Dancing in the dark: spotting BHS & IMBH in GC

Size: px
Start display at page:

Download "Dancing in the dark: spotting BHS & IMBH in GC"

Transcription

1 Dancing in the dark: spotting BHS & IMBH in GC ARI-ZAH, Heidelberg University Star Clusters around the Milky Way and in the Local Group Heidelberg August 15th-17th, 2018

2 Unravelling stellar black hole subsystems in Globular Clusters OUTLINE BHs modelling and observations: a timeline A hard task: defining a BH subsystem A fundamental plane for BHs Detecting GCs potentially harbouring a BH subsystem What about IMBHs? Consequences for GW astronomy I. Evolution of transient triple BHs Consequences for GW astronomy II. Signatures of dynamically formed binary BHs in the final mass and spin distribution of LIGO BHs. Consequences for GW astronomy III. Depositing compact sources in galactic halos and galactic centres. Conclusions 2

3 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS BHs modelling and observations: a timeline - BHs segregate and form an indefinitely contracting system (Spitzer instability, Spitzer 1987) - Mass function makes segregation much more complex (Vishniac 1978; Trenti & Van der Marel 2013) - BHs are all ejected from the cluster due to strong encounters (Kulkarni et al. 1993; Sigurdsson & Hernquist 1993; Portegies Zwart & McMillan 2000) - Discovery of the first BH in a binary ~100 retained BHs per GC (Maccarone et al. 2007; Strader et al. 2011; Giesers et al. 2018) - Retained BHs fraction larger than previously thought (Morscher et al. 2015; Peuten et al. 2016; Arca Sedda 2016) - How do many BHs evolve in a dense cluster? 2 mass population (Breen & Heggie 2013; Arca Sedda, Askar & Giersz 2018; Askar, Arca Sedda & Giersz 2018) 3

4 15th MGM, 2nd July 2018 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS A hard task: defining a black hole subsystem What did we use? The MOCCA SURVEY DATABASE: over 2000 Monte Carlo models of Globular clusters with different properties What did we select? Our subsample consists of GC models retaining N>10 BHs at 12 Gyr How did we define a Black Hole Subsystem (BHS)? We define the typical BHS radius as that enclosing half mass in BHs and the remaining in stars: BHS mass: BHS density: 4

5 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS A fundamental plane for BHSs L: GC total luminosity rh,ob: Half-mass observational radius mbhs: average BH mass inside the BHS 5

6 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS A fundamental plane for BHSs Propagated error: ~ 25-31% Propagated error: ~ 22-28% 6

7 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS A fundamental plane for BHSs 7

8 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS A fundamental plane for BHSs: 29 Galactic GCs harbouring BHSs How is the selection made? GC name NGC 4372 NGC6101 NGC3201 RBHS (pc) MBHS (M ) NBH Half-mass radius Central velocity dispersion Total luminosity Visual magnitude NBH in binaries 8

9 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS A fundamental plane for BHSs: 29 Galactic GCs harbouring BHSs How is the selection made? GC name NGC 4372 NGC6101 NGC3201 RBHS (pc) MBHS (M ) Half-mass radius Central velocity dispersion Total luminosity Visual magnitude NBH at e s our t talk y on e nex n i ma oy th bas e R enj Ab by and NBH in binaries 9

10 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS TAKEAWAY MESSAGE: BHs can form a system inhabiting GC inner regions with a lifetime > 12 Gyr BHs properties can be inferred from the host GC observational properties ~ 30 Galactic GCs might be harbouring ~ BHs currently, a tiny fraction in binaries 10

11 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS What about IMBHs? Defining properties through the influence radius ribh 11

12 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS What about IMBHs? Defining properties through the influence radius ribh 12

13 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS What about IMBHs? Defining properties through the influence radius ribh 13

14 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Askar, Arca Sedda & Giersz, 2018, MNRAS What about IMBHs? Defining properties through the influence radius ribh IBH heavier than 8000 M (under investigation) 14

15 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Arca Sedda, Askar & Giersz, in prep. What about IMBHs? We define a norm find the 10 closest MOCCA models for each MW GC calculate how many harbour a BHS (type 0), IMBH (type 1) or none (type 2) of them at 12 Gyr infer the GC central object from the most frequent type 15

16 16 Unravelling stellar black hole subsystems in Globular Clusters Arca Sedda, Askar & Giersz, 2018, MNRAS Arca Sedda, Askar & Giersz, in prep. What about IMBHs? GC name fnone fbhs fimbh Type Mcen % % % NGC IMBH 7.59 NGC IMBH 6.38 NGC IMBH 7.93 NGC IMBH 8.85 NGC IMBH M

17 17 What s about IMBH? Arca Sedda, Askar & Giersz, 2018, MNRAS Arca Sedda, Askar & Giersz, in prep. TAKEAWAY MESSAGE: IMBHs mass and influence radius correlate with the host GC properties Disentangling IMBHs- and BHSs-dominated GCs requires a N-parameter technique ~ 48 Galactic GCs may contain an IMBH with mass ~

