College of Art and Sciences Universiti Utara Sintok Kedah, 0060, MALAYSIA

Size: px
Start display at page:

Download "College of Art and Sciences Universiti Utara Sintok Kedah, 0060, MALAYSIA"

Transcription

1 Iteratioal Joural of Pure ad Applied Mathematics Volume 2 No , ISSN: (prited versio); ISSN: (o-lie versio) url: doi: /ijpam.v2i3.5 PAijpam.eu GENERALIZED TWO-HYBRID ONE-STEP IMPLICIT THIRD DERIVATIVE BLOCK METHOD FOR THE DIRECT Abstract: SOLUTION OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS Mohammad Alkasassbeh, Zuri Omar 2,2 Departmet of Mathematics College of Art ad Scieces Uiversiti Utara Sitok Kedah, 0060, MALAYSIA I this article, a geeral two-hybrid oe-step implicit third derivative block method is developed for the direct solutio of the secod order iitial value problems through iterpolatio ad collocatio approach. To derive this method, the approximate basis fuctio is iterpolated at the values {x,x +r} while its secod ad third derivatives are collocated at all poits {x,x +r, x +s,x +} i the give iterval. The ew developed method produces better accuracy if compared to the existig methods whe solvig the same problems. AMS Subject Classificatio: 35J25, 35Q60, 65L06, 65L05 Key Words: hybrid block method, secod order ordiary differetial equatio, direct solutio, third derivative, iterpolatio ad collocatio. Itroductio I this article, we are iterested i solvig the followig secod order ordiary differetial equatio y = f(x,y,y ), y(a) = y 0, y (a) = y, a x b. () There are may methods available for approximatig (). Oe of the methods Received: September 30, 206 Revised: November 2, 206 Published: February 7, 207 c 207 Academic Publicatios, Ltd. url:

2 498 M. Alkasassbeh, Z. Omar is called a block method which iitially developed by [2] to provide startig values for predictor-corrector schemes. The usage of this method was further exteded by [] ad [5] to get better approximatio for solvig (). However, block methods are sometimes cofied by zero-stability barrier (see [6]). Hece, several mathematicias itroduced hybrid block methods to overcome this drawback of block methods. I hybrid block methods step ad off-step poits are combied to form a sigle block for solvig ODEs, see [5],[9],[0]. I order to ehace the accuracy of the solutio, [3] suggested secod derivative methods which ca solve stiff ODEs. For the same reaso, [2] also proposed a Simpso s type secod derivative method to approximate the solutio of first order stiff ODEs system. Based o the previous work metioed above, we attempt to develop a ew geeralized two-hybrid oe-step third derivative implicit method for solvig secod order ODEs directly usig iterpolatio ad collocatio approach which ca improve the accuracy. 2. Developmet of the Method The followig power series is used as a basis fuctio for a approximate solutio to () y(x) = 2v+u j=0 a j ( x x ) j, (2) h where u ad v are the umber of iterpolatio ad collocatio poits respectively. The, the secod ad third derivatives are 2v+u y (x) = j=2 2v+u y (x) = j=3 a j j! h 2 (j 2)! (x x ) j 2 = f(x,y,y ), (3) h a j j! h 3 (j 3)! (x x ) j 3 = g(x,y,y ). (4) h Iterpolatig (2) at x +û, for û = {0,r} ad collocatig (3) ad (4) at all poits x +ˆv, for ˆv = {0,r,s,} where {0 < r < s < }, ad the combiig the

3 GENERALIZED TWO-HYBRID ONE-STEP IMPLICIT resulted equatios gives a system of equatios i matrix form a 0 y r r 2 r 3 r 4 r 9 2 a y +r h 2 2 6r 2r !r 7 a 2 f h 2 h 2 h 2 7!h 2 2 6s 2s !s 7 a 3 f +r h 2 h 2 h 2 7!h ! 2 a h 2 h 2 h 2 7!h 6 2 a 5 = f +s f +. (5) h 3 a 6 g 6 24r 9!r h 3 h 3 6!h 3 a 7 g +r 6 24s 9!s a 8 g +s h 3 h 3 6!h ! a 9 g + h 3 h 3 6!h 3 Solvig the ukow coefficiets a js i (5) usig matrix maipulatio ad substitutig them back ito Equatio (2) yields y(x) = α 0 y +α r y +r +h 2 [β r f +r +β s f +s + β i f +i ]+h 3 [γ r g +r +γ s g +s + γ i g +i ], (6) where = 0,,2,...,N, h = x x is the costat step size for the partitio π N of the iterval [a,b] which is give by π N = [a = x 0 < x <... < x N < x N = b], α 0,α r,β 0,β r,β s,β,γ 0,γ r,γ s ad γ are udetermied costats listed i Appedix I. Differetiatig (6) with respect to x produces y (x) = x α 0y + x α ry +r +h 2 [ x β rf +r + x β sf +s + +h 3 [ x γ rg +r + x γ sg +s + x β if +i ] x γ ig +i ]. (7) Evaluatig (6) at the o iterpolatig poits {x +s,x + }ad (7) at all poits x +i, i = {0,r,s,} produces the followig geeral equatios i block form A (0) Y m+ = A () Y m + B (i) F m+i + D (i) G m+i, (8)

