Trends in Intracluster Metallicity

Size: px
Start display at page:

Download "Trends in Intracluster Metallicity"

Transcription

1 Trends in Intracluster Metallicity

2 The Right Answer ICM metallicity is ~0.3 solar with a negative gradient within ~0.15 R180, as measured from Fe K lines M Fe M gas Leccardi & Molendi (2008) (For AG89 ZFe)

3 Surface Brightness Bias Be aware that ICM abundance measurements are brightness weighted Leccardi & Molendi (2008)

4 Surface Brightness Bias Most photons come from < 20% of the gas Core metallicity is overweighted in single-aperture metallicity measurements Leccardi & Molendi (2008)

5 Surface Brightness Bias Most photons come from < 20% of the gas Metals in 30-50% of ICM remain unobserved Metallicity is measured in only ~50% of the ICM Leccardi & Molendi (2008)

6 Overall ICM Metallicity

7 ICM Metallicity Made Simple f M M b 0.13 f esc M Fe,esc M Fe Z ICM Z = f escm Fe (1 f )M b f M b (1 f esc )M Fe

8 ICM Metallicity Made Simple f M M b 0.13 f esc M Fe,esc M Fe Z ICM Z = f escm Fe (1 f )M b f M b (1 f esc )M Fe

9 ICM Metallicity Made Simple f M M b 0.13 f esc M Fe,esc M Fe Z ICM Z = f escm Fe (1 f )M b f M b (1 f esc )M Fe f esc = [ Z Z ICM ] 1 f f 3

10 Iron Production by Stars M Fe,SnII M,IMF M Fe,SnIa M,IMF f Fe M Fe M,IMF Salpeter IMF yields from Portinari et al. (2004)

11 Iron Escape from Salpeter IMF M,IMF M,now 1.6 M Fe M,now M Fe, M Fe M,now M,now =0.46 f esc,fe =1 M Fe, M Fe 0.54

12 Iron Escape from Salpeter IMF M,IMF M,now 1.6 M Fe M,now M Fe, M Fe M,now M,now =0.46 f esc,fe =1 M Fe, M Fe 0.54 Similar to escape fraction implied by ICM enrichment

13 Prompt vs. Gradual Escape f esc = f prompt + f evol Escapes before being locked into long-lived stars Can escape after being released by stellar winds, PN, etc.

14 Prompt vs. Gradual Escape f esc = f prompt + f evol f evol f esc f esc Metals now in stars * 0.6/1.6 divided by all metals that that have escaped

15 Prompt vs. Gradual Escape f esc = f prompt + f evol f evol f esc f esc Significant fraction of metals originally locked into stars can escape via normal stellar mass loss (see e.g. Loewenstein 2006)

16 Metal Ejection

17 Galactic Winds What can ICM metallicity tell us about winds from galaxies at early times?

18 Stripped Gas How much of the ICM metallicity comes from ram pressure stripping of galactic gas? ESO in Abell 3627 Sun et al. (2008) Blue = X ray gas Red = H

19 Metal Ejection Mechanisms Galactic Winds rapid, occurring on starburst timescale environment independent Ram Pressure Stripping slow, occurring on infall timescale environment dependent more effective in massive systems

20 Galaxy Metallicity

21 Galaxy Metallicities: Cluster vs. Field Cluster galaxies and field galaxies share virtually the same massmetallicity relation Ellison et al. (2009) Suggestive that ejection of a galaxyʼs metals is not environment dependent

22 Galaxy Metallicities: Cluster vs. Field Galaxies with neighbors tend to have slightly greater gas-phase abundances, regardless of large-scale environment Ellison et al. (2009)

23 /Fe

24 Metallicity & Halo Mass

25 Abundance and Halo Mass Lower mass halos appear to have greater ICM metallicity, at least below ~ 5 kev Is star-formation efficiency greater in lower mass halos? Data from Snowden et al. (2008)

26 Abundance and Halo Mass Lower mass halos appear to have greater ICM metallicity, at least below ~ 5 kev Metallicity at ~0.1 R500 Is star-formation efficiency greater in lower mass halos? Data from Snowden et al. (2008)

27 Dependence of f gas on T Gas fraction in groups is depressed in groups within r 2500 but similar to clusters outside of that radius (Sun et al. 2009)

28 Group Metallicity Gradients Group metallicities are ~0.3 solar where most of the gas mass is Data from Sun et al. (2009)

29 Redshift Evolution

30 Abundance Evolution: I Modest apparent increase in ICM metallicity Significant increase since z ~ 0.5 Balestra et al. (2007)

31 Abundance Evolution: I Result does not appear to depend on prominence of the core Balestra et al. (2007)

32 Abundance Evolution: II Modest apparent increase in ICM metallicity No evolution after z ~ 0.5 Some surfacebrightness bias Maughan et al. (2008)

33 Abundance Evolution Model Assuming that cluster SNe track the globally averaged supernova rate leads to moderate evolution similar to the observed evolution Ettori (2005)

34 Metallicity Gradients

35 Entropy, Metallicity, & Buoyancy 10 3 Cavagnolo et al. (2009) 233 clusters 14.5 Buoyancy in the ICM tends to sort gas according to specific 11.0 entropy K [kev cm 2 ] K = kt n 2/3 e R [kpc] Buoyancy acts to preserve entropymetallicity correlations against mixing