18 Consequences for GW astronomy I. Evolution of transient triple BHs Why is important? Because of multi-body interactions GWs emission ~ a 0.1 e> Arca Sedda, Li and Kocsis, 2018, Arxiv: AU three-body simulations of transient (non-hierarchical) three-body systems 18

19 Consequences for GW astronomy I. Evolution of transient triple BHs Why is important? Because of multi-body interactions GWs emission ~ a 0.1 e> AU three-body simulations of transient (non-hierarchical) three-body systems Inner binary: Outer binary: ibh3<90 Prograde configurations Arca Sedda, Li and Kocsis, 2018, Arxiv: ibh3>90 Retrograde configurations 19

20 20 Consequences for GW astronomy I. Evolution of transient triple BHs Why is important? Because of multi-body interactions GWs emission Arca Sedda, Li and Kocsis, 2018, Arxiv:

21 Consequences for GW astronomy I. Evolution of transient triple BHs TAKEAWAY MESSAGE: Nuclear and dense Globular clusters - Hard BHB can shrink down to - Most likely to be ejected - Is LIGO observing BHB originating from GCs and NCs? Young and Open clusters - Shrinking efficiency smaller - Is LISA observing BHB originating in sparse star clusters? Arca Sedda, Li and Kocsis, 2018, Arxiv:

22 Consequences for GW astronomy II. Signatures of dynamically formed binary BHs in the final mass and spin distribution of LIGO BHs. Why is important? To constrain the origin of observed BHB mergers Where did they form? Old elliptical galaxy, Disk galaxy, Dwarf galaxy, Starburst environment, Globular cluster, Open cluster, Young Massive Cluster, SMBH surroundings, Nuclear Cluster (yes SMBH) Nuclear Cluster (no SMBH) And many more! Arca Sedda & Benacquista, 2018, Arxiv:

23 Consequences for GW astronomy II. Signatures of dynamically formed binary BHs in the final mass and spin distribution of LIGO BHs. Why is important? To constrain the origin of observed BHB mergers Ingredients: 1. The BHB mergers mass ratio is characterized by a flat mass distribution; 2. A small fraction of merged BHs can undergo a second merger event 3. BH natal spin and mass prescriptions 4. BH remnant spin and mass prescriptions Arca Sedda & Benacquista, 2018, Arxiv:

24 24 Consequences for GW astronomy II. Signatures of dynamically formed binary BHs in the final mass and spin distribution of LIGO BHs. Why is important? To constrain the origin of observed BHB mergers Arca Sedda & Benacquista, 2018, Arxiv:

25 Consequences for GW astronomy II. Signatures of dynamically formed binary BHs in the final mass and spin distribution of LIGO BHs. Why is important? To constrain the origin of observed BHB mergers Arca Sedda & Benacquista, 2018, Arxiv:

26 26 Consequences for GW astronomy III. Depositing compact sources in the Galactic halo and Galactic Centre. Two main processes: Dynamical friction vs. Tidal forces Tidal forces Dynamical friction

27 Consequences for GW astronomy III. Depositing compact sources in the Galactic halo and Galactic Centre. Fornax dsph 1. 5 GCs with M>105M 2. Galaxy density slope ɣ = Fornax orbit around the MW 4. GCs + Galaxy self-consistently Arca Sedda & Capuzzo-Dolcetta 2017a, 2017b, MNRAS 27

28 28 Consequences for GW astronomy III. Depositing compact sources in the Galactic halo and Galactic Centre. MW-like galaxy Arca Sedda, Kocsis & Brandt, 2018, MNRAS Arca Sedda & Gualandris 2018, MNRAS - BHs (GWs, EMRIs) - BHBs (GWs, EMRIs ) - IMBHs (GWs, IMRIs ) - MSPs (ɣ-ray excess) - CVs (X-ray excess) Arca Sedda & Capuzzo-Dolcetta 2018,

29 29 CONCLUSIONS BHs can form a system inhabiting GC inner regions with a lifetime > 12 Gyr BHs properties can be inferred from the host GC observational properties ~ 30 Galactic GCs might be harbouring ~ BHs currently, a tiny fraction in binaries IMBHs mass and influence radius correlate with the host GC properties Disentangling IMBHs- and BHSs-dominated GCs requires a N-parameter technique ~ 48 Galactic GCs may contain an IMBH with mass ~ Nuclear and dense Globular clusters Hard BHB can shrink down to Most likely to be ejected Is LIGO observing BHB originating from GCs and NCs? - Young and Open clusters Shrinking efficiency smaller Is LISA observing BHB originating in sparse star clusters? The origin (dynamical or isolated) of BHs can be inferred from LIGO observations Compact systems can be deposited in galactic centre due to dynamical friction

30 30

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations Artist impression of a stellar mass BH detected in NGC 3201 (Giesers et al. 2018)

More information

Jongsuk Hong (KIAA) MODEST /06/28. Collaborators: E. Vesperini, A. Askar, M. Giersz, M. Szkudlarek & T. Bulik

Jongsuk Hong (KIAA) MODEST /06/28. Collaborators: E. Vesperini, A. Askar, M. Giersz, M. Szkudlarek & T. Bulik Jongsuk Hong (KIAA) MODEST-18 2018/06/28 Collaborators: E. Vesperini, A. Askar, M. Giersz, M. Szkudlarek & T. Bulik Introduction Method & models BBH mergers & Host cluster properties Merger rate estimation