4 500 M. Alkasassbeh, Z. Omar where rh sh A (0) = , A () = h , B (0) B (0) 26 B (0) = B (0) B (0), B () = B (0) B (0) D (0) D (0) 26 D (0) = D (0) D (0), D () = D (0) D (0) 66 B () B () 2 B () 3 B () 2 B () 22 B () 23 B () 3 B () 32 B () 33 B () 4 B () 42 B () 43 B () 5 B () 52 B () 53 B () 6 B () 62 B () 63 D () D () 2 D () 3 D () 2 D () 22 D () 32 D () 3 D () 32 D () 33 D () 4 D () 42 D () 43 D () 5 D () 52 D () 53 D () 6 D () 62 D () 63,. Y m+ = [ y +r,y +s,y +,y +r,y +s,y +] T, Y m = [ y s,y r,y,y s,y r,y ] T, F m = [ ] T f 5,f 4,f 3,f 2,f,f, F m+ = [ ] T f +r,f +s,f +, G m = [ ] T g 5,g 4,g 2,g,g, G m+ = [ ] T g +r,g +s,g +. II. Here, the o-zero etries of B (0),B (),D (0) ad D () are listed i Appedix

5 GENERALIZED TWO-HYBRID ONE-STEP IMPLICIT Aalysis of the Method 3.. Zero Stability Defiitio. The hybrid block method formula (8) is said to be zero stable if o root (R z ) of the first characteristic equatio ρ(r) has modulus greater tha oe i.e R z ad if R z = the the multiplicity of R z must ot exceed two. To show that the roots of the first characteristic equatio satisfies the prior defiitio we assume that {r,s} (0,) ad hece ρ(r) =det([ra (0) A () ]) = 0 R rh 0 R sh ρ(r) = 0 0 R R h = 0, R R which implies whose solutios are R 4 (R ) 2 = 0, R = R 2 = R 3 = R 4 = 0, R 5 = R 6 =. Therefore, the developed method is zero stable Order of the Method The liear operator ˆL associated with the hybrid block methods formula (8) accordig to [3] ad [4] is said to be of order p if ˆL{y(x);h} = A (0) Y m A () Y m+ B (i) F m+i expadig i Taylor series ad combiig like terms D (i) G m+i, ˆL{y(x); h} = C i h i y (i) = 0, (9)

6 502 M. Alkasassbeh, Z. Omar where C 0 = C =... = C p+ = 0 ad C p+2 0. The term C p+2 is called the error costat ad the local trucatio error is give by : t +k = C p+2 y p+2 h p+2 (x )+O(h p+3 ). Equatio (9) ca be expressed as show below E 0 E 2 0 E 3 E 4 = 0 0, E 5 0 E 6 0 where the values E,E 2,E 3,E 4,E 5 ad E 6 are listed i Appedix III. Comparig the coefficiets of y i ad h i produces C 0 = C =... = C 9 = 0 with vector of error costats C 0 = r 6 s 2 (3r 4 0r 3 s 2 0r 3 +9r 2 s 3 +36r 2 s 2 +9r 2 36rs 3 36rs 2 +42s 2 ) s 7 (9r 2 s 4 36r 2 s 3 +42r 2 s 0rs 5 +36rs 4 36rs 3 +3s 5 0s 4 +9s 3 ) (42r K 2 s 4 36r 2 s 3 +9r 2 s 36rs 4 +36rs 3 0rs+9s 3 0s 2 +3) 2r 5 s 2 (5r 4 5r 3 s 2 5r 3 +2r 2 s 3 +48r 2 s 2 +2r 2 42rs 3 42rs 2 +42s 2 ) 2s 6 (2r 2 s 4 42r 2 s 3 +42r 2 s 5rs 5 +48rs 4 42rs 3 +5s 5 5s 4 +2s 3 ) (84r 2 s 4 84r 2 s 3 +24r 2 s 84rs 4 +96rs 3 30rs+24s 3 30s 2 +0),, where K = , which implies that the order p of this method is Cosistecy Defiitio 2. A block method is said to be cosistet if its order p is greater tha oe. Sice the order p = 8 of the hybrid block method from the above aalysis that is greater tha oe hece the cosistecy property is satisfied Covergece Theorem 3 (Herici, 962). Cosistecy ad zero stability are sufficiet coditios for a liear multi-step method to be coverget.

7 GENERALIZED TWO-HYBRID ONE-STEP IMPLICIT The hybrid block formula (8) is coverget sice it fulfils both the cosistecy ad zero stability coditios. 4. Numerical Examples I this sectio the accuracy of the geeral two hybrid oe-step implicit hybrid block formula (8) with order 8 is examied o three test problems, with step size h = 00. The computed results are the compared with the latest methods. Problem. f(x,y,y ) = 00y, y(0) =, y (0) = 0. Exact Solutio. y = e 0x, with h = 00. Source. [6]. X Exact Computed Error i Error value solutio solutio ew method for [6] (+00) (-) (-4) (-0) (-4) (-0) (-3) (-9) (-3 ).55924(-9) (-3) (-9) (-3) (-9) (-3) (-9) (-3) (-9) (-3) (-9) (-2) (-9) (-2) (-9) Table : Compariso of the proposed method with [6]. Problem 2. f(x,y,z) = x(y ) 2, y(0) =, y (0) = 2. Exact Solutio. y = +l( 2+x 2 x ), with h = 00. Source. [7].