36 Cool Cores & the Fe Gradient Clusters with short central cooling times (filled circles) clearly have core Fe gradients DeGrandi et al. (2004)... but flat central density profiles in clusters without cool cores may be concealing their Fe gradients

37 Production by the BCG Total amount of excess Fe in the core is consistent with in situ production by SN Ia in the BCG DeGrandi et al. (2004)

38 BCG Dominates Core Starlight Perseus Cluster Brightest cluster galaxy contains most of a clusterʼs stars at <100 kpc from the center Rebusco et al. (2005)

39 Iron Injection Profile Gradient of in situ metal ejection is much steeper than observed Fe gradient Rebusco et al. (2005)

40 Turbulent Diffusion Turbulence can produce observed gradient for D cm2 s 1 Limits on turbulent velocity imply eddy scale L 1 10 kpc Rebusco et al. (2005, 2006), David & Nulsen (2009)

41 AGN Metal Transport Chandra Metallicity in Hydra A is enhanced along the radio outflow axis to ~100 kpc scales 50 kpc Fe/H ~ Fe/H ~ 0.7 Kirkpatrick et al. (2009)

42 Fate of the Stripped Gas Stripped gas generally has lower specific entropy than the ambient medium and will sink Eventual location of stripped elements depends on mixing ESO in Abell 3627 Sun et al. (2008)

43 Ram Pressure Stripping X-ray tail of ESO is straight for ~70 kpc heat conduction into tail is highly suppressed little evidence for turbulent mixing Sun et al. (2007)

44 Simulations of Stripped Gas Simulations suggest that ram pressure stripping should be a more turbulent process than observed in ESO Roediger & Bruggen (2007) Is ICM more viscous than assumed in simulations?

45 Sinking of Stripped Gas z = 1.0 z = 0.5 z = 0.3 z = 0.2 z = 0.1 z = 0.0 Fe/H: Cora (2006)

46 Sinking of Stripped Gas Metallicity gradient produced by stripped gas continues to decline outside of core N.B.: Metal injection is assumed to be distributed like gas mass associated with galaxyʼs halo Cora (2006), see OWLS also

47 Buoyancy of SN Ia Ejecta Simple Sedov argument implies K ej 10K amb for SN Ia ejecta shocking against ICM gas Tang et al. (2009)

48 Buoyancy of SN Ia Ejecta Simple Sedov argument implies K ej 10K amb for SN Ia ejecta shocking against ICM gas Tang et al. (2009)

49 Buoyancy of SN Ia Ejecta Simple Sedov argument implies K ej 10K amb for SN Ia ejecta shocking against ICM gas Buoyancy alone could spread the central Fe gradient Tang et al. (2009)

50 Flattening at Large Radii Flat gradient at large radii suggests that most metals were originally ejected in a high-entropy state (winds, not stripping) Leccardi & Molendi (2008)

51 Feedback & Metallicity Gradients Outer metallicity profile of simulated clusters is indeed sensitive to the nature of galactic winds at early times Fabjan et al. poster

52 Answers ICM metallicity indicates fej ~ Evidence for non-salpeter IMF not compelling Apparent mass-metallicity trend due largely to gas deficit in core Observed Fe metallicity evolution consistent with production by Sn Ia AGN outflows can assist metal transport

53 Questions What is metallicity of gas at > 0.5 R500 and its gradient? Do metallicity gradients inform us about winds during formation of massive ellipticals? Do AGN outflows play a role in metal ejection? How are SNIa ejecta incorporated into ICM? How should we model mixing and viscosity in the ICM?

54

Galaxy groups: X-ray scaling relations, cool cores and radio AGN

Galaxy groups: X-ray scaling relations, cool cores and radio AGN Galaxy groups: X-ray scaling relations, cool cores and radio AGN Ming Sun (UVA) (M. Voit, W. Forman, P. Nulsen, M. Donahue, C. Jones, A. Vikhlinin, C. Sarazin ) Outline: 1) Scaling relations and baryon

More information

Cluster Thermodynamics: Entropy

Cluster Thermodynamics: Entropy Cluster Thermodynamics: Entropy Intracluster Entropy K = Pρ -5/3 Tn e -2/3 (kev cm 2 ) Entropy distribution in ICM determines a cluster s equilibrium structure Entropy distribution retains information

More information

Metals in clusters of galaxies observed with Suzaku and XMM- Newton

Metals in clusters of galaxies observed with Suzaku and XMM- Newton Metals in clusters of galaxies observed with Suzaku and XMM- Newton Kyoko Matsushita, K. Sato, T. Sato, E. Sakuma, T. Sasaki Radial profiles of metals outside cool cores Abundance pabern of O, Mg, Si,

More information

Modeling Fe Enrichment in Galaxy Clusters. Jon Oiler AST 591 2/7/2008

Modeling Fe Enrichment in Galaxy Clusters. Jon Oiler AST 591 2/7/2008 Modeling Fe Enrichment in Galaxy Clusters Jon Oiler AST 591 2/7/2008 Outline Background to the problem Initial modeling equations (Standard Model) Results from the model Changes to the model to match ICM

More information

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Galactic Winds: Mathews, W. et al. 1971 Effects of Supernovae on the Early Evolution of Galaxies: Larson, R. 1974 The origin

More information

Feedback in Galaxy Clusters

Feedback in Galaxy Clusters Feedback in Galaxy Clusters Brian Morsony University of Maryland 1 Not talking about Galaxy-scale feedback Local accretion disk feedback 2 Outline Galaxy cluster properties Cooling flows the need for feedback

More information

Where are oxygen synthesized in stars?