More information

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations Abbas Askar Carl Tryggers Postdoctoral Fellow at Lund Observatory Department

More information

Stellar-mass black holes in a globular cluster. Douglas Heggie. University of Edinburgh, UK

Stellar-mass black holes in a globular cluster. Douglas Heggie. University of Edinburgh, UK Stellar-mass black holes in a globular cluster Douglas Heggie University of Edinburgh, UK d.c.heggie@ed.ac.uk How many stellar-mass black holes do you expect to find? Example: M4 Assume: initial conditions

More information

Pulsars as probes for the existence of IMBHs

Pulsars as probes for the existence of IMBHs Universidad de Valencia 15 November 2010 Pulsars as probes for the existence of IMBHs ANDREA POSSENTI Layout Known Black Hole classes Formation scenarios for the IMBHs IMBH candidates IMBH candidates (?)

More information

Massive star clusters

Massive star clusters Massive star clusters as a host of compact binaries Michiko Fujii ( 藤井通子 ) The University of Tokyo Outline Massive star clusters and compact binaries Dynamical evolution of star clusters Distribution of

More information

Stellar-mass black holes in a globular cluster

Stellar-mass black holes in a globular cluster Stellar-mass black holes in a globular cluster Douglas Heggie University of Edinburgh, UK d.c.heggie@ed.ac.uk Motivation Discovery of two stellar-mass BH in the Galactic globular cluster M22 (Strader+

More information

Stellar Black Hole Binary Mergers in Open ClusterS

Stellar Black Hole Binary Mergers in Open ClusterS Stellar Black Hole Binary Mergers in Open ClusterS SARA RASTELLO Collaborators: P. Amaro-Seoane, M. Arca-Sedda, R. Capuzzo Dolcetta, G. Fragione, I.Tosta e Melo Modest 18, Santorini, greece 27/06/2018

More information

Formation Processes of IMBHs

Formation Processes of IMBHs Formation Processes of IMBHs Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University www.astro.lu.se Stellar mass Intermediate mass SMBH (A) (B) Runaway collisions... Runaway mergers

More information

The dynamics of neutron star and black hole binaries in young star clusters

The dynamics of neutron star and black hole binaries in young star clusters Michela Mapelli INAF-Osservatorio Astronomico di Padova The dynamics of neutron star and black hole binaries in young star clusters Collaborators: Mario Spera, Brunetto, Marica Branchesi, Alessandro Trani,

More information

Co-Evolution of Central Black Holes and Nuclear Star Clusters

Co-Evolution of Central Black Holes and Nuclear Star Clusters Co-Evolution of Central Black Holes and Nuclear Star Clusters Oleg Gnedin (University of Michigan) Globular clusters in the Galaxy median distance from the center is 5 kpc Resolved star cluster highest

More information

Forming Intermediate-Mass Black Holes in Dense Clusters Through Collisional Run-away

Forming Intermediate-Mass Black Holes in Dense Clusters Through Collisional Run-away Forming Intermediate-Mass Black Holes in Dense Clusters Through Collisional Run-away Marc Freitag ARI, Heidelberg freitag@ari.uni-heidelberg.de http://obswww.unige.ch/~freitag Collaboration with Atakan

More information

Can black holes be formed in dynamic interactions in star clusters?

Can black holes be formed in dynamic interactions in star clusters? Can black holes be formed in dynamic interactions in star clusters? Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences Warsaw, Poland mig@camk.edu.pl MODEST 14 Workshop Bad Honnef, Germany

More information

The Maxwell's demon of star clusters

The Maxwell's demon of star clusters Michela Mapelli INAF Osservatorio Astronomico di Padova 2012 FIRB fellow 2015 MERAC prize The Maxwell's demon of star clusters a.k.a. the impact of binaries on star clusters COLLABORATORS: Mario Spera,

More information

Coalescing Binary Black Holes Originating from Globular Clusters

Coalescing Binary Black Holes Originating from Globular Clusters Coalescing Binary Black Holes Originating from Globular Clusters Abbas Askar (askar@camk.edu.pl) Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland Abbas Askar Globular

More information

Monte Carlo Models of Dense Star Clusters

Monte Carlo Models of Dense Star Clusters Monte Carlo Models of Dense Star Clusters Sourav Chatterjee MODEST 18, Firá, Santorini June 26, 2018 Hénon-type Monte Carlo N-body model spread all masses in spherical shells (E, J) 2-body relaxation approximate

More information

Stellar mass black holes in young massive and open clusters and their role in gravitational-wave generation

Stellar mass black holes in young massive and open clusters and their role in gravitational-wave generation Stellar mass black holes in young massive and open clusters and their role in gravitational-wave generation Sambaran Banerjee Argelander-Institut für Astronomie (AIfA) and Helmholtz-Instituts für Strahlen-

More information

Distinguishing source populations. with LIGO/VIRGO

Distinguishing source populations. with LIGO/VIRGO Modest18, Santorini, Greece, June 27, 2018 Distinguishing source populations Bence Kocsis Eotvos University with LIGO/VIRGO GALNUC team members postdoc: Yohai Meiron, Alexander Rasskazov, Hiromichi Tagawa