8 504 M. Alkasassbeh, Z. Omar X Exact Computed Error i Error value solutio solutio ew method for [7] (-6).02(-5) (-6).938(-4) (-5).69(-3) (-6) 4.034(-3) (-5).482(-2) (-5) (-2) (-4) 6.566(-2) (-4).2952(-) (-4) 2.643(-) (-3) (-) Table 2: Compariso of the proposed method with [7]. Problem 3. f(x,y,y ) = y, y(0) = 0, y () =. Exact Solutio. y = e x, with h = 00. Source. [8]. X Exact Computed Error i Error value solutio solutio ew method for [8] (-7) (-3) (-6).6425(-2) (-6) (-2) (-6) (-2) (-5 ).338(-) (-5) 2.037(-) (-5) (-) (-5) (-) (-5) 6.78(-) (-4 ) 8.23(-) Table 3: Compariso of the proposed method with [8]. 5. Coclusio A geeral two hybrid oe-step block method of uiform order 8 has bee developed for the direct solutio of geeral secod order ODEs. The developed method is tested o three problems. Numerical aalysis shows that the developed method is cosistet ad zero stable which implies its covergece. Besides havig excellet properties of the umerical method, the umerical results reveals that the ew method has perform better tha the existig

9 GENERALIZED TWO-HYBRID ONE-STEP IMPLICIT methods. Refereces [] P. Herici, Discrete Variable Methods i ODE, Joh Wiley ad Sos, New York (962). [2] W.E. Mile, Numerical Solutio of Differetial Equatios, Joh Wiley ad Sos, New York (953). [3] S.O. Fatula, Numerical Methods for Iitial Value Problems i Ordiary Differetial Equatio, Academic Press, New York (988). [4] J.D. Lambert, Computatioal Methods i ODEs, Joh Wiley ad Sos, New York (973). [5] W. Gragg, H.J. Stetter, Geeralized multistep predictor-corrector methods, J. Assoc. Comput. Mach., (964), [6] F.M. Kolawole, Cotiuous hybrid block stomer cowell methods for solutios of secod order ordiary differetial equatios, Joural of Mathematical ad Computatioal Sciece, 4 (204), [7] A. O. Adesaya, M. K. Fasasi, ad T. A. Aake, Three steps hybrid block method for the solutio of geeral secod order ordiary differetial equatios, J.P. Joural of Applied Mathematics, 8 (203), -. [8] O. Olaega, D. O. Awoyemi, B. G. Oguware, ad F. O. Obarhua, Cotiuous doublehybrid poit method for the solutio of secod order ordiary differetial equatios, Iteratioal Joural of Advaced Scietific ad Techical Research, 5 (205), [9] W.H. Eright, Secod derivative multistep methods for stiff ordiary differetial equatios, SIAM J. Numer. Aal., (974), [0] S. N. Jator, Solvig secod order iitial value problems by a hybrid multistep method without predictors, Applied Mathematics ad Computatio, 27 (200), [] C. W. Gear, Hybrid methods for iitial value problems i ordiary differetial equatios, SIAM Joural of Numerical Aalysis, 2 (964), [2] R.K. Sahi, S.N. Jator, N. A. Kha, a simpso s-type secod derivative method for stiff systems, Iteratioal joural of pure ad applied mathematics, 8 (202), [3] F. Ngwae, S. Jator, Block hybrid-secod derivative method for stiff systems, It. J. Pure Appl. Math., 80 (202), [4] L. F. Shampie, H. A. Watts, Block implicit oe-step methods, Mathematics of Computatio, 23 (969), [5] J.D. Rosser, A Ruge-kutta for all seasos, SIAM, Rev., 9 (967), [6] G.G. Dahlquist, Numerical itegratio of ordiary differetial equatios, Math. Scad., 4 (956), [7] Gupta, G.K. Implemetig secod-derivative multistep methods usig Nordsieck polyomial represetatio, Math. Comp., 32 (978), 3-8.

