Data Exploration vis Local Two-Sample Testing

Size: px
Start display at page:

Download "Data Exploration vis Local Two-Sample Testing"

Transcription

1 Data Exploration vis Local Two-Sample Testing Freeman, Kim, and Lee (2017)

2 Astrostatistics at Carnegie Mellon CMU Astrostatistics Network Graph 2017 (not including collaborations external to Pittsburgh) (and not including astronomy grad students at least, not yet) LW CG The Department Head, detached from the astrostatistical body. JK RC HT MW CE PF CB TP RM AL XG JN MD FL CS The interface to LSST.

3 Astrostatistics at Carnegie Mellon Things That Interest Us: High-dimensional data (with lower-dimensional intrinsic geometries) Dealing with non-representative data (selection bias) Multivariate conditional density estimation: f(y1,,yk x1,,xp) Likelihood-free inference (e.g., approximate Bayesian computation) Photometric redshift estimation Galaxy evolution Hurricanes (On Earth not other planets) Whatever is interesting and has inferential aspects (but prediction is OK too, in moderation)

4 Astrostatistics at Carnegie Mellon: Tools arxiv: Flexible Conditional Density Estimator arxiv: Python version of FlexCoDE

5 Astrostatistics at Carnegie Mellon: Tools arxiv: What we will concentrate on today! arxiv:

6 The Statistical Setting Assume that we have measurements x of astronomical objects that are divided into two classes (e.g., high-mass vs. low-mass, discovered-via-radial velocity vs. discovered-via-transit, Cepheid vs. RR Lyrae, etc., etc.) Each object is associated with p measurements, i.e., each x is a vector of length p, and is sampled from some multidimensional probability density function: x 0 1,...,x 0 m P 0 and x 1 1,...,x 1 n P 1 A global two-sample test would ask whether P 0 and P 1 are the same, i.e., it would test the hypotheses: H 0 : P 0 = P 1 against H 1 : P 0 6= P 1

7 The Statistical Setting Global two-sample tests are generally non-informative. CMU graduate student Ilmun Kim developed a local twosample test that at a series of test points compares H i,0 : P(Y = y X = x i )=P(Y = y) against H i,1 : P(Y = y X = x i ) 6= P(Y = y) with test statistic 6 b T (x i )= b P(Y =1 x i ) b P(Y =1) q bv (x i ) b

8 The Statistical Setting How does one estimate P(Y=y X=xi)? a) Split labeled data into training and test sets. b) Create N random subsets of the training data, each of size n, without replacement. c) Loop over the N subsets: i) Split subset data into training and validation sets. ii) Learn a decision tree from the training set. iii) Place validation and test data into tree nodes. The average of the validation labels is prediction of class proportion for the subset. d) Each test datum xi thus has N associated proportion estimates: the mean, e.g., is the estimate of P(Y=y X=xi).

9 The Statistical Setting previous slides Freeman, Kim, and Lee (2017)

10 (Known) Caveats The current code assumes two unique response values. The allowed response values are 0 and 1. Empirical observation: the performance of LTST degrades if the dataset includes too many relatively uninformative predictor variables. (TBS: to be studied.) Memory use effectively limits sample size to For now. The effect of changing the number of subsets N has not been studied. The false-discovery rate correction for multiple comparisons depends on the number of test points: too many leads to a loss of test power. (And is it needed?) The current code crashes in Python 3.5: use 3.6. The current code untested in Python 2: use 3.6. If you uncover anything else: pfreeman@cmu.edu

11 Wait: How Does This Differ From, e.g., Random Forest? Random forest prediction produces a classification based on a threshold number of class votes across trees. It does not attempt to determine if the observed number of votes is, e.g., consistent with the adopted threshold. In other words, there is no hypothesis test involved. Importantly, LTST does not actually classify a test datum! It determines whether it exists in a region of predictor space dominated by one of the classes (or by neither). So, e.g., a test datum in a Cepheid-dominated region may itself be an RR Lyrae variable. Ultimately, LTST is about discovering neighborhoods in predictor space, and not about classification per se.

