Raul Monsalve CASA, University of Colorado Boulder SESE, Arizona State University November 23, 216 2 Description Here I

More information

Overview of Technical Approaches

Overview of Technical Approaches Overview of Technical Approaches Robust receivers Edit / excise / blank - frequency / time domain - might lose/corrupt astronomy signal Cancel / subtract / null - identify / characterize / subtract - frequency

More information

Transient Cosmic Phenomena and their Influence on the Design of the SKA Radio Telescope

Transient Cosmic Phenomena and their Influence on the Design of the SKA Radio Telescope Transient Cosmic Phenomena and their Influence on the Design of the SKA Radio Telescope Research Review Curtin Institute of Radio Astronomy 5 May 2009 ToC Parameter space Discovering phenomena ASKAP &

More information

Lunar University Network for Astrophysics Research LUNAR. Jack Burns, Director Eric Hallman, Deputy Director Doug Duncan, E/PO Lead Scientist

Lunar University Network for Astrophysics Research LUNAR. Jack Burns, Director Eric Hallman, Deputy Director Doug Duncan, E/PO Lead Scientist Lunar University Network for Astrophysics Research LUNAR Jack Burns, Director Eric Hallman, Deputy Director Doug Duncan, E/PO Lead Scientist NASA Lunar Science Institute NLSI MISSION Carrying out and supporting

More information

CURRICULUM VITAE Adam Lidz

CURRICULUM VITAE Adam Lidz CURRICULUM VITAE Adam Lidz University of Pennsylvania Department of Physics & Astronomy e-mail: alidz@sas.upenn.edu EDUCATION Columbia University Ph.D. in Physics, July 2004 M.A. in Physics, 2004 The University

More information

Apertif. Paolo Serra. Tom Oosterloo (PI) Marc Verheijen (PI) Laurens Bakker George Heald Wim van Cappellen Marianna Ivashina

Apertif. Paolo Serra. Tom Oosterloo (PI) Marc Verheijen (PI) Laurens Bakker George Heald Wim van Cappellen Marianna Ivashina Netherlands Institute for Radio Astronomy Apertif Tom Oosterloo (PI) Marc Verheijen (PI) Laurens Bakker George Heald Wim van Cappellen Marianna Ivashina ASTRON is part of the Netherlands Organisation for

More information

Measuring the dark universe. Luca Amendola University of Heidelberg

Measuring the dark universe. Luca Amendola University of Heidelberg Measuring the dark universe Luca Amendola University of Heidelberg 1 In search of the dark Searching with new probes Searching in new domains Or: a short overview of what I have been doing in the last

More information

Introduction to Interferometry

Introduction to Interferometry Introduction to Interferometry Ciro Pappalardo RadioNet has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No 730562 Radioastronomy H.Hertz

More information

Cecilia Fariña - ING Support Astronomer

Cecilia Fariña - ING Support Astronomer Cecilia Fariña - ING Support Astronomer Introduction: WHT William Herschel Telescope 2 Introduction: WHT WHT located in La Palma, Canary Islands, Spain William Herschel Telescope l 2 3 Introduction: WHT

More information

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Masato Shirasaki (Univ. of Tokyo) with Shunsaku Horiuchi (UCI), Naoki Yoshida (Univ. of Tokyo, IPMU) Extragalactic Gamma-Ray Background

More information

SKA Continuum Deep Field Surveys

SKA Continuum Deep Field Surveys SKA Continuum Deep Field Surveys Amit Vishwas April 7, 2010 The Square Kilometer Array The Next Generation Radio Telescope Spread over a long baseline ~1000 kms Large Effective Area: but only a fraction

More information

Neutral Hydrogen Gas in Star Forming Galaxies at z=0.24 Philip Lah. HI Survival Through Cosmic Times Conference

Neutral Hydrogen Gas in Star Forming Galaxies at z=0.24 Philip Lah. HI Survival Through Cosmic Times Conference Neutral Hydrogen Gas in Star Forming Galaxies at z=0.24 Philip Lah HI Survival Through Cosmic Times Conference Collaborators: Frank Briggs (ANU) Jayaram Chengalur (NCRA) Matthew Colless (AAO) Roberto De

More information

G-ALFA Continuum Transit Survey GALFACTS. E. Momjian Prepared by A.R. Taylor for the GALFA Continuum Consortium