Where are oxygen synthesized in stars? The oxygen abundance from X-rays : methods and prospects K. Matsushita Where are oxygen synthesized in stars? Hot intracluster medium (ICM) Warm-hot intergalactic medium? Hot interstellar medium in early-type

More information

Embedded Spiral Patterns in the massive galaxy cluster Abell 1835

Embedded Spiral Patterns in the massive galaxy cluster Abell 1835 2017/06/08 X-ray Universe @ Rome Embedded Spiral Patterns in the massive galaxy cluster Abell 1835 Shutaro Ueda (ISAS/JAXA), Tetsu Kitayama (Toho University), Tadayasu Dotani (ISAS/JAXA, SOKENDAI) This

More information

Driving hot and cold gas flows with AGN feedback in galaxy clusters Credit: ESO

Driving hot and cold gas flows with AGN feedback in galaxy clusters Credit: ESO Driving hot and cold gas flows with AGN feedback in galaxy clusters Credit: ESO Helen Russell (Cambridge) Brian McNamara (Waterloo), Andy Fabian (Cambridge), Paul Nulsen (CfA), Michael McDonald (MIT),

More information

METAL ABUNDANCES IN THE OUTSKIRTS OF

METAL ABUNDANCES IN THE OUTSKIRTS OF METAL ABUNDANCES IN THE OUTSKIRTS OF GALAXY CLUSTERS AURORA SIMIONESCU ISAS/JAXA with: Ondrej Urban, N. Werner, S. Allen, Y. Ichinohe and the Perseus/Virgo Suzaku Key Project collaborations 5 YEARS OF

More information

PATRICIA B. TISSERA. Institute for Astronomy and Space Physics Argentina

PATRICIA B. TISSERA. Institute for Astronomy and Space Physics Argentina PATRICIA B. TISSERA Institute for Astronomy and Space Physics Argentina i Observational motivations Model Results GALAXY FORMATION In the last years, studies of chemical elements obtained in the Local

More information

GALAXIES 626. The Milky Way II. Chemical evolution:

GALAXIES 626. The Milky Way II. Chemical evolution: GALAXIES 626 The Milky Way II. Chemical evolution: Chemical evolution Observation of spiral and irregular galaxies show that the fraction of heavy elements varies with the fraction of the total mass which

More information

Snowballs in hell! X-ray galactic coronae in galaxy! clusters and the need for sub-arcsecond resolution! Simona Giacintucci (NRL)!

Snowballs in hell! X-ray galactic coronae in galaxy! clusters and the need for sub-arcsecond resolution! Simona Giacintucci (NRL)! Snowballs in hell X-ray galactic coronae in galaxy clusters and the need for sub-arcsecond resolution Simona Giacintucci (NRL) M. Markevitch (GSFC), T. Clarke (NRL), E. Richards (NRC-NRL) X-ray Skies with

More information

Moore et al Kenney et al. 2004

Moore et al Kenney et al. 2004 Moore et al. 1996 Kenney et al. 2004 (i) Interaction with other cluster members and/or with the cluster potential (ii) Interactions with the hot gas that permeates massive galaxy systems. The influence

More information

Feedback from growth of supermassive black holes

Feedback from growth of supermassive black holes Research Collection Other Conference Item Feedback from growth of supermassive black holes Author(s): Begelman, Mitchell C.; Ruszkowksi, Mateusz Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004585094

More information

Massive molecular gas flows and AGN feedback in galaxy clusters

Massive molecular gas flows and AGN feedback in galaxy clusters Massive molecular gas flows and AGN feedback in galaxy clusters CO(3-2) Helen Russell (Cambridge) Brian McNamara (Waterloo), Andy Fabian (Cambridge), Paul Nulsen (CfA), Michael McDonald (MIT), Alastair

More information

Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius

Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius, Esra Bulbul, E. Nihal Ercan, Randall K. Smith, Mark W. Bautz, Mike Loewenstein, Mike McDonald & Eric D. Miller Rome, Italy

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

Lecture 12 : Clusters of galaxies

Lecture 12 : Clusters of galaxies Lecture 12 : Clusters of galaxies All sky surveys in the later half of 20th century changed the earlier view that clusters of galaxies are rare and that only a small fraction of galaxies are grouped together

More information

Feedback and Galaxy Formation

Feedback and Galaxy Formation Heating and Cooling in Galaxies and Clusters Garching August 2006 Feedback and Galaxy Formation Simon White Max Planck Institute for Astrophysics Cluster assembly in ΛCDM Gao et al 2004 'Concordance'