More information

Inverting the dynamical evolution problem of globular clusters: clues to their origin

Inverting the dynamical evolution problem of globular clusters: clues to their origin Inverting the dynamical evolution problem of globular clusters: clues to their origin Mark Gieles Poul Alexander (Cambridge), Douglas Heggie (Edinburgh) Alice Zocchi, Miklos Peuten, Vincent Hénault-Brunet

More information

Prospects for observing dynamically formed stellar mass black hole binaries with gravitational waves

Prospects for observing dynamically formed stellar mass black hole binaries with gravitational waves Prospects for observing dynamically formed stellar mass black hole binaries with gravitational waves M. Benacquista Jesus Hinojosa Alberto Mata Sam Finn Chris Belczynski Dong Ming Jin Jonathan Downing

More information

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II AST4320 - Cosmology and extragalactic astronomy Lecture 20 Black Holes Part II 1 AST4320 - Cosmology and extragalactic astronomy Outline: Black Holes Part II Gas accretion disks around black holes, and

More information

Dynamical Models of the Globular Clusters M4 and NGC 6397

Dynamical Models of the Globular Clusters M4 and NGC 6397 Dynamical Models of the Globular Clusters M4 and NGC 6397 Douglas Heggie University of Edinburgh d.c.heggie@ed.ac.uk in collaboration with Mirek Giersz CAMK, Warsaw, Poland Outline Introduction: M4 and

More information

arxiv:astro-ph/ v2 15 Jan 2007

arxiv:astro-ph/ v2 15 Jan 2007 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 16 January 2007 (MN LATEX style file v2.2) A hypervelocity star from the Large Magellanic Cloud Alessia Gualandris 1 and Simon Portegies Zwart 1 1

More information

Evolution of second generation stars in stellar disks of globular and nuclear clusters: ω Centauri as a test case

Evolution of second generation stars in stellar disks of globular and nuclear clusters: ω Centauri as a test case Evolution of second generation stars in stellar disks of globular and nuclear clusters: ω Centauri as a test case Alessandra Mastrobuono-Battisti & Hagai Perets Outline Dense stellar clusters: Nuclear

More information

The physical origin of stellar envelopes around globular clusters

The physical origin of stellar envelopes around globular clusters The physical origin of stellar envelopes around globular clusters Phil Breen University of Edinburgh in collaboration with A. L. Varri, J. Peñarrubia and D. C. Heggie Current observational evidence Example:

More information

arxiv: v1 [astro-ph.ga] 7 Aug 2018

arxiv: v1 [astro-ph.ga] 7 Aug 2018 Draft version August 8, 2018 Typeset using LATEX twocolumn style in AASTeX61 HOW INITIAL SIZE GOVERNS CORE COLLAPSE IN GLOBULAR CLUSTERS Kyle Kremer, 1, 2 Sourav Chatterjee, 3, 2 Claire S. Ye, 1, 2 Carl

More information

Monte Carlo Modelling of Globular Clusters

Monte Carlo Modelling of Globular Clusters Monte Carlo Modelling of Globular Clusters Douglas Heggie University of Edinburgh d.c.heggie@ed.ac.uk Collaboration with Mirek Giersz (Warsaw) The globular cluster M4 Distance from sun Mass Core radius

More information

Spiral Structure. m ( Ω Ω gp ) = n κ. Closed orbits in non-inertial frames can explain the spiral pattern

Spiral Structure. m ( Ω Ω gp ) = n κ. Closed orbits in non-inertial frames can explain the spiral pattern Spiral Structure In the mid-1960s Lin and Shu proposed that the spiral structure is caused by long-lived quasistatic density waves The density would be higher by about 10% to 20% Stars, dust and gas clouds

More information

New Scenario for IMBH Formation in Globular Clusters - Recent Developm. Observational Imprints

New Scenario for IMBH Formation in Globular Clusters - Recent Developm. Observational Imprints New Scenario for IMBH Formation in Globular Clusters - Recent Developments and Observational Imprints Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences Warsaw, Poland mig@camk.edu.pl

More information

Dynamics of Stars and Black Holes in Dense Stellar Systems:

Dynamics of Stars and Black Holes in Dense Stellar Systems: Michela Mapelli INAF - Padova Dynamics of Stars and Black Holes in Dense Stellar Systems: Lecture VI: DYNAMICS AROUND SUPER-MASSIVE BHs 0. nuclear star clusters (NSCs) 1. dynamics around super-massive

More information

Dynamics of Stars and Black Holes in Dense Stellar Systems:

Dynamics of Stars and Black Holes in Dense Stellar Systems: Michela Mapelli INAF - Padova Dynamics of Stars and Black Holes in Dense Stellar Systems: Lecture V: STELLAR & INTERMEDIATE-MASS BLACK HOLES 0. stellar black holes (BHs) from star evolution 1. BHs as members

More information

Dynamical friction, galaxy merging, and radial-orbit instability in MOND

Dynamical friction, galaxy merging, and radial-orbit instability in MOND Dynamical friction, galaxy merging, and radial-orbit instability in MOND Carlo Nipoti Dipartimento di Astronomia Università di Bologna Strasbourg, 29 June 2010 Outline MOND and Equivalent Newtonian Systems