10 506 M. Alkasassbeh, Z. Omar Appedix I α 0 = (x x+hr) (hr), α r = (x x ), (hr) β 0 = ( (((x x ) 2 /2 ((x x ) 4 (3r 2 s 2 +4r 2 s+3r 2 +4rs 2 +4rs+3s 2 ))/ (2h 2 r 2 s 2 )+((x x ) 9 (r +s+rs))/(36h 7 r 3 s 3 )+((x x ) 5 (r 3 s 3 + 4r 3 s 2 +4r 3 s+r 3 +4r 2 s 3 +8r 2 s 2 +4r 2 s+4rs 3 +4rs 2 +s 3 ))/(0h 3 r 3 s 3 ) +(hr(x x )( 0r 5 s 0r 5 +36r 4 s 2 +53r 4 s+36r 4 36r 3 s 3 08r 3 s 2 08r 3 s 36r 3 +90r 2 s 3 +24r 2 s 2 +90r 2 s+68rs 3 +68rs 2 882s 3 ))/ (2520s 3 ) ((x x ) 8 (4r 2 s+4r 2 +4rs 2 +rs+4r+4s 2 +4s))/(56h 6 r 3 s 3 ) ((x x ) 6 (4r 3 s 2 +7r 3 s+4r 3 +4r 2 s 3 +20r 2 s 2 +20r 2 s+4r 2 +7rs 3 +20rs 2 +7rs+4s 3 +4s 2 ))/(30h 4 r 3 s 3 )+((x x ) 7 (r 3 s+r 3 +4r 2 s 2 +8r 2 s+4r 2 +rs 3 +8rs 2 +8rs+r+s 3 +4s 2 +s))/(2h 5 r 3 s 3 ) ), β r = ( (((x x ) 8 (7r 3 +7r 2 s+7r 2 8rs 2 3rs 8r+4s 2 +4s))/(56h 6 r 3 (r s) 3 (r ) 3 ) (hr(x x )(05r 6 385r 5 s 385r r 4 s r 4 s +468r 4 80r 3 s 3 836r 3 s 2 836r 3 s 80r r 2 s r 2 s r 2 s 966rs 3 966rs s 3 ))/(2520(r s) 3 (r ) 3 ) ((x x ) 6 ( 7r 3 s 2 28r 3 s 7r 3 +5r 2 s 3 +3r 2 s 2 +3r 2 s+5r 2 +5rs 3 +4rs 2 +5rs 4s 3 4s 2 ))/(30h 4 r 3 (r s) 3 (r ) 3 )+((x x ) 9 (2r s+2rs 3r 2 ))/ (36h 7 r 3 (r s) 3 (r ) 3 )+((x x ) 7 ( 7r 3 s 7r 3 +2r 2 s 2 2r 2 s+2r 2 + 2rs 3 +7rs 2 +7rs+2r s 3 4s 2 s))/(2h 5 r 3 (r s) 3 (r ) 3 ) (s(x x ) 5 (7r 3 s+7r 3 5r 2 s 2 7r 2 s 5r 2 +rs 2 +rs+s 2 ))/(0h 3 r 3 (r s) 3 (r ) 3 ) (s 2 (x x ) 4 (5r 3s+5rs 7r 2 ))/(2h 2 r 2 (r s) 3 (r ) 3 )) ), β s = ( ((((x x ) 7 ( 2r 3 s+r 3 2r 2 s 2 7r 2 s+4r 2 +7rs 3 +2rs 2 7rs+r+ 7s 3 2s 2 2s))/(2h 5 s 3 (r s) 3 (s ) 3 )+((x x ) 6 (5r 3 s 2 +5r 3 s 4r 3 7r 2 s 3 +3r 2 s 2 +4r 2 s 4r 2 28rs 3 +3rs 2 +5rs 7s 3 +5s 2 ))/(30h 4 s 3 (r s) 3 (s ) 3 )+((x x ) 9 (r 2s 2rs+3s 2 ))/(36h 7 s 3 (r s) 3 (s ) 3 ) ((x x ) 8 ( 8r 2 s+4r 2 +7rs 2 3rs+4r+7s 3 +7s 2 8s))/(56h 6 s 3 (r s) 3 (s ) 3 ) (hr 5 (x x )( 20r 4 s+0r 4 +75r 3 s 2 +25r 3 s 36r 3 63r 2 s 3 243r 2 s 2 +08r 2 s+36r rs 3 +38rs 2 98rs 294s 3 +20s 2 )) /(2520s 3 (r s) 3 (s ) 3 )+(r(x x ) 5 ( 5r 2 s 2 +r 2 s+r 2 +7rs 3 7rs 2 + rs+7s 3 5s 2 ))/(0h 3 s 3 (r s) 3 (s ) 3 ) (r 2.(x x ) 4 (3r 5s 5rs+

11 GENERALIZED TWO-HYBRID ONE-STEP IMPLICIT s 2 ))/(2h 2 s 2 (r s) 3 (s ) 3 ))) ), β = ( (((x x ) 8 (4r 2 s 8r 2 +4rs 2 3rs+7r 8s 2 +7s+7))/(56h 6 (r ) 3 (s ) 3 ) ((x x ) 7 (r 3 s 2r 3 +4r 2 s 2 7r 2 s 2r 2 +rs 3 7rs 2 +2rs+7r 2s 3 2s 2 +7s))/(2h 5 (r ) 3 (s ) 3 ) ((x x ) 6 ( 4r 3 s 2 +5r 3 s+5r 3 4r 2 s 3 +4r 2 s 2 +3r 2 s 7r 2 +5rs 3 +3 rs 2 28rs+5s 3 7s 2 ))/(30h 4 (r ) 3 (s ) 3 )+((x x ) 9 (2r+2s rs 3))/(36h 7 (r ) 3 (s ) 3 )+(hr 5 (x x )(0r 4 s 20r 4 36r 3 s 2 +25r 3 s+75r 3 +36r 2 s 3 +08r 2 s 2 243r 2 s 63r 2 98rs rs rs+20s 3 294s 2 ))/(2520(r ) 3 (s ) 3 ) (rs(x x ) 5 (r 2 s 2 +r 2 s 5r 2 +rs 2 7rs+7r 5s 2 +7s))/(0h 3 (r ) 3 (s ) 3 ) (r 2 s 2 (x x ) 4 (5r+5s 3rs 7))/(2h 2 (r ) 3 (s ) 3 )) ), γ 0 = ( (((x x )(x x+hr)(8h 7 r 6 s 5h 7 r 7 +8h 7 r 6 8h 7 r 5 s 2 72h 7 r 5 s 8h 7 r 5 +84h 7 r 4 s 2 +84h 7 r 4 s 26h 7 r 3 s 2 5h 6 r 6 x+5h 6 r 6 x + 8h 6 r 5 sx 8h 6 r 5 sx +8h 6 r 5 x 8h 6 r 5 x 8h 6 r 4 s 2 x+8h 6 r 4 s 2 x 72h 6 r 4 sx+72h 6 r 4 sx 8h 6 r 4 x+8h 6 r 4 x +84h 6 r 3 s 2 x 84h 6 r 3 s 2 x +84h 6 r 3 sx 84h 6 r 3 sx 26h 6 r 2 s 2 x+26h 6 r 2 s 2 x 5h 5 r 5 x 2 +0h 5 r 5 xx 5h 5 r 5 x 2 +8h 5 r 4 sx 2 36h 5 r 4 sxx +8h 5 r 4 sx 2 +8h 5 r 4 x 2 36h 5 r 4 xx +8h 5 r 4 x 2 8h 5 r 3 s 2 x 2 +36h 5 r 3 s 2 xx 8h 5 r 3 s 2 x 2 72h5 r 3 sx 2 +44h 5 r 3 sxx 72h 5 r 3 sx 2 8h5 r 3 x 2 +36h 5 r 3 xx 8h 5 r 3 x 2 +84h5 r 2 s 2 x 2 68h 5 r 2 s 2 xx +84h 5 r 2 s 2 x 2 +84h5 r 2 sx 2 68 h 5 r 2 sxx +84h 5 r 2 sx h5 rs 2 x 2 588h 5 rs 2 xx +294h 5 rs 2 x 2 5h4 r 4 x 3 +5h 4 r 4 x 2 x 5h 4 r 4 xx 2 +5h 4 r 4 x 3 +8h 4 r 3 sx 3 54h 4 r 3 sx 2 x +54h 4 r 3 sxx 2 8h 4 r 3 sx 3 +8h 4 r 3 x 3 54h 4 r 3 x 2 x +54h 4 r 3 xx 2 8h 4 r 3 x 3 8h 4 r 2 s 2 x 3 +54h 4 r 2 s 2 x 2 x 54h 4 r 2 s 2 xx 2 +8h 4 r 2 s 2 x 3 72h 4 r 2 sx 3 +26h 4 r 2 sx 2 x 26h 4 r 2 sxx 2 +72h4 r 2 sx 3 8h4 r 2 x 3 +54h 4 r 2 x 2 x 54h 4 r 2 xx 2 +8h4 r 2 x 3 336h4 rs 2 x h 4 rs 2 x 2 x 008h 4 r s 2 xx h4 rs 2 x 3 336h4 rsx h 4 rsx 2 x 008h 4 rsxx h4 rsx 3 26h 4 s 2 x h 4 s 2 x 2 x 378h 4 s 2 xx 2 +26h 4 s 2 x 3 5h 3 r 3 x h 3 r 3 x 3 x 30h 3 r 3 x 2 x 2 +20h 3 r 3 xx 3 5h 3 r 3 x 4 +8h 3 r 2 sx 4 72h 3 r 2 sx 3 x +08h 3 r 2 sx 2 x 2 72h 3 r 2 sxx 3 +8h 3 r 2 sx 4 +8h 3 r 2 x 4 72h 3 r 2 x 3 x + 08h 3 r 2 x 2 x 2 72h3 r 2 xx 3 +8h3 r 2 x 4 +08h3 rs 2 x 4 432h 3 rs 2 x 3 x +648 h 3 rs 2 x 2 x 2 432h3 rs 2 xx 3 +08h3 rs 2 x h3 rsx 4 728h 3 rsx 3 x +