G-ALFA Continuum Transit Survey GALFACTS. E. Momjian Prepared by A.R. Taylor for the GALFA Continuum Consortium G-ALFA Continuum Transit Survey GALFACTS E. Momjian Prepared by A.R. Taylor for the GALFA Continuum Consortium GALFA Continuum Consortium Christy Bredeson Jo-Anne Brown Mike Davis Avinash Deshpande Tyler

More information

Lessons from Low-Frequency Spectral Line Observations

Lessons from Low-Frequency Spectral Line Observations Lessons from Low-Frequency Spectral Line Observations Jeremy Darling (CASA, University of Colorado) Low Energy Excitation Case Studies: Formaldehyde absorption of the CMB HI 21 cm and OH 18 cm Line Surveys

More information

arxiv:astro-ph/ v1 8 Nov 2006

arxiv:astro-ph/ v1 8 Nov 2006 Draft version November 10, 2006 Preprint typeset using L A TEX style emulateapj v. 9/08/03 THE CROSS-CORRELATION OF HIGH-REDSHIFT 21 CM AND GALAXY SURVEYS Steven R. Furlanetto 1 & Adam Lidz 2 Draft version

More information

Forecast for Epoch-of-Reionization as viewable by the PrimevAl Structure Telescope (PAST) arxiv:astro-ph/ v1 5 Apr 2004

Forecast for Epoch-of-Reionization as viewable by the PrimevAl Structure Telescope (PAST) arxiv:astro-ph/ v1 5 Apr 2004 Chinese Journal of Astronomy and Astrophysics manuscript no. (L A TEX: past.tex; printed on April 5, 2004; 8:12) Forecast for Epoch-of-Reionization as viewable by the PrimevAl Structure Telescope (PAST)

More information

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation Bram Venemans MPIA Heidelberg Workshop The Reionization History of the Universe Bielefeld University, March 8-9 2018 History of

More information

DINGO early science with ASKAP-12

DINGO early science with ASKAP-12 DINGO early science with ASKAP-12, Martin Meyer DINGO team ASKAP early science workshop 8 October 2015 DINGO Science DINGO Early Science Evolution of HI Across Cosmic Time Use HI stacking techniques to

More information

Radio Astronomy Summer School Introduction Early History of Radio Astronomy. Tatsuhiko Hasegawa (ASIAA)

Radio Astronomy Summer School Introduction Early History of Radio Astronomy. Tatsuhiko Hasegawa (ASIAA) Radio Astronomy Summer School 2008 Introduction Early History of Radio Astronomy Tatsuhiko Hasegawa (ASIAA) 1. Radio astronomy was interferometry from the beginning. 2. Closely related to developments

More information

Foreground simulations

Foreground simulations Chapter 2 Foreground simulations Published as: Jelić V., et al., 2008, MNRAS, 389, 3, 1319 ABSTRACT Future high redshift 21-cm experiments will suffer from a high degree of contamination, due both to astrophysical

More information

CHIME/FRB. Shriharsh Tendulkar. Photo credit: Andre Recnik

CHIME/FRB. Shriharsh Tendulkar. Photo credit: Andre Recnik CHIME/FRB Shriharsh Tendulkar Photo credit: Andre Recnik Fast Radio Bursts CHIME/FRB Capabilities Current Status Recent Results Synergies 2 WHAT ARE FRBS? Very short (~ms), very bright (~Jansky), radio

More information

The Intergalactic Medium: Overview and Selected Aspects

The Intergalactic Medium: Overview and Selected Aspects The Intergalactic Medium: Overview and Selected Aspects Draft Version Tristan Dederichs June 18, 2018 Contents 1 Introduction 2 2 The IGM at high redshifts (z > 5) 2 2.1 Early Universe and Reionization......................................

More information

Confusion, the sky model and realistic simulations

Confusion, the sky model and realistic simulations Confusion, the sky model and realistic simulations Randall Wayth (CfA) with team Greenhill (Greenhill, Mitchell, Sault) team MAPS (Doeleman, Bhat) Ashes Update: England all out for 350. Australia wins

More information

21-cm Cosmology with GMRT, GBT, CRT

21-cm Cosmology with GMRT, GBT, CRT 21-cm Cosmology with GMRT, GBT, CRT Presented at Moriond Cos. By Jeff Peterson CMU 18 March 2010 CMU Cylinder Telescope Prototype Outline GMRT-EoR program Intensity Mapping Baryon Acoustic Oscillations

More information