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

Gravitational waves from Massive Primordial Black Holes as Dark Matter

Gravitational waves from Massive Primordial Black Holes as Dark Matter Gravitational waves from Massive Primordial Black Holes as Dark Matter based on S. Clesse & JGB, arxiv:1603.05234 S. Clesse & JGB, Phys Rev D92 (2015) 023524 JGB, Linde & Wands, Phys Rev D54 (1996) 6040

More information

Evolution of SMBH-SMBH and SMBH-IMBH Binaries: Effect of Large Mass Ratio

Evolution of SMBH-SMBH and SMBH-IMBH Binaries: Effect of Large Mass Ratio Evolution of SMBH-SMBH and SMBH-IMBH Binaries: Effect of Large Mass Ratio Jun Makino Center for Computational Astrophysics and Division Theoretical Astronomy National Astronomical Observatory of Japan

More information

2 Ivanova, Fregeau, & Rasio

2 Ivanova, Fregeau, & Rasio 2 Ivanova, Fregeau, & Rasio Figure 1. Orbital period vs companion mass for all observed binary MSPs in the galactic field (open circles), in 47 Tuc (solid squares) and in other globular clusters (solid

More information

Open problems in compact object dynamics

Open problems in compact object dynamics Open problems in compact object dynamics Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University www.astro.lu.se Key ideas and open questions in compact object dynamics Melvyn

More information

Dynamics of Stars and Black Holes in Dense Stellar Systems:

Dynamics of Stars and Black Holes in Dense Stellar Systems: Michela Mapelli INAF - Padova Dynamics of Stars and Black Holes in Dense Stellar Systems: Lecture IV: Dynamical processes induced by mass spectrum 0. EFFECTS OF MASS SPECTRUM 1. MASS SEGREGATION 2. EQUIPARTITION

More information

Searching for intermediate-mass black holes in Galactic globular clusters

Searching for intermediate-mass black holes in Galactic globular clusters Searching for intermediate-mass black holes in Galactic globular clusters BARBARA LANZONI Physics & Astronomy Department University of Bologna (Italy) 5-year project Advanced Research Grant funded by the

More information

The formation and evolution of globular cluster systems. Joel Pfeffer, Nate Bastian (Liverpool, LJMU)

The formation and evolution of globular cluster systems. Joel Pfeffer, Nate Bastian (Liverpool, LJMU) The formation and evolution of globular cluster systems Joel Pfeffer, Nate Bastian (Liverpool, LJMU) Introduction to stellar clusters Open clusters: few - 10 4 M few Myr - few Gyr solar metallicity disk

More information

The Impact of Stellar Collisions in the Galactic Centre

The Impact of Stellar Collisions in the Galactic Centre The Impact of Stellar Collisions in the Galactic Centre Melvyn B. Davies Lund Observatory Ross Church, Serge Nzoke, James Dale, Daniel Malmberg, Marc Freitag The Galactic Centre (Genzel et al 2003) The

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

Simulating the mass assembly history of Nuclear Star Clusters

Simulating the mass assembly history of Nuclear Star Clusters Simulating the mass assembly history of Nuclear Star Clusters The imprints of cluster inspirals Alessandra Mastrobuono-Battisti Sassa Tsatsi Hagai Perets Nadine Neumayer Glenn vad de Ven Ryan Leyman David

More information

The Star Clusters of the Magellanic Clouds

The Star Clusters of the Magellanic Clouds The Dance of Stars MODEST-14 The Star Clusters of the Magellanic Clouds Eva K. Grebel Astronomisches Rechen-Institut Zentrum für Astronomie der Universität Heidelberg Star Clusters in the Magellanic Clouds!

More information

Searching for signs of IMBH astrometric microlensing in M 22

Searching for signs of IMBH astrometric microlensing in M 22 Searching for signs of IMBH astrometric microlensing in M 22 Noé Kains (STScI) with Jay Anderson, Annalisa Calamida, Kailash Sahu Stefano Casertano, Dan Bramich Intermediate-mass black holes (IMBH) Supermassive

More information

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Motohiro ENOKI (National Astronomical Observatory of Japan) Kaiki Taro INOUE (Kinki University) Masahiro NAGASHIMA

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

FORMATION OF MASSIVE BLACK HOLES IN DENSE STAR CLUSTERS. I. MASS SEGREGATION AND CORE COLLAPSE

FORMATION OF MASSIVE BLACK HOLES IN DENSE STAR CLUSTERS. I. MASS SEGREGATION AND CORE COLLAPSE The Astrophysical Journal, 604:632-652, 2004 April 1 Preprint typeset using L A TEX style emulateapj v. 5/14/03 FORMATION OF MASSIVE BLACK HOLES IN DENSE STAR CLUSTERS. I. MASS SEGREGATION AND CORE COLLAPSE

More information

Scaling Correlations Among Central Massive Objects and Their Host Galaxies

Scaling Correlations Among Central Massive Objects and Their Host Galaxies Scaling Correlations Among Central Massive Objects and Their Host Galaxies I. Tosta e Melo 1, R. Capuzzo-Dolcetta 1, 1 Sapienza-Università di Roma, P.le A. Moro 5, I-00185 Roma, Italy E-mail: iara.tosta.melo@gmail.com

More information

Is NGC 6752 Hosting a Single or a Binary Black Hole?