More information

Radio emission in clusters of galaxies. An observational perspective

Radio emission in clusters of galaxies. An observational perspective Radio emission in clusters of galaxies An observational perspective Tiziana Venturi INAF, IRA, Bologna IV ESTRELA Workshop, Bologna, 19 January 2009 Overview - What are galaxy clusters - Radio emission

More information

AC Fabian, M. Cappi, J Sanders. Cosmic Feedback from AGN

AC Fabian, M. Cappi, J Sanders. Cosmic Feedback from AGN AC Fabian, M. Cappi, J Sanders Cosmic Feedback from AGN AC Fabian, M Cappi, J Sanders, S Heinz, E Churazov, B McNamara, J Croston, D Worrall, F Humphrey, F Tombesi, J Reeves, M Giustini, P O Brien, T Reiprich

More information

The Great Debate: The Size of the Universe (1920)

The Great Debate: The Size of the Universe (1920) The Great Debate: The Size of the Universe (1920) Heber Curtis Our Galaxy is rather small, with Sun near the center. 30,000 LY diameter. Universe composed of many separate galaxies Spiral nebulae = island

More information

Upcoming class schedule

Upcoming class schedule Upcoming class schedule Thursday March 15 2pm AGN evolution (Amy Barger) th Monday March 19 Project Presentation (Brad) nd Thursday March 22 postponed to make up after spring break.. Spring break March

More information

Astronomy. Astrophysics. Radial profiles of Fe abundance in the intracluster medium of nearby clusters observed with XMM-Newton. K.

Astronomy. Astrophysics. Radial profiles of Fe abundance in the intracluster medium of nearby clusters observed with XMM-Newton. K. A&A 57, A34 (0) DOI: 0.05/0004-636/009343 c ESO 0 Astronomy & Astrophysics Radial profiles of Fe abundance in the intracluster medium of nearby clusters observed with XMM-Newton K. Matsushita Department

More information

Galaxy clusters from cosmological hydrodynamical simulations: the intracluster medium

Galaxy clusters from cosmological hydrodynamical simulations: the intracluster medium Galaxy clusters from cosmological hydrodynamical simulations: the intracluster medium Veronica Biffi (UniTs-OATs) biffi@oats.inaf.it S. Borgani, G. Murante, E. Rasia, S. Planelles, D. Fabjan, G.L. Granato,

More information

Thermo- and chemo-dynamics of the ICM with simulations

Thermo- and chemo-dynamics of the ICM with simulations Thermo- and chemo-dynamics of the ICM with simulations Stefano Borgani Dept. of Physics - University of Trieste INAF Astronomical Observatory of Trieste I. Chemical enrichment of the ICM I.a Effect of

More information

Fossil G roups Groups Fossil? Groups? Renato Dupke

Fossil G roups Groups Fossil? Groups? Renato Dupke Fossil Groups Fossil? Groups? Renato Dupke Collaborators: Eric Miller (MIT) Claudia Mendes de Oliveira, Rob Proctor, Raimundo Lopes de Oliveira, (IAG-USP), Pieter Westera (National Observatory Brazil,

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

Growing and merging massive black holes

Growing and merging massive black holes Growing and merging massive black holes Marta Volonteri Institut d Astrophysique de Paris S. Cielo (IAP) R. Bieri (MPA) Y. Dubois (IAP) M. Habouzit (Flatiron Institute) T. Hartwig (IAP) H. Pfister (IAP)

More information

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio. More abs. Dust [1.1] kev V Wavelength Optical Infra-red More abs. Wilms et al. 000, ApJ, 54, 914 No grains Grains from http://www.astro.princeton.edu/~draine/dust/dustmix.html See DraineH 003a, column

More information

Part 2. Hot gas halos and SMBHs in optically faint ellipticals. Part 3. After Chandra?

Part 2. Hot gas halos and SMBHs in optically faint ellipticals. Part 3. After Chandra? Hot gas and AGN Feedback in Nearby Groups and Galaxies Part 1. Cool cores and outbursts from supermassive black holes in clusters, groups and normal galaxies Part 2. Hot gas halos and SMBHs in optically

More information

Modelling the Sunyaev Zeldovich Scaling Relations

Modelling the Sunyaev Zeldovich Scaling Relations Modelling the Sunyaev Zeldovich Scaling Relations (Implication for SZ Power Spectrum) Anya Chaudhuri (with Subha Majumdar) Tata Institute of Fundamental Research 31 Oct 2009 Outline Sunyaev Zeldovich effect

More information

Enrico Fermi School Varenna Cool Cores and Mergers in Clusters Lecture 3

Enrico Fermi School Varenna Cool Cores and Mergers in Clusters Lecture 3 Enrico Fermi School Varenna Cool Cores and Mergers in Clusters Lecture 3 Craig Sarazin Dept. of Astronomy University of Virginia A85 Chandra (X-ray) Cluster Merger Simulation Cool Cores in Clusters Central

More information

Observational Evidence of AGN Feedback

Observational Evidence of AGN Feedback 10 de maio de 2012 Sumário Introduction AGN winds Galaxy outflows From the peak to the late evolution of AGN and quasars Mergers or secular evolution? The AGN feedback The interaction process between the