12 To Play Along Click on DES JupyterLabs Click on Deploy Lab and then Go To Lab On the file tab, click through to ltst, under examples (Note: you may need to copy ltst.py to the directory LSST_Viz. You can do this by making a duplicate, moving the duplicate to the LSST_Viz directory by dragging, and renaming it ltst.py in that directory.)

13 Example #1: Galaxy Morphology Summary Statistics Highdimensional Lowdimensional Parametrized model fitting Image features (i.e., summary statistics) Human brains (i.e., natural neural networks) Connectivity/ unsupervised learning Our data: 7 summary statistics for 2487 galaxies, with mass as response. & statistics_large.csv

14 Example #1: Galaxy Morphology Summary Statistics Visualization of 700 test data in first two diffusion-space coordinates. Blue: test data that lie in regions of predictor space where the proportion of high-mass galaxies is significantly larger than the global proportion. Red: significantly smaller than the global proportion. Green: consistent with the global proportion (i.e., we fail to reject the null).

15 Example #2: Exoplanetary Properties Extracted from the Exoplanet Archive ( Predictors: period, semi-major axis length, mass, eccentricity, number of planets in system Response: discovery method (radial velocity vs. transit) 750 training data, 249 test data Visualization via boxplots:

16 Example #3: Your Data (or Mine) In the time remaining: Using either your own data or the example dataset supplied in work through your own LTST analysis!

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Surprise Detection in Multivariate Astronomical Data Kirk Borne George Mason University

Surprise Detection in Multivariate Astronomical Data Kirk Borne George Mason University Surprise Detection in Multivariate Astronomical Data Kirk Borne George Mason University kborne@gmu.edu, http://classweb.gmu.edu/kborne/ Outline What is Surprise Detection? Example Application: The LSST

More information

Exploiting Sparse Non-Linear Structure in Astronomical Data

Exploiting Sparse Non-Linear Structure in Astronomical Data Exploiting Sparse Non-Linear Structure in Astronomical Data Ann B. Lee Department of Statistics and Department of Machine Learning, Carnegie Mellon University Joint work with P. Freeman, C. Schafer, and

More information

Decision Trees. Tirgul 5

Decision Trees. Tirgul 5 Decision Trees Tirgul 5 Using Decision Trees It could be difficult to decide which pet is right for you. We ll find a nice algorithm to help us decide what to choose without having to think about it. 2

More information

Variance Reduction and Ensemble Methods

Variance Reduction and Ensemble Methods Variance Reduction and Ensemble Methods Nicholas Ruozzi University of Texas at Dallas Based on the slides of Vibhav Gogate and David Sontag Last Time PAC learning Bias/variance tradeoff small hypothesis

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University August 30, 2017 Today: Decision trees Overfitting The Big Picture Coming soon Probabilistic learning MLE,

More information

Data Analysis Methods

Data Analysis Methods Data Analysis Methods Successes, Opportunities, and Challenges Chad M. Schafer Department of Statistics & Data Science Carnegie Mellon University cschafer@cmu.edu The Astro/Data Science Community LSST

More information

Hierarchical Bayesian Modeling

Hierarchical Bayesian Modeling Hierarchical Bayesian Modeling Making scientific inferences about a population based on many individuals Angie Wolfgang NSF Postdoctoral Fellow, Penn State Astronomical Populations Once we discover an

More information

Learning from Examples

Learning from Examples Learning from Examples Data fitting Decision trees Cross validation Computational learning theory Linear classifiers Neural networks Nonparametric methods: nearest neighbor Support vector machines Ensemble

More information

From statistics to data science. BAE 815 (Fall 2017) Dr. Zifei Liu

From statistics to data science. BAE 815 (Fall 2017) Dr. Zifei Liu From statistics to data science BAE 815 (Fall 2017) Dr. Zifei Liu Zifeiliu@ksu.edu Why? How? What? How much? How many? Individual facts (quantities, characters, or symbols) The Data-Information-Knowledge-Wisdom