Is NGC 6752 Hosting a Single or a Binary Black Hole? arxiv:astro-ph/0302545v1 26 Feb 2003 Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies, 2003 ed. L. C. Ho (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium1/proceedings.html)

More information

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

More information

Three Major Components

Three Major Components The Milky Way Three Major Components Bulge young and old stars Disk young stars located in spiral arms Halo oldest stars and globular clusters Components are chemically, kinematically, and spatially distinct

More information

Astrophysics with LISA

Astrophysics with LISA Astrophysics with LISA Alberto Vecchio University of Birmingham UK 5 th LISA Symposium ESTEC, 12 th 15 th July 2004 LISA: GW telescope LISA is an all-sky monitor: All sky surveys are for free Pointing

More information

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium Galaxies and the Universe Our Galaxy - The Milky Way The Interstellar Medium Our view of the Milky Way The Radio Sky COBE Image of our Galaxy The Milky Way Galaxy - The Galaxy By Visual Observation

More information

arxiv: v2 [astro-ph.ga] 17 Jan 2019

arxiv: v2 [astro-ph.ga] 17 Jan 2019 Mon. ot. R. Astron. Soc. 000, 000 000 (0000) Printed 18 January 2019 (M LATEX style file v2.2) arxiv:1905063v2 [astro-ph.ga] 17 Jan 2019 Intermediate-Mass Black Holes in binary-rich star clusters Ladislav

More information

Lack of nuclear clusters in dwarf spheroidal galaxies: implications for massive black holes formation and the cusp/core problem

Lack of nuclear clusters in dwarf spheroidal galaxies: implications for massive black holes formation and the cusp/core problem Advance Access publication 2016 September 30 doi:10.1093/mnras/stw2483 Lack of nuclear clusters in dwarf spheroidal galaxies: implications for massive black holes formation and the cusp/core problem Manuel

More information

Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

More information

Overview of Dynamical Modeling. Glenn van de Ven

Overview of Dynamical Modeling. Glenn van de Ven Overview of Dynamical Modeling Glenn van de Ven glenn@mpia.de 1 Why dynamical modeling? -- mass total mass stellar systems key is to their evolution compare luminous mass: constrain DM and/or IMF DM radial

More information

Dual and Binary MBHs and AGN: Connecting Dynamics and Accretion

Dual and Binary MBHs and AGN: Connecting Dynamics and Accretion Dual and Binary MBHs and AGN: Connecting Dynamics and Accretion Sandor Van Wassenhove Marta Volonteri Lucio Mayer Jillian Bellovary Massimo Dotti Simone Callegari BH-Galaxy Coevolution Black holes found

More information

The effect of primordial mass segregation on the size scale of the star clusters

The effect of primordial mass segregation on the size scale of the star clusters The effect of primordial mass segregation on the size scale of the star clusters Hosein Haghi In collaboration with: HoseiniRad, Zonoozi, Kuepper Institute for Advanced Studies in Basic Sciences (IASBS),Zanjan

More information

Distance Measuring Techniques and The Milky Way Galaxy

Distance Measuring Techniques and The Milky Way Galaxy Distance Measuring Techniques and The Milky Way Galaxy Measuring distances to stars is one of the biggest challenges in Astronomy. If we had some standard candle, some star with a known luminosity, then

More information

Modelling individual globular clusters An Update

Modelling individual globular clusters An Update Modelling individual globular clusters An Update Douglas Heggie University of Edinburgh d.c.heggie@ed.ac.uk Outline 1. Introduction: two kinds of model two kinds of star cluster 2. Monte Carlo models M4

More information

Active Galactic Nuclei-I. The paradigm

Active Galactic Nuclei-I. The paradigm Active Galactic Nuclei-I The paradigm An accretion disk around a supermassive black hole M. Almudena Prieto, July 2007, Unv. Nacional de Bogota Centers of galaxies Centers of galaxies are the most powerful

More information

Using Globular Clusters to. Study Elliptical Galaxies. The View Isn t Bad... Omega Centauri. Terry Bridges Australian Gemini Office M13

Using Globular Clusters to. Study Elliptical Galaxies. The View Isn t Bad... Omega Centauri. Terry Bridges Australian Gemini Office M13 Using Globular Clusters to Omega Centauri Study Elliptical Galaxies Terry Bridges Australian Gemini Office 10,000 1,000,000 stars up to 1000 stars/pc3 typical sizes ~10 parsec Mike Beasley (IAC, Tenerife)

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

The Milky Way nuclear star cluster: theoretical perspective. Structure Formation Evolution. Eugene Vasiliev

The Milky Way nuclear star cluster: theoretical perspective. Structure Formation Evolution. Eugene Vasiliev The Milky Way nuclear star cluster: theoretical perspective Structure Formation Evolution Eugene Vasiliev Institute of Astronomy, Cambridge Survival of dense star clusters in the Milky Way system Heidelberg,