12 508 M. Alkasassbeh, Z. Omar 2592h 3 rsx 2 x 2 728h3 rsxx h3 rsx 4 +08h3 rx 4 432h 3 rx 3 x +648h 3 rx 2 x 2 432h 3 rxx 3 +08h 3 rx 4 +68h 3 s 2 x 4 672h 3 s 2 x 3 x +008 h 3 s 2 x 2 x 2 672h 3 s 2 xx 3 +68h 3 s 2 x 4 +68h 3 sx 4 672h 3 sx 3 x +008h 3 sx 2 x 2 672h 3 sxx 3 +68h 3 sx 4 5h 2 r 2 x 5 +25h 2 r 2 x 4 x 50h 2 r 2 x 3 x 2 +50h 2 r 2 x 2 x 3 25h2 r 2 xx 4 +5h2 r 2 x 5 50h2 rsx h 2 rsx 4 x 500h 2 rsx 3 x h2 rsx 2 x 3 750h2 rsxx 4 +50h2 rsx 5 50h2 rx h 2 rx 4 x 500h 2 rx 3 x h2 rx 2 x 3 750h2 rxx 4 +50h2 rx 5 60h2 s 2 x h 2 s 2 x 4 x 600h 2 s 2 x 3 x h 2 s 2 x 2 x 3 300h 2 s 2 xx 4 +60h 2 s 2 x 5 240h 2 sx h 2 sx 4 x 2400h 2 sx 3 x h 2 sx 2 x 3 200h 2 sxx h 2 sx 5 60 h 2 x h 2 x 4 x 600h 2 x 3 x h2 x 2 x 3 300h2 xx 4 +60h2 x 5 +55hrx6 330hrx 5 x +825hrx 4 x 2 00hrx3 x hrx2 x 4 330hrxx5 +55hrx6 +90hsx 6 540hsx 5 x +350hsx 4 x 2 800hsx3 x hsx2 x 4 540hsx x 5 +90hsx 6 +90hx 6 540hx 5 x +350hx 4 x 2 800hx 3 x hx 2 x 4 540hxx 5 +90hx 6 35x x 6 x 735x 5 x x 4 x 3 225x 3 x x 2 x 5 245xx 6 +35x 7 ))/(2520h 6 r 2 s 2 ) ), γ r = ( ((x x ) 9 /(72h 6 r 2 (r s) 2 (r ) 2 ) ((x x ) 6 (r 2 s 2 +4r 2 s+r 2 rs 3 2rs 2 +rs 2s 3 2s 2 ))/(30h 3 r 2 (r s) 3 (r ) 2 ) (s 2 (x x ) 4 )/(2hr(r s) 2 (r ) 2 )+(h 2 r 2 (x x )(5r 4 5r 3 s 5r 3 +2r 2 s 2 +48r 2 s+2r 2 42rs 2 42rs+42s 2 ))/(260(r s) 2 (r ) 2 ) ((x x ) 8 (r 2 +rs+2r 2s 2 2s))/(56h 5 r 2 (r s) 3 (r ) 2 )+((x x ) 7 (2r 2 s+2r 2 rs 2 +2rs +r s 3 4s 2 s))/(42h 4 r 2 (r s) 3 (r ) 2 ) (s(x x ) 5 ( 2r 2 s 2r 2 +2rs 2 +rs+s 2 ))/(20h 2 r 2 (r s) 3 (r ) 2 )) ), γ s = ( ((r 2 s(x x ) 4 (r ))/(2h(s )(rs s 2 ) 2 (r +s rs ))+((x x ) 6 (hr 9 s 3 +hr 9 s 2 2hr 9 s hr 8 s 4 3hr 8 s 2 +4hr 8 s hr 7 s 4 3hr 7 s 3 +4hr 7 s 2 +8hr 6 s 4 4hr 6 s 2 4hr 6 s 8hr 5 s 4 +3hr 5 s 3 +3hr 5 s 2 +2hr 5 s+hr 4 s 4 h r 4 s 2 +hr 3 s 4 hr 3 s 3 ))/(30h 4 r 3 s 2 (r s) 2 (r ) 2 (s ) 2 (rs s 2 )(r +s rs )) ((x x ) 8 (2hr 8 s 2 2hr 8 s hr 7 s 3 3hr 7 s 2 +4hr 7 s hr 6 s 4 +2hr 6 s 3 hr 6 s 2 +3hr 5 s 4 +hr 5 s 2 4hr 5 s 3hr 4 s 4 2hr 4 s 3 +3hr 4 s 2 +2hr 4 s+ hr 3 s 4 +hr 3 s 3 2hr 3 s 2 ))/(56h 6 r 3 s(r s)(r ) 2 (s )(r +s rs )(r 2 s 2 r 2 s 3 +2rs 4 2rs 3 s 5 +s 4 ))+((x x )(5h 3 r 3 s 2 5h 3 r 3 s 4h 3 r 2 s 3 9h 3 r 2 s 2 +33h 3 r 2 s+9h 3 r s 4 +87h 3 r s 3 9h 3 r s 2 87h 3 r s 63h 3