More information

The Radio/X-ray Interaction in Abell 2029

The Radio/X-ray Interaction in Abell 2029 The Radio/X-ray Interaction in Abell 2029 Tracy Clarke (Univ. of Virginia) Collaborators: Craig Sarazin (UVa), Elizabeth Blanton (UVa) Abell 2029: Background z = 0.0767, D=320 Mpc, scale = 1.44 kpc/ typically

More information

Star formation feedback in galaxy formation models. Yu Lu (KIPAC/Stanford)

Star formation feedback in galaxy formation models. Yu Lu (KIPAC/Stanford) Star formation feedback in galaxy formation models Yu Lu (KIPAC/Stanford) Overview Galaxies form in dark matter halos. CDM model predicts too many low-mass and high-mass halos. Feedback is needed to explain

More information

Hot Gas Around Elliptical Galaxies

Hot Gas Around Elliptical Galaxies Hot Gas Around Elliptical Galaxies Mike Anderson (MPA) Joel Bregman (Michigan), Xinyu Dai (Oklahoma), Massimo Gaspari (MPA), Simon White (MPA) Outline Very brief summary of properties of hot halos! Why

More information

Probing the Outskirts of Strongly Merging Double Clusters

Probing the Outskirts of Strongly Merging Double Clusters Probing the Outskirts of Strongly Merging Double Clusters S. W. Randall - CfA E. Bulbul, R. Paterno-Mahler, C. Jones, W. Forman, E. Miller, S. Murray, C. Sarazin, E. Blanton Probing the Outskirts of Strongly

More information

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures April 2006 The Iguaçu Lectures Nonlinear Structure Formation: The growth of galaxies and larger scale structures Simon White Max Planck Institute for Astrophysics z = 0 Dark Matter ROT EVOL Cluster structure

More information

GMm H R. 1 2 m Hv kt = T 108 K (10.01) In the absense of cooling, this gas will emit x-rays.

GMm H R. 1 2 m Hv kt = T 108 K (10.01) In the absense of cooling, this gas will emit x-rays. Cluster X-ray Gas Galaxies only contain about % of the baryons present in rich clusters. The other 8% resides in the intracluster medium. These baryons can find their way into the intracluster medium in

More information

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ 0.017 M gas / dyn Log SFR Kennicutt 1998 Log gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Moster 2009 No Feedback 10% of baryons Log(

More information

Campus Observatory. 7pm. you are here

Campus Observatory. 7pm. you are here Announcements Homework #9 is due today Course Evaluations available on line now Post-test Survey for At Play in the Cosmos now ready For extra credit: - must complete all 8 missions by Dec 10 - must complete

More information

Galaxy Activity in Semi Analytical Models. Fabio Fontanot (INAF OATs) Ljubljana 05/04/11

Galaxy Activity in Semi Analytical Models. Fabio Fontanot (INAF OATs) Ljubljana 05/04/11 Galaxy Activity in Semi Analytical Models Fabio Fontanot (INAF OATs) Ljubljana 05/04/11 Part I: Theoretical background 1. Baryonic gas falls in the gravitational potential of Dark Matter Halos 2. Baryonic

More information

Hydra A (x-ray) Perseus ` (optical)

Hydra A (x-ray) Perseus ` (optical) The Biermann Lectures: Adventures in Theoretical Astrophysics I: The Physics of Galaxy Cluster Plasmas Eliot Quataert (UC Berkeley) w/ Mike McCourt, Ian Parrish, Prateek Sharma Perseus ` (optical) Hydra

More information

Stellar populations in the cd galaxy NGC 3311

Stellar populations in the cd galaxy NGC 3311 Stellar populations in the cd galaxy NGC 3311 C. E. Barbosa 1,2, C. Mendes de Oliveira 1, M. Arnaboldi 2, M. Hilker 2, L. Coccato 2, T. Richtler 3 1 Universidade de São Paulo, São Paulo, Brazil 2 European

More information

Dynamics of hot gas in Galaxies, Groups, & Clusters

Dynamics of hot gas in Galaxies, Groups, & Clusters Dynamics of hot gas in Galaxies, Groups, & Clusters Bill Mathews Colleagues: Fabrizio Brighenti (Bologna) David Buote (UC Irvine) X-ray images of groups and clusters of galaxies Conventional cooling flows

More information

Molecular gas & AGN feedback in brightest cluster galaxies

Molecular gas & AGN feedback in brightest cluster galaxies Molecular gas & AGN feedback in brightest cluster galaxies Helen Russell Brian McNamara Alastair Edge Robert Main Adrian Vantyghem Francoise Combes Andy Fabian Philippe Salomé Outline Introduction Radiative

More information

Clusters of Galaxies " High Energy Objects - most of the baryons are in a hot (kt~ k) gas." The x-ray luminosity is ergs/sec"

Clusters of Galaxies  High Energy Objects - most of the baryons are in a hot (kt~ k) gas. The x-ray luminosity is ergs/sec Clusters of Galaxies! Ch 4 Longair Clusters of galaxies are the largest gravitationally bound systems in the Universe. At optical wavelengths they appear as over-densities of galaxies with respect to the

More information

Starburst Dwarf Galaxies

Starburst Dwarf Galaxies Starburst Dwarf Galaxies 1 Starburst Dwarf Galaxies The star-formation history does in general not show a continuous evolution but preferably an episoidal behaviour. 2 1 Definition: Starburst ( t0) 10....100