More information

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 21 K - Nearest Neighbor V In this lecture we discuss; how do we evaluate the

More information

Surprise Detection in Science Data Streams Kirk Borne Dept of Computational & Data Sciences George Mason University

Surprise Detection in Science Data Streams Kirk Borne Dept of Computational & Data Sciences George Mason University Surprise Detection in Science Data Streams Kirk Borne Dept of Computational & Data Sciences George Mason University kborne@gmu.edu, http://classweb.gmu.edu/kborne/ Outline Astroinformatics Example Application:

More information

Lectures in AstroStatistics: Topics in Machine Learning for Astronomers

Lectures in AstroStatistics: Topics in Machine Learning for Astronomers Lectures in AstroStatistics: Topics in Machine Learning for Astronomers Jessi Cisewski Yale University American Astronomical Society Meeting Wednesday, January 6, 2016 1 Statistical Learning - learning

More information

Hierarchical Bayesian Modeling

Hierarchical Bayesian Modeling Hierarchical Bayesian Modeling Making scientific inferences about a population based on many individuals Angie Wolfgang NSF Postdoctoral Fellow, Penn State Astronomical Populations Once we discover an

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

Qualifier: CS 6375 Machine Learning Spring 2015

Qualifier: CS 6375 Machine Learning Spring 2015 Qualifier: CS 6375 Machine Learning Spring 2015 The exam is closed book. You are allowed to use two double-sided cheat sheets and a calculator. If you run out of room for an answer, use an additional sheet

More information

Randomized Decision Trees

Randomized Decision Trees Randomized Decision Trees compiled by Alvin Wan from Professor Jitendra Malik s lecture Discrete Variables First, let us consider some terminology. We have primarily been dealing with real-valued data,

More information

Evaluation. Albert Bifet. April 2012

Evaluation. Albert Bifet. April 2012 Evaluation Albert Bifet April 2012 COMP423A/COMP523A Data Stream Mining Outline 1. Introduction 2. Stream Algorithmics 3. Concept drift 4. Evaluation 5. Classification 6. Ensemble Methods 7. Regression

More information

Decision Trees. Nicholas Ruozzi University of Texas at Dallas. Based on the slides of Vibhav Gogate and David Sontag

Decision Trees. Nicholas Ruozzi University of Texas at Dallas. Based on the slides of Vibhav Gogate and David Sontag Decision Trees Nicholas Ruozzi University of Texas at Dallas Based on the slides of Vibhav Gogate and David Sontag Supervised Learning Input: labelled training data i.e., data plus desired output Assumption:

More information

CS570 Data Mining. Anomaly Detection. Li Xiong. Slide credits: Tan, Steinbach, Kumar Jiawei Han and Micheline Kamber.

CS570 Data Mining. Anomaly Detection. Li Xiong. Slide credits: Tan, Steinbach, Kumar Jiawei Han and Micheline Kamber. CS570 Data Mining Anomaly Detection Li Xiong Slide credits: Tan, Steinbach, Kumar Jiawei Han and Micheline Kamber April 3, 2011 1 Anomaly Detection Anomaly is a pattern in the data that does not conform

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 13, 2011 Today: The Big Picture Overfitting Review: probability Readings: Decision trees, overfiting

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

Statistics Primer. ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong

Statistics Primer. ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong Statistics Primer ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong 1 Quick Overview of Statistics 2 Descriptive vs. Inferential Statistics Descriptive Statistics: summarize and describe data

More information

Machine Learning: Exercise Sheet 2

Machine Learning: Exercise Sheet 2 Machine Learning: Exercise Sheet 2 Manuel Blum AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg mblum@informatik.uni-freiburg.de Manuel Blum Machine Learning

More information

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang /

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang / CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors Furong Huang / furongh@cs.umd.edu What we know so far Decision Trees What is a decision tree, and how to induce it from