More information

Probing Cosmology and measuring the peculiar acceleration of binary black holes with LISA

Probing Cosmology and measuring the peculiar acceleration of binary black holes with LISA Probing Cosmology and measuring the peculiar acceleration of binary black holes with LISA Institut de Physique Théorique CEA-Saclay CNRS Université Paris-Saclay Probing cosmology with LISA Based on: Tamanini,

More information

A RADIO SEARCH FOR BLACK HOLES IN THE MILKY WAY GLOBULAR CLUSTER M10

A RADIO SEARCH FOR BLACK HOLES IN THE MILKY WAY GLOBULAR CLUSTER M10 (nrao/aui) LAURA SHISHKOVSKY, J. STRADER, L. CHOMIUK, L. TREMOU (MSU), J. MILLER-JONES, V. TUDOR (CURTIN), T. MACCARONE (TEXAS TECH), G. SIVAKOFF, C. HEINKE (U. ALBERTA) A RADIO SEARCH FOR BLACK HOLES

More information

Galaxy interaction and transformation

Galaxy interaction and transformation Galaxy interaction and transformation Houjun Mo April 13, 2004 A lot of mergers expected in hierarchical models. The main issues: The phenomena of galaxy interaction: tidal tails, mergers, starbursts When

More information

Supermassive Black Hole Formation in Galactic Nuclei

Supermassive Black Hole Formation in Galactic Nuclei Supermassive Black Hole Formation in Galactic Nuclei Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University Ross Church (Lund), Cole Miller (Maryland), Serge Nzoke (Lund), Jillian

More information

Quasi-stars and the Cosmic Evolution of Massive Black Holes

Quasi-stars and the Cosmic Evolution of Massive Black Holes Quasi-stars and the Cosmic Evolution of Massive Black Holes Marta Volonteri and Mitchell C. Begelman 2010 MNRAS 409:1022 David Riethmiller January 26, 2011 Outline Two different methods for MBH formation:

More information

Collisions and Close Encounters within Globular Clusters

Collisions and Close Encounters within Globular Clusters Collisions and Close Encounters within Globular Clusters Prof. Melvyn B. Davies Lund Observatory Dept Astronomy and Theoretical Physics Lund University Lecture 3 Production of stellar exotica Cataclysmic

More information

Astronomy 114. Lecture 29: Internal Properties of Galaxies. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 29: Internal Properties of Galaxies. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 29: Internal Properties of Galaxies Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 29 20 Apr 2007 Read: Ch. 26 Astronomy 114 1/16 Announcements

More information

Numerical Cosmology & Galaxy Formation

Numerical Cosmology & Galaxy Formation Numerical Cosmology & Galaxy Formation Lecture 13: Example simulations Isolated galaxies, mergers & zooms Benjamin Moster 1 Outline of the lecture course Lecture 1: Motivation & Historical Overview Lecture

More information

Peculiar (Interacting) Galaxies

Peculiar (Interacting) Galaxies Peculiar (Interacting) Galaxies Not all galaxies fall on the Hubble sequence: many are peculiar! In 1966, Arp created an Atlas of Peculiar Galaxies based on pictures from the Palomar Sky Survey. In 1982,

More information

Accretion in Binaries

Accretion in Binaries Accretion in Binaries Two paths for accretion Roche-lobe overflow Wind-fed accretion Classes of X-ray binaries Low-mass (BH and NS) High-mass (BH and NS) X-ray pulsars (NS) Be/X-ray binaries (NS) Roche

More information

AGN in hierarchical galaxy formation models

AGN in hierarchical galaxy formation models AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Physics of Galactic Nuclei, Ringberg Castle, June 18, 2009 Outline Brief introduction

More information

Major Review: A very dense article" Dawes Review 4: Spiral Structures in Disc Galaxies; C. Dobbs and J Baba arxiv "

Major Review: A very dense article Dawes Review 4: Spiral Structures in Disc Galaxies; C. Dobbs and J Baba arxiv The Components of a Spiral Galaxy-a Bit of a Review- See MBW chap 11! we have discussed this in the context of the Milky Way" Disks:" Rotationally supported, lots of gas, dust, star formation occurs in

More information

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution Chap.3 The nature of Galactic components Overview of (old) Galactic components bulge, thick disk, metal-weak halo Globular clusters metallicity & age distribution Satellite galaxies spatial and metallicity

More information

Supermassive Black Holes

Supermassive Black Holes Supermassive Black Holes Leiden, Modern Research: Galaxy Formation and Evolution Tom van Leth & Maarten van Dijk November 25, 2005 1 Introduction Introduction Black hole theory Characteristics of SMBH

More information

Astronomy C. Captains Tryouts Raleigh Charter High School. Written by anna1234. Name: Instructions:

Astronomy C. Captains Tryouts Raleigh Charter High School. Written by anna1234. Name: Instructions: Total Score: / 84 Astronomy C Captains Tryouts 2019 Raleigh Charter High School Written by anna1234 Name: 1. These constants will be used throughout the test: Instructions: a. 1 Parsec = 3.1 x 10 16 meters