13 GENERALIZED TWO-HYBRID ONE-STEP IMPLICIT r 0 s 4 20h 3 r 0 s 3 +5h 3 r 0 s 2 +3h 3 r 0 s+77h 3 r 9 s 4 +79h 3 r 9 s h 3 r 9 s 2 72h 3 r 9 s 243h 3 r 8 s 4 +9h 3 r 8 s 3 +26h 3 r 8 s 2 +8h 3 r 8 s+62h 3 r 7 s 4 02h 3 r 7 s 3 60h 3 r 7 s 2 42h 3 r 6 s 4 +42h 3 r 6 s 3 ))/(2520hrs 2 (r s) 2 (r ) 2 (s ) 2 (rs s 2 )(r +s rs ))+((x x ) 5 (2hr 9 s 3 hr 9 s 2 hr 9 s 2hr 8 s 4 3hr 8 s 3 +2hr 8 s 2 +3hr 8 s+4hr 7 s 4 hr 7 s 3 3hr 7 s+hr 6 s 3 2hr 6 s 2 +hr 6 s 4hr 5 s 4 +3hr 5 s 3 +hr 5 s 2 +2hr 4 s 4 2hr 4 s 3 ))/(20h 3 r 3 s 2 (r s) 2 (r )(s )(rs s 2 )(r +s rs ) 2 )+((x x ) 9 (hr 7 s 2 hr 7 s hr 6 s 3 2hr 6 s 2 +3hr 6 s+3hr 5 s 3 3hr 5 s 3hr 4 s 3 +2hr 4 s 2 +h r 4 s+hr 3 s 3 hr 3 s 2 ))/(72h 7 r 3 s 2 (r s) 2 (r )(s )(rs s 2 )(r 2 s 2 2r 2 s+r 2 2rs 2 +4rs 2r+s 2 2s+)) ((x x ) 7 (hr 9 s 2 hr 9 s+hr 8 s 3 hr 8 s 2hr 7 s 4 3hr 7 s 3 3hr 7 s 2 +8hr 7 s+4hr 6 s 4 +4hr 6 s 3 8hr 6 s 4hr 5 s 3 +3hr 5 s 2 +hr 5 s 4hr 4 s 4 +3hr 4 s 3 +hr 4 s+2hr 3 s 4 hr 3 s 3 h r 3 s 2 ))/(42h 5 rs 2 (r s)(r )(s ) 2 (rs s 2 )(r +s rs )(r 2 s r 3 s r 3 +r 4 ))) ), γ = ( (((x x )(5h 3 r 3 s 4 5h 3 r 3 s 3 33h 3 r 2 s 5 +9h 3 r 2 s 4 +4h 3 r 2 s h 3 r s 6 +9h 3 r s 5 87h 3 r s 4 9h 3 r s 3 3h 3 r 0 s 7 5h 3 r 0 s 6 +20h 3 r 0 s 5 +63h 3 r 0 s 4 +72h 3 r 9 s h 3 r 9 s 7 79h 3 r 9 s 6 77h 3 r 9 s 5 8h 3 r 8 s 9 26h 3 r 8 s 8 9h 3 r 8 s h 3 r 8 s 6 +60h 3 r 7 s 9 +02h 3 r 7 s 8 62h 3 r 7 s 7 42h 3 r 6 s 9 +42h 3 r 6 s 8 ))/(2520hrs 2 (r s) 2 (r ) 2 (s ) 2 (rs s 2 )(r +s rs )) ((x x ) 4 (hr 8 s 4 hr 8 s 5 +3hr 7 s 6 2h r 7 s 5 hr 7 s 4 3hr 6 s 7 +3hr 6 s 5 +hr 5 s 8 +2hr 5 s 7 3hr 5 s 6 hr 4 s 8 +hr 4 s 7 ))/(2h 2 r 2 (r s)(r ) 2 (s ) 2 (rs s 2 ) 2 (r +s rs )) ((x x ) 6 (hr 9 s 4 2hr 9 s 5 +hr 9 s 3 +4hr 8 s 6 3hr 8 s 5 hr 8 s 3 +4hr 7 s 6 3hr 7 s 5 h r 7 s 4 4hr 6 s 8 4hr 6 s 7 +8hr 6 s 5 +2hr 5 s 9 +3hr 5 s 8 +3hr 5 s 7 8hr 5 s 6 h r 4 s 9 +hr 4 s 7 hr 3 s 9 +hr 3 s 8 ))/(30h 4 r 3 s 2 (r s) 2 (r ) 2 (s ) 2 (rs s 2 ) (r +s rs )) ((x x ) 5 (2hr 9 s 4 hr 9 s 5 hr 9 s 6 +3hr 8 s 7 +2hr 8 s 6 3hr 8 s 5 2hr 8 s 4 3hr 7 s 8 hr 7 s 6 +4hr 7 s 5 +hr 6 s 9 2hr 6 s 8 +hr 6 s 7 +h r 5 s 9 +3hr 5 s 8 4hr 5 s 7 2hr 4 s 9 +2hr 4 s 8 ))/20h 3 r 3 s 2 (r s) 2 (r )(s ) (rs s 2 )(r +s rs ) 2 ) ((x x ) 9 (hr 7 s 3 hr 7 s 4 +3hr 6 s 5 2hr 6 s 4 hr 6 s 3 3hr 5 s 6 +3hr 5 s 4 +hr 4 s 7 +2hr 4 s 6 3hr 4 s 5 hr 3 s 7 +hr 3 s 6 ))/(72 h 7 r 3 s 2 (r s) 2 (r )(s )(rs s 2 )(r 2 s 2 2r 2 s+r 2 2rs 2 +4rs 2r+ s 2 2s+)) (s 2 (r s) 2 (x x ) 8 (2r+2s+))/(56h 5 (r )(r+s rs