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 23. Decision Trees Barnabás Póczos Contents Decision Trees: Definition + Motivation Algorithm for Learning Decision Trees Entropy, Mutual Information, Information

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

Data Mining. 3.6 Regression Analysis. Fall Instructor: Dr. Masoud Yaghini. Numeric Prediction

Data Mining. 3.6 Regression Analysis. Fall Instructor: Dr. Masoud Yaghini. Numeric Prediction Data Mining 3.6 Regression Analysis Fall 2008 Instructor: Dr. Masoud Yaghini Outline Introduction Straight-Line Linear Regression Multiple Linear Regression Other Regression Models References Introduction

More information

Photometric Redshifts with DAME

Photometric Redshifts with DAME Photometric Redshifts with DAME O. Laurino, R. D Abrusco M. Brescia, G. Longo & DAME Working Group VO-Day... in Tour Napoli, February 09-0, 200 The general astrophysical problem Due to new instruments

More information

Outline. Introduction to SpaceStat and ESTDA. ESTDA & SpaceStat. Learning Objectives. Space-Time Intelligence System. Space-Time Intelligence System

Outline. Introduction to SpaceStat and ESTDA. ESTDA & SpaceStat. Learning Objectives. Space-Time Intelligence System. Space-Time Intelligence System Outline I Data Preparation Introduction to SpaceStat and ESTDA II Introduction to ESTDA and SpaceStat III Introduction to time-dynamic regression ESTDA ESTDA & SpaceStat Learning Objectives Activities

More information

Hierarchical Bayesian Modeling of Planet Populations

Hierarchical Bayesian Modeling of Planet Populations Hierarchical Bayesian Modeling of Planet Populations You ve found planets in your data (or not)...... now what?! Angie Wolfgang NSF Postdoctoral Fellow, Penn State Why Astrostats? This week: a sample of

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

Machine Learning Recitation 8 Oct 21, Oznur Tastan

Machine Learning Recitation 8 Oct 21, Oznur Tastan Machine Learning 10601 Recitation 8 Oct 21, 2009 Oznur Tastan Outline Tree representation Brief information theory Learning decision trees Bagging Random forests Decision trees Non linear classifier Easy

More information

Probabilistic photometric redshifts in the era of Petascale Astronomy

Probabilistic photometric redshifts in the era of Petascale Astronomy Probabilistic photometric redshifts in the era of Petascale Astronomy Matías Carrasco Kind NCSA/Department of Astronomy University of Illinois at Urbana-Champaign Tools for Astronomical Big Data March

More information

Bayesian Classifiers, Conditional Independence and Naïve Bayes. Required reading: Naïve Bayes and Logistic Regression (available on class website)

Bayesian Classifiers, Conditional Independence and Naïve Bayes. Required reading: Naïve Bayes and Logistic Regression (available on class website) Bayesian Classifiers, Conditional Independence and Naïve Bayes Required reading: Naïve Bayes and Logistic Regression (available on class website) Machine Learning 10-701 Tom M. Mitchell Machine Learning

More information

Bayesian Classifiers and Probability Estimation. Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington

Bayesian Classifiers and Probability Estimation. Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington Bayesian Classifiers and Probability Estimation Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington 1 Data Space Suppose that we have a classification problem The

More information

Machine Astronomers to Discover the Unexpected in Astronomical Surveys. Ray Norris, Western Sydney University & CSIRO Astronomy & Space Science,

Machine Astronomers to Discover the Unexpected in Astronomical Surveys. Ray Norris, Western Sydney University & CSIRO Astronomy & Space Science, Machine Astronomers to Discover the Unexpected in Astronomical Surveys Ray Norris, Western Sydney University & CSIRO Astronomy & Space Science, Overview 1. The Machine Learning in Astronomy Collaboration

More information

Ensemble Methods and Random Forests

Ensemble Methods and Random Forests Ensemble Methods and Random Forests Vaishnavi S May 2017 1 Introduction We have seen various analysis for classification and regression in the course. One of the common methods to reduce the generalization