More information

Chapter 15 The Milky Way Galaxy. The Milky Way

Chapter 15 The Milky Way Galaxy. The Milky Way Chapter 15 The Milky Way Galaxy The Milky Way Almost everything we see in the night sky belongs to the Milky Way We see most of the Milky Way as a faint band of light across the sky From the outside, our

More information

Massive Stellar Black Hole Binaries and Gravitational Waves

Massive Stellar Black Hole Binaries and Gravitational Waves BH-BH binaries: modeling Massive Stellar Black Hole Binaries and Gravitational Waves Chris Belczynski1 Tomek Bulik1 Daniel Holz Richard O Shaughnessy Wojciech Gladysz1 and Grzegorz Wiktorowicz1 1 Astronomical

More information

Galaxies. Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations

Galaxies. Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations Galaxies Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations Cepheids in M31 Up to 1920s, the Milky Way was thought by

More information

The Milky Way Galaxy

The Milky Way Galaxy 1/5/011 The Milky Way Galaxy Distribution of Globular Clusters around a Point in Sagittarius About 00 globular clusters are distributed in random directions around the center of our galaxy. 1 1/5/011 Structure

More information

Black Holes in Globular Clusters

Black Holes in Globular Clusters Black Holes in Globular Clusters Douglas Heggie University of Edinburgh d.c.heggie@ed.ac.uk Papers on black holes and globular clusters Spot the odd man out Cen M15 www.jb.man.ac.uk The pioneer phase:

More information

arxiv: v1 [astro-ph.ga] 25 Oct 2009

arxiv: v1 [astro-ph.ga] 25 Oct 2009 **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, c **YEAR OF PUBLICATION** **NAMES OF EDITORS** The Mass-to-Light Ratios of Galactic Globular Clusters arxiv:0910.4773v1 [astro-ph.ga] 25 Oct 2009

More information

Comparing a Supergiant to the Sun

Comparing a Supergiant to the Sun The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

More information

The origin of the coalescing compact object binaries

The origin of the coalescing compact object binaries The origin of the coalescing compact object binaries Tomek Bulik (University of Warsaw) with K.Belczynski, D.Holz, R.O'Shaughnessy, T.Ryu, E.Berti, C.Fryer, T.Klencki, W.Gladysz, M.Chruslinska, M. Giersz,

More information

Astronomy. Stellar Evolution

Astronomy. Stellar Evolution Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Stellar Evolution Main Sequence star changes during nuclear fusion What happens when the fuel runs out Old stars and second

More information

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath Review: Creating Stellar Remnants Binaries may be destroyed in white dwarf supernova Binaries be converted into black holes Review: Stellar

More information

The Classification of Galaxies

The Classification of Galaxies Admin. 11/9/17 1. Class website http://www.astro.ufl.edu/~jt/teaching/ast1002/ 2. Optional Discussion sections: Tue. ~11.30am (period 5), Bryant 3; Thur. ~12.30pm (end of period 5 and period 6), start

More information

Stellar collisions and their products

Stellar collisions and their products Stellar collisions and their products Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University www.astro.lu.se KEY IDEA #1 Collision rate depends on V. Stellar encounter timescales

More information

In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes

In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes Stellar velocity fields MW Distant galaxies Gas motions gas disks around nearby black holes

More information

The Evolution of Stellar Triples

The Evolution of Stellar Triples The Evolution of Stellar Triples Silvia Toonen toonen@uva.nl Simon Portegies Zwart, Tjarda Boekholt, Adrian Hamers, Hagai Perets, Fabio Antonini Triple evolution Isolated Hierarchical Stellar triples:

More information

Compact Binaries as Gravitational-Wave Sources

Compact Binaries as Gravitational-Wave Sources Compact Binaries as Gravitational-Wave Sources Chunglee Kim Lund Observatory Extreme Astrophysics for All 10 February, 2009 Outline Introduction Double-neutron-star systems = NS-NS binaries Neutron star

More information

Veilleux! see MBW ! 23! 24!

Veilleux! see MBW ! 23! 24! Veilleux! see MBW 10.4.3! 23! 24! MBW pg 488-491! 25! But simple closed-box model works well for bulge of Milky Way! Outflow and/or accretion is needed to explain!!!metallicity distribution of stars in

More information

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 25 Astronomy Today 7th Edition Chaisson/McMillan Chapter 25 Galaxies and Dark Matter Units of Chapter 25 25.1 Dark Matter in the Universe 25.2 Galaxy Collisions 25.3 Galaxy Formation

More information

ASTR 101 Introduction to Astronomy: Stars & Galaxies

ASTR 101 Introduction to Astronomy: Stars & Galaxies We observe star-gas-star cycle operating in Milky Way s disk using many different wavelengths of light! ASTR 101 Introduction to Astronomy: Stars & Galaxies Infrared light reveals stars whose visible light

More information

Chapter 25: Galaxy Clusters and the Structure of the Universe

Chapter 25: Galaxy Clusters and the Structure of the Universe Chapter 25: Galaxy Clusters and the Structure of the Universe Distribution of galaxies Evolution of galaxies Study of distant galaxies Distance derived from redshift Hubble s constant age of the Universe:

More information