14 50 M. Alkasassbeh, Z. Omar )(r 2 s 2 r 2 s 3 +2rs 4 2rs 3 s 5 +s 4 ))+((x x ) 7 (hr 9 s 3 hr 9 s 4 hr 8 s 5 +hr 8 s 3 +8hr 7 s 6 3hr 7 s 5 3hr 7 s 4 2hr 7 s 3 8hr 6 s 7 +4hr 6 s 5 +4hr 6 s 4 +hr 5 s 8 +3hr 5 s 7 4hr 5 s 6 +hr 4 s 9 +3hr 4 s 7 4hr 4 s 6 hr 3 s 9 hr 3 s 8 +2hr 3 s 7 ))/(42h 5 rs 2 (r s)(r )(s ) 2 (rs s 2 )(r +s rs )(r 2 s r 3 s r 3 +r 4 )) ). Appedex II B (0) 6 = h2 r s 3 ( 0r 5 s 0r 5 +36r 4 s 2 +53r 4 s+36r 4 36r 3 s 3 08r 3 s 2 08r 3 s 36r 3 +90r 2 s 3 +24r 2 s 2 +90r 2 s+68rs 3 +68rs 2 882s 3), B (0) 26 = h2 s r 3 ( 36r 3 s 3 +90r 3 s 2 +68r 3 s 882r 3 +36r 2 s 4 08r 2 s r 2 s 2 +68r 2 s 0rs 5 +53rs 4 08rs 3 +90rs 2 0s 5 +36s 4 36s 3), B (0) 36 = h r 3 s 3 ( 882r 3 s 3 +68r 3 s 2 +90r 3 s 36r 3 +68r 2 s 3 +24r 2 s 2 08r 2 s+36r 2 +90rs 3 08rs 2 +53rs 0r 36s 3 +36s 2 0s ), B (0) 46 = hr 420s 3 ( 5r 5 s 5r 5 +6r 4 s 2 +23r 4 s+6r 4 4r 3 s 3 40r 3 s 2 40 r 3 s 4r 3 +28r 2 s 3 +28r 2 s+56rs 3 +56rs 2 20s 3), B (0) 56 = hs ( 4r 3 420r 3 s 3 28r 3 s 2 56r 3 s+20r 3 6r 2 s 4 +40r 2 s 3 56r 2 s+ 5rs 5 23rs 4 +40rs 3 28rs 2 +5s 5 6s 4 +4s 3), B (0) 66 = h ( 20r 3 420r 3 s 3 s 3 56r 3 s 2 28r 3 s+4r 3 56r 2 s 3 +40r 2 s 6r 2 28rs 3 +40rs 2 23rs+5r +4s 3 6s 2 +5s) ). B () = h 2 r (r s) 3 (r ) 3 ( 05r 6 385r 5 s 385r r 4 s r 4 s+ 468r 4 80r 3 s 3 836r 3 s 2 836r 3 s 80r r 2 s r 2 s r 2 s 966rs 3 966rs s 3), B () 2 = h 2 r s 3 (r s) 3 (s ) 3 ( 20r 4 s+0r 4 +75r 3 s 2 +25r 3 s 36r 3 63r 2 s 3