More information

Empirical Risk Minimization, Model Selection, and Model Assessment

Empirical Risk Minimization, Model Selection, and Model Assessment Empirical Risk Minimization, Model Selection, and Model Assessment CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 5.7-5.7.2.4, 6.5-6.5.3.1 Dietterich,

More information

Independent Samples ANOVA

Independent Samples ANOVA Independent Samples ANOVA In this example students were randomly assigned to one of three mnemonics (techniques for improving memory) rehearsal (the control group; simply repeat the words), visual imagery

More information

CSC 411 Lecture 3: Decision Trees

CSC 411 Lecture 3: Decision Trees CSC 411 Lecture 3: Decision Trees Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 03-Decision Trees 1 / 33 Today Decision Trees Simple but powerful learning

More information

Chapter 18. Decision Trees and Ensemble Learning. Recall: Learning Decision Trees

Chapter 18. Decision Trees and Ensemble Learning. Recall: Learning Decision Trees CSE 473 Chapter 18 Decision Trees and Ensemble Learning Recall: Learning Decision Trees Example: When should I wait for a table at a restaurant? Attributes (features) relevant to Wait? decision: 1. Alternate:

More information

Physics Lab #6: Citizen Science - Variable Star Zoo

Physics Lab #6: Citizen Science - Variable Star Zoo Physics 10263 Lab #6: Citizen Science - Variable Star Zoo Introduction This lab is the another Citizen Science lab we will do together this semester as part of the zooniverse.org project family. This time,

More information

Classification with Perceptrons. Reading:

Classification with Perceptrons. Reading: Classification with Perceptrons Reading: Chapters 1-3 of Michael Nielsen's online book on neural networks covers the basics of perceptrons and multilayer neural networks We will cover material in Chapters

More information

Evaluation. Andrea Passerini Machine Learning. Evaluation

Evaluation. Andrea Passerini Machine Learning. Evaluation Andrea Passerini passerini@disi.unitn.it Machine Learning Basic concepts requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Data Mining. CS57300 Purdue University. March 22, 2018

Data Mining. CS57300 Purdue University. March 22, 2018 Data Mining CS57300 Purdue University March 22, 2018 1 Hypothesis Testing Select 50% users to see headline A Unlimited Clean Energy: Cold Fusion has Arrived Select 50% users to see headline B Wedding War

More information

1 Handling of Continuous Attributes in C4.5. Algorithm

1 Handling of Continuous Attributes in C4.5. Algorithm .. Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. Data Mining: Classification/Supervised Learning Potpourri Contents 1. C4.5. and continuous attributes: incorporating continuous

More information

Bias-Variance Tradeoff

Bias-Variance Tradeoff What s learning, revisited Overfitting Generative versus Discriminative Logistic Regression Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University September 19 th, 2007 Bias-Variance Tradeoff

More information

NAME: VARIABLE STARS. What will you learn in this Lab?

NAME: VARIABLE STARS. What will you learn in this Lab? NAME: VARIABLE STARS What will you learn in this Lab? This lab will cover three of the main types of variable stars that we observe in our night sky: RR Lyrae stars, Cepheid variable stars and Eclipsing

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Ensembles Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University PAC Learning Matt Gormley Lecture 14 March 5, 2018 1 ML Big Picture Learning Paradigms:

More information

18.6 Regression and Classification with Linear Models

18.6 Regression and Classification with Linear Models 18.6 Regression and Classification with Linear Models 352 The hypothesis space of linear functions of continuous-valued inputs has been used for hundreds of years A univariate linear function (a straight

More information

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition Ad Feelders Universiteit Utrecht Department of Information and Computing Sciences Algorithmic Data

More information

Binary Logistic Regression

Binary Logistic Regression The coefficients of the multiple regression model are estimated using sample data with k independent variables Estimated (or predicted) value of Y Estimated intercept Estimated slope coefficients Ŷ = b

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification 10-810: Advanced Algorithms and Models for Computational Biology Optimal leaf ordering and classification Hierarchical clustering As we mentioned, its one of the most popular methods for clustering gene

More information

Evaluation requires to define performance measures to be optimized

Evaluation requires to define performance measures to be optimized Evaluation Basic concepts Evaluation requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain (generalization error) approximation

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 2, 2015 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

.. Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. for each element of the dataset we are given its class label.

.. Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. for each element of the dataset we are given its class label. .. Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. Data Mining: Classification/Supervised Learning Definitions Data. Consider a set A = {A 1,...,A n } of attributes, and an additional

More information

Anomaly Detection for the CERN Large Hadron Collider injection magnets

Anomaly Detection for the CERN Large Hadron Collider injection magnets Anomaly Detection for the CERN Large Hadron Collider injection magnets Armin Halilovic KU Leuven - Department of Computer Science In cooperation with CERN 2018-07-27 0 Outline 1 Context 2 Data 3 Preprocessing

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Predicting flight on-time performance

Predicting flight on-time performance 1 Predicting flight on-time performance Arjun Mathur, Aaron Nagao, Kenny Ng I. INTRODUCTION Time is money, and delayed flights are a frequent cause of frustration for both travellers and airline companies.

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting Estimating the accuracy of a hypothesis Setting Assume a binary classification setting Assume input/output pairs (x, y) are sampled from an unknown probability distribution D = p(x, y) Train a binary classifier

More information

UVA CS 4501: Machine Learning

UVA CS 4501: Machine Learning UVA CS 4501: Machine Learning Lecture 21: Decision Tree / Random Forest / Ensemble Dr. Yanjun Qi University of Virginia Department of Computer Science Where are we? è Five major sections of this course

More information

Geometric View of Machine Learning Nearest Neighbor Classification. Slides adapted from Prof. Carpuat

Geometric View of Machine Learning Nearest Neighbor Classification. Slides adapted from Prof. Carpuat Geometric View of Machine Learning Nearest Neighbor Classification Slides adapted from Prof. Carpuat What we know so far Decision Trees What is a decision tree, and how to induce it from data Fundamental

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees CS194-10 Fall 2011 Lecture 8 CS194-10 Fall 2011 Lecture 8 1 Outline Decision tree models Tree construction Tree pruning Continuous input features CS194-10 Fall 2011 Lecture 8 2

More information

Midterm, Fall 2003

Midterm, Fall 2003 5-78 Midterm, Fall 2003 YOUR ANDREW USERID IN CAPITAL LETTERS: YOUR NAME: There are 9 questions. The ninth may be more time-consuming and is worth only three points, so do not attempt 9 unless you are

More information

Lab 3: Stars, Stars, Stars!

Lab 3: Stars, Stars, Stars! Lab 3: Stars, Stars, Stars! The Hertzsprung-Russell Diagram Today we will learn about the different types of stars and how they are different form one another. Go to http://astro.unl.edu/naap/hr/hr.html.

More information

Ensemble Methods. NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan

Ensemble Methods. NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan Ensemble Methods NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan How do you make a decision? What do you want for lunch today?! What did you have last night?! What are your favorite

More information

Lecture on Null Hypothesis Testing & Temporal Correlation

Lecture on Null Hypothesis Testing & Temporal Correlation Lecture on Null Hypothesis Testing & Temporal Correlation CS 590.21 Analysis and Modeling of Brain Networks Department of Computer Science University of Crete Acknowledgement Resources used in the slides

More information

Assignment 1: Probabilistic Reasoning, Maximum Likelihood, Classification

Assignment 1: Probabilistic Reasoning, Maximum Likelihood, Classification Assignment 1: Probabilistic Reasoning, Maximum Likelihood, Classification For due date see https://courses.cs.sfu.ca This assignment is to be done individually. Important Note: The university policy on

More information

Pattern Recognition and Machine Learning. Learning and Evaluation of Pattern Recognition Processes