More information

Gasflows in Galaxy Clusters

Gasflows in Galaxy Clusters Gasflows in Galaxy Clusters Brian McNamara University of Waterloo Perimeter Ins7tute for Theore7cal Physics, Canada H. Russell, C.J. Ma, A. Vantyghem, C. Kirkpatrick, R. Main P. Nulsen, A. Edge, A., Fabian,

More information

Lecture 11: Ages and Metalicities from Observations A Quick Review

Lecture 11: Ages and Metalicities from Observations A Quick Review Lecture 11: Ages and Metalicities from Observations A Quick Review Ages from main-sequence turn-off stars Main sequence lifetime: lifetime = fuel / burning rate $ M " MS = 7 #10 9 % & M $ L " MS = 7 #10

More information

Physical Conditions in the Gas

Physical Conditions in the Gas Physical Conditions in the Gas the elastic collision times for (ions and electrons ) in the intracluster gas are much shorter than the time scales for heating or cooling, and the gas can be treated as

More information

The Evolution of Spiral Galaxies in a Cluster Environment

The Evolution of Spiral Galaxies in a Cluster Environment The Evolution of Spiral Galaxies in a Cluster Environment ESA/ESAC, XMM-Newton Science Operations Centre In collaboration with: M. Weżgowiec 1,2, R.-J. Dettmar 1, B. Vollmer 3, M. Soida 2, K.T. Chyży 2,

More information

GALAXIES. Edmund Hodges-Kluck Andrew Ptak

GALAXIES. Edmund Hodges-Kluck Andrew Ptak GALAXIES Edmund Hodges-Kluck Andrew Ptak Galaxy Science with AXIS How does gas get into and out of galaxies? How important is hot accretion for L* or larger galaxies? How does star formation/black hole

More information

Lecture 8: Stellar evolution II: Massive stars

Lecture 8: Stellar evolution II: Massive stars Lecture 8: Stellar evolution II: Massive stars Senior Astrophysics 2018-03-27 Senior Astrophysics Lecture 8: Stellar evolution II: Massive stars 2018-03-27 1 / 29 Outline 1 Stellar models 2 Convection

More information

Hot Gas Halos in Early-Type Galaxies

Hot Gas Halos in Early-Type Galaxies Hot Gas Halos in Early-Type Galaxies Tesla Jeltema University of California, Santa Cruz Collaborators: John Mulchaey, Breanna Binder, Jesper Rasmussen, Xue-Ning Bai, Jacqueline van Gorkom, Ann Zabludoff

More information

Galaxy Formation: Overview

Galaxy Formation: Overview Galaxy Formation: Overview Houjun Mo March 30, 2004 The basic picture Formation of dark matter halos. Gas cooling in dark matter halos Star formation in cold gas Evolution of the stellar populaion Metal

More information

Superbubble Feedback in Galaxy Formation

Superbubble Feedback in Galaxy Formation Superbubble Feedback in Galaxy Formation Ben Keller (McMaster University) James Wadsley, Samantha Benincasa, Hugh Couchman Paper: astro-ph/1405.2625 (Accepted MNRAS) Keller, Wadsley, Benincasa & Couchman

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

A Shock Model for the the Outburst from the Supermassive Black Hole in M87 Bill Forman - SAO/CfA

A Shock Model for the the Outburst from the Supermassive Black Hole in M87 Bill Forman - SAO/CfA M87 A Shock Model for the the Outburst from the Supermassive Black Hole in M87 Bill Forman - SAO/CfA interactions galore; stripping at work, M87 outburst Low Eddington ratio accretion (like other normal

More information

Galaxy clusters. Dept. of Physics of Complex Systems April 6, 2018

Galaxy clusters. Dept. of Physics of Complex Systems April 6, 2018 Galaxy clusters László Dobos Dept. of Physics of Complex Systems dobos@complex.elte.hu É 5.60 April 6, 2018 Satellite galaxies Large galaxies are surrounded by orbiting dwarfs approx. 14-16 satellites

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

Basics of Galactic chemical evolution

Basics of Galactic chemical evolution Basics of Galactic chemical evolution The chemical abundances of stars provide important clues as to the evolutionary history of a galaxy. Astronomers usually refer to chemical elements other than hydrogen

More information

The Universe of Galaxies: from large to small. Physics of Galaxies 2012 part 1 introduction

The Universe of Galaxies: from large to small. Physics of Galaxies 2012 part 1 introduction The Universe of Galaxies: from large to small Physics of Galaxies 2012 part 1 introduction 1 Galaxies lie at the crossroads of astronomy The study of galaxies brings together nearly all astronomical disciplines:

More information

Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s)

Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s) Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s) Toshikazu Shigeyama (U. Tokyo) Based on Tsujimoto & TS 2014 Kilonova Afterglow of GRB130603B at day 9! Berger+

More information

ALMA Synergy with ATHENA

ALMA Synergy with ATHENA ALMA Synergy with ATHENA Françoise Combes Observatoire de Paris 9 September 2015 ALMA & Athena: common issues Galaxy formation and evolution, clustering Surveys of galaxies at high and intermediate redshifts