Pattern Recognition and Machine Learning. Learning and Evaluation of Pattern Recognition Processes Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lesson 1 5 October 2016 Learning and Evaluation of Pattern Recognition Processes Outline Notation...2 1. The

More information

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1 CptS 570 Machine Learning School of EECS Washington State University CptS 570 - Machine Learning 1 IEEE Expert, October 1996 CptS 570 - Machine Learning 2 Given sample S from all possible examples D Learner

More information

Inferences About Two Proportions

Inferences About Two Proportions Inferences About Two Proportions Quantitative Methods II Plan for Today Sampling two populations Confidence intervals for differences of two proportions Testing the difference of proportions Examples 1

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 26, 2015 Today: Bayes Classifiers Conditional Independence Naïve Bayes Readings: Mitchell: Naïve Bayes

More information

Evaluating Classifiers. Lecture 2 Instructor: Max Welling

Evaluating Classifiers. Lecture 2 Instructor: Max Welling Evaluating Classifiers Lecture 2 Instructor: Max Welling Evaluation of Results How do you report classification error? How certain are you about the error you claim? How do you compare two algorithms?

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Supervised Learning. George Konidaris

Supervised Learning. George Konidaris Supervised Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom Mitchell,

More information

Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees

Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees Rafdord M. Neal and Jianguo Zhang Presented by Jiwen Li Feb 2, 2006 Outline Bayesian view of feature

More information

Advanced Statistical Methods: Beyond Linear Regression

Advanced Statistical Methods: Beyond Linear Regression Advanced Statistical Methods: Beyond Linear Regression John R. Stevens Utah State University Notes 3. Statistical Methods II Mathematics Educators Worshop 28 March 2009 1 http://www.stat.usu.edu/~jrstevens/pcmi

More information

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012 Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University September 20, 2012 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

Decision Trees. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. February 5 th, Carlos Guestrin 1

Decision Trees. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. February 5 th, Carlos Guestrin 1 Decision Trees Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 5 th, 2007 2005-2007 Carlos Guestrin 1 Linear separability A dataset is linearly separable iff 9 a separating

More information

VARIABLE STARS. What will you learn in this Lab?

VARIABLE STARS. What will you learn in this Lab? VARIABLE STARS What will you learn in this Lab? This lab will cover three of the main types of variable stars that we observe in our night sky: RR Lyrae stars, Cepheid variable stars and Eclipsing Binary

More information

CHAPTER 10. Regression and Correlation

CHAPTER 10. Regression and Correlation CHAPTER 10 Regression and Correlation In this Chapter we assess the strength of the linear relationship between two continuous variables. If a significant linear relationship is found, the next step would

More information

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference CS 229 Project Report (TR# MSB2010) Submitted 12/10/2010 hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference Muhammad Shoaib Sehgal Computer Science

More information

Introduction to Data Science Data Mining for Business Analytics

Introduction to Data Science Data Mining for Business Analytics Introduction to Data Science Data Mining for Business Analytics BRIAN D ALESSANDRO VP DATA SCIENCE, DSTILLERY ADJUNCT PROFESSOR, NYU FALL 2014 Fine Print: these slides are, and always will be a work in

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees Ryan P Adams So far, we have primarily examined linear classifiers and regressors, and considered several different ways to train them When we ve found the linearity

More information

Protein Complex Identification by Supervised Graph Clustering

Protein Complex Identification by Supervised Graph Clustering Protein Complex Identification by Supervised Graph Clustering Yanjun Qi 1, Fernanda Balem 2, Christos Faloutsos 1, Judith Klein- Seetharaman 1,2, Ziv Bar-Joseph 1 1 School of Computer Science, Carnegie

More information

Data Mining. Supervised Learning. Hamid Beigy. Sharif University of Technology. Fall 1396

Data Mining. Supervised Learning. Hamid Beigy. Sharif University of Technology. Fall 1396 Data Mining Supervised Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1396 1 / 15 Table of contents 1 Introduction 2 Supervised

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology COST Doctoral School, Troina 2008 Outline 1. Bayesian classification

More information