More information

Halo Gas Velocities Using Multi-slit Spectroscopy

Halo Gas Velocities Using Multi-slit Spectroscopy Halo Gas Velocities Using Multi-slit Spectroscopy Cat Wu Thesis Proposal, Fall 2009 Astronomy Department New Mexico State University Outline Diffuse ionized gas; galaxy halos Origin of halo galactic fountain

More information

Large-Scale Structure

Large-Scale Structure Large-Scale Structure Evidence for Dark Matter Dark Halos in Ellipticals Hot Gas in Ellipticals Clusters Hot Gas in Clusters Cluster Galaxy Velocities and Masses Large-Scale Distribution of Galaxies 1

More information

AGN feedback and its influence on massive galaxy evolution

AGN feedback and its influence on massive galaxy evolution AGN feedback and its influence on massive galaxy evolution Darren Croton (University of California Berkeley) Simon White, Volker Springel, et al. (MPA) DEEP2 & AEGIS collaborations (Berkeley & everywhere

More information

The Milky Way Galaxy

The Milky Way Galaxy 1/5/011 The Milky Way Galaxy Distribution of Globular Clusters around a Point in Sagittarius About 00 globular clusters are distributed in random directions around the center of our galaxy. 1 1/5/011 Structure

More information

Course of Galaxies course organizer: Goeran Ostlin ESSAY. X-ray physics of Galaxy Clusters

Course of Galaxies course organizer: Goeran Ostlin ESSAY. X-ray physics of Galaxy Clusters Course of Galaxies course organizer: Goeran Ostlin ESSAY X-ray physics of Galaxy Clusters Student: Angela Adamo angela@astro.su.se fall 2006 Front:-The double cluster A1750. The contours of the XMM-Newton

More information

X- ray surface brightness fluctuations and turbulence in galaxy clusters. Jeremy Sanders. Andy Fabian. Sanders & Fabian 2011, MNRAS, submitted

X- ray surface brightness fluctuations and turbulence in galaxy clusters. Jeremy Sanders. Andy Fabian. Sanders & Fabian 2011, MNRAS, submitted X- ray surface brightness fluctuations and turbulence in galaxy clusters Jeremy Sanders Andy Fabian Sanders & Fabian 2011, MNRAS, submitted Simulations predict that in galaxy clusters turbulent energy

More information

The Superbubble Power Problem: Overview and Recent Developments. S. Oey

The Superbubble Power Problem: Overview and Recent Developments. S. Oey The Superbubble Power Problem: Overview and Recent Developments S. Oey It has been known for decades that superbubbles generated by massive star winds and supernovae are smaller than expected based on

More information

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc.

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc. Chapter 23 Lecture The Cosmic Perspective Seventh Edition Dark Matter, Dark Energy, and the Fate of the Universe Curvature of the Universe The Density Parameter of the Universe Ω 0 is defined as the ratio

More information

Cold Clouds in Cool Cores

Cold Clouds in Cool Cores Becky Canning NGC 1275, Perseus Cluster Cold Clouds in Cool Cores 1 Snowcluster 2015 Cold Clouds in Cool Cores Excitation mechanisms of the multi-phase cool/cold gas Why should we care? Heard that X-ray

More information

Mapping the non thermal emission in Coma cluster of galaxies using the FeXXV/FeXXVI line ratio

Mapping the non thermal emission in Coma cluster of galaxies using the FeXXV/FeXXVI line ratio Mapping the non thermal emission in Coma cluster of galaxies using the FeXXV/FeXXVI line ratio J. Nevalainen 1 & D. Eckert 2 1 Helsinki University Observatory, Finland 2 ISDC, Geneva, Switzerland Evidence

More information

Three Major Components

Three Major Components The Milky Way Three Major Components Bulge young and old stars Disk young stars located in spiral arms Halo oldest stars and globular clusters Components are chemically, kinematically, and spatially distinct

More information

Galaxies and the expansion of the Universe

Galaxies and the expansion of the Universe Review of Chapters 14, 15, 16 Galaxies and the expansion of the Universe 5/4/2009 Habbal Astro 110-01 Review Lecture 36 1 Recap: Learning from Light How does light tell us what things are made of? Every

More information

The Formation of Galaxies: connecting theory to data

The Formation of Galaxies: connecting theory to data Venice, October 2003 The Formation of Galaxies: connecting theory to data Simon D.M. White Max Planck Institute for Astrophysics The Emergence of the Cosmic Initial Conditions > 105 independent ~ 5 measurements

More information

Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters

Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters of massive gas and radii of M. Rees, J. Ostriker 1977 March 5, 2009 Talk contents: The global picture The relevant theory Implications of the theory Conclusions The global picture Galaxies and have characteristic

More information

Dynamics of galaxy clusters A radio perspective

Dynamics of galaxy clusters A radio perspective Dynamics of galaxy clusters A radio perspective Tiziana Venturi, INAF, Istituto di Radioastronomia Collaborators S. Giacintucci, D. Dallacasa, R. Kale, G. Brunetti, R. Cassano, M. Rossetti GEE 3 Padova,

More information

Chandra X-Ray Observations of the Hydra A Cluster: An Interaction between the Radio Source and the X-Ray emitting Gas

Chandra X-Ray Observations of the Hydra A Cluster: An Interaction between the Radio Source and the X-Ray emitting Gas University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2000 Chandra X-Ray Observations of the Hydra A Cluster: An Interaction

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward the end of the discussion of what happens for post-main

More information

Local photo-ionization radiation, Circum-galactic gas cooling and galaxy formation

Local photo-ionization radiation, Circum-galactic gas cooling and galaxy formation Local photo-ionization radiation, Circum-galactic gas cooling and galaxy formation or A critical Star-Formation-Rate divides hot-mode from cold-mode accretion Sebastiano Cantalupo IMPS Fellow, UCSC Chandra

More information

ON THE CHEMICAL EVOLUTION OF THE MILKY WAY. The Metallicity distribution of the halo in the hierarchical merging paradigm

ON THE CHEMICAL EVOLUTION OF THE MILKY WAY. The Metallicity distribution of the halo in the hierarchical merging paradigm ON THE CHEMICAL EVOLUTION OF THE MILKY WAY The Metallicity distribution of the halo in the hierarchical merging paradigm Halo abundance patterns and stellar yields Standard chemical evolution of solar

More information

AGN Feedback in the Hot Halo of NGC 4649

AGN Feedback in the Hot Halo of NGC 4649 AGN Feedback in the Hot Halo of NGC 4649 A. Paggi1 G. Fabbiano1, D.-W. Kim1, S. Pellegrini2, F. Civano3, J. Strader4 and B. Luo5 Harvard-Smithsonian Center for Astrophysics; 2Department of Astronomy, University

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Most of the volume of the current-day universe is considered to be cold and empty, but most of the baryonic mass is actually hot and concentrated in a structure called the cosmic

More information

Stellar Populations in the Galaxy

Stellar Populations in the Galaxy Stellar Populations in the Galaxy Stars are fish in the sea of the galaxy, and like fish they often travel in schools. Star clusters are relatively small groupings, the true schools are stellar populations.

More information

Multiwavelength observation campaign of Mrk 509: UV spectra of the X-ray Outflow!!!!Gerard Kriss!! STScI!!! (with N. Arav, J. Kaastra & the Mrk 509

Multiwavelength observation campaign of Mrk 509: UV spectra of the X-ray Outflow!!!!Gerard Kriss!! STScI!!! (with N. Arav, J. Kaastra & the Mrk 509 Multiwavelength observation campaign of Mrk 509: UV spectra of the X-ray Outflow!!!!Gerard Kriss!! STScI!!! (with N. Arav, J. Kaastra & the Mrk 509 Team)!! The Influence of AGN Outflows! «They may affect

More information

AGN Feedback In an Isolated Elliptical Galaxy

AGN Feedback In an Isolated Elliptical Galaxy AGN Feedback In an Isolated Elliptical Galaxy Feng Yuan Shanghai Astronomical Observatory, CAS Collaborators: Zhaoming Gan (SHAO) Jerry Ostriker (Princeton) Luca Ciotti (Bologna) Greg Novak (Paris) 2014.9.10;

More information

New Forms of Convection in Galaxy Cluster Plasmas (i.e., how do galaxy clusters boil?)

New Forms of Convection in Galaxy Cluster Plasmas (i.e., how do galaxy clusters boil?) New Forms of Convection in Galaxy Cluster Plasmas (i.e., how do galaxy clusters boil?) Eliot Quataert (UC Berkeley) Hydra A w/ Chandra in collaboration with Ian Parrish Prateek Sharma Overview Hot Plasma

More information

AGN Feedback: Are Radio AGN Powered by Accretion or Black Hole Spin?

AGN Feedback: Are Radio AGN Powered by Accretion or Black Hole Spin? AGN Feedback: Are Radio AGN Powered by Accretion or Black Hole Spin? Brian McNamara University of Waterloo Perimeter Institute for Theoretical Physics Harvard-Smithsonian Center for Astrophysics P. Nulsen

More information

Luke Leisman Calvin College. Photo Credit: SLOAN Digital Sky Survey. Great Lakes Cosmology Workshop June 15, 2010

Luke Leisman Calvin College. Photo Credit: SLOAN Digital Sky Survey. Great Lakes Cosmology Workshop June 15, 2010 Luke Leisman Calvin College Photo Credit: SLOAN Digital Sky Survey Great Lakes Cosmology Workshop June 15, 2010 Acknowledgements Funding: Sid Jansma Calvin Summer Research Fellowship Co-workers: Deborah

More information

What Doesn t Quench Galaxy Formation?

What Doesn t Quench Galaxy Formation? What Doesn t Quench Galaxy Formation? Phil Hopkins Dusan Keres, Claude Faucher-Giguere, Jose Onorbe, Freeke van de Voort, Sasha Muratov, Xiangcheng Ma, Lena Murchikova, Norm Murray, Eliot Quataert, James

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

the self-regulated agn feedback loop: chaotic cold accretion

the self-regulated agn feedback loop: chaotic cold accretion the self-regulated agn feedback loop: chaotic cold accretion Massimo Gaspari Max Planck Institute for Astrophysics the self-regulated agn feedback loop: raining onto black holes Massimo Gaspari Max Planck

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information