15 GENERALIZED TWO-HYBRID ONE-STEP IMPLICIT r 2 s 2 +08r 2 s+36r rs 3 +38rs 2 98rs 294s 3 +20s 2), B () 3 = h 2 r (r ) 3 (s ) 3 ( 0r 4 s 20r 4 36r 3 s 2 +25r 3 s+75r 3 +36r 2 s 3 +08r 2 s 2 243r 2 s 63r 2 98rs 3 +38rs rs+20s 3 294s 2), B () 2 = h 2 s 6 ( 63r r 3 (r s) 3 (r ) 3 s r 3 s 294r 3 +75r 2 s 3 243r 2 s 2 ) +38r 2 s+20r 2 20rs 4 +25rs 3 +08rs 2 98rs+0s 4 36s 3 +36s 2), B () 22 = h 2 s (r s) 3 (s ) 3 ( 80r 3 s r 3 s 2 966r 3 s+378r r 2 s 4 836r 2 s 3 +05s r 2 s 2 966r 2 s 385rs rs 4 836rs rs 2 385s s 4 80s 3), B () 23 = h 2 s (r ) 3 (s ) 3 ( 36r 3 s 2 98r 3 s+20r 3 36r 2 s 3 +08r 2 s r 2 s 294r 2 +0rs 4 +25rs 3 243rs rs 20s 4 +75s 3 63s 2), B () 3 = h r 3 (r s) 3 (r ) 3 ( 294r 3 s r 3 s 63r 3 +20r 2 s 3 +38r 2 s 2 243r 2 s+75r 2 98rs 3 +08rs 2 +25rs 20r +36s 3 36s 2 +0s ), B () 32 = h s 3 (r s) 3 (s ) 3 ( 20r 3 s 2 98r 3 s+36r 3 294r 2 s 3 +38r 2 s 2 +08r 2 s 36r rs 3 243rs 2 +25rs+0r 63s 3 +75s 2 20s ), B () 33 = h (r ) 3 (s ) 3 ( 378r 3 s r 3 s 2 720r 3 s+80r r 2 s 3 248r 2 s r 2 s 468r 2 720rs rs 2 457rs+385r +80 s 3 468s s 05 ), B () 4 = hr 420(r s) 3 (r ) 3 ( 05r 6 350r 5 s 350r r 4 s 2 +87r 4 s+388r 4 40r 3 s 3 342r 3 s 2 342r 3 s 40r r 2 s r 2 s r 2 s 574rs 3 574rs 2 +20s 3), B () 42 = hr 5 420s 3 (r s) 3 (s ) 3 ( 0r 4 s+5r 4 +35r 3 s 2 +0r 3 s 6r 3 28r 2 s 3 98r 2 s 2 +46r 2 s+4r 2 +98rs 3 +42rs 2 70rs 98s 3 +70s 2), B () 43 = hr 5 420(r ) 3 (s ) 3 ( 5r 4 s 0r 4 6r 3 s 2 +0r 3 s+35r 3 +4r 2 s 3

16 52 M. Alkasassbeh, Z. Omar +46r 2 s 2 98r 2 s 28r 2 70rs 3 +42rs 2 +98rs+70s 3 98s 2), B () 5 = hs 5 420r 3 (r s) 3 (r ) 3 ( 28r 3 s 2 +98r 3 s 98r 3 +35r 2 s 3 98r 2 s r 2 s+70r 2 0rs 4 +0rs 3 +46rs 2 70rs+5s 4 6s 3 +4s 2), B () 52 = hs ( 40r 3 420(r s) 3 (s ) 3 s r 3 s 2 574r 3 s+20r r 2 s 4 342r 2 s 3 +05s r 2 s 2 574r 2 s 350rs 5 +87rs 4 342rs rs 2 350s s 4 40s 3), B () 53 = hs 5 420(r ) 3 (s ) 3 ( 4r 3 s 2 70r 3 s+70r 3 6r 2 s 3 +46r 2 s 2 +42r 2 s 98r 2 +5rs 4 +0rs 3 98rs 2 +98rs 0s 4 +35s 3 28s 2), B () 6 = h 420r 3 (r s) 3 (r ) 3 ( 98r 3 s 2 +98r 3 s 28r 3 +70r 2 s 3 +42r 2 s 2 98r 2 s+35r 2 70rs 3 +46rs 2 +0rs 0r +4s 3 6s 2 +5s ), B () 62 = h ( 70r 3 420s 3 (r s) 3 (s ) 3 s 2 70r 3 s+4r 3 98r 2 s 3 +42r 2 s r 2 s 6r 2 +98rs 3 98rs 2 +0rs+5r 28s 3 +35s 2 0s ), B () 63 = h 420(r ) 3 (s ) 3 ( 20r 3 s r 3 s 2 490r 3 s+40r r 2 s 3 554r 2 s r 2 s 388r 2 490rs rs 2 87rs+350 r +40s 3 388s s 05 ). D (0) 6 = h3 r s 2 ( 5r 4 8r 3 s 8r 3 +8r 2 s 2 +72r 2 s+8r 2 84rs 2 84rs +26s 2), D (0) 26 = h3 s r 2 ( 8r 2 s 2 84r 2 s+26r 2 8rs 3 +72rs 2 84rs+5s 4 8s 3 +8s 2), D (0) 36 = h3 2520r 2 s 2 ( 26r 2 s 2 84r 2 s+8r 2 84rs 2 +72rs 8r +8s 2 8s +5), D (0) 46 = h2 r 2 840s 2 ( 5r 4 6r 3 s 6r 3 +4r 2 s 2 +56r 2 s+4r 2 56rs 2 56rs +70s 2),

17 GENERALIZED TWO-HYBRID ONE-STEP IMPLICIT D (0) 56 = h2 s 2 840r 2 ( 4r 2 s 2 56r 2 s+70r 2 6rs 3 +56rs 2 56rs+5s 4 6s 3 +4s 2), D (0) 66 = h2 840r 2 s 2 ( 70r 2 s 2 56r 2 s+4r 2 56rs 2 +56rs 6r +4s 2 6s+5 ). D () = h 3 r 3 260(r s) 2 (r ) 2 ( 5r 4 5r 3 s 5r 3 +2r 2 s 2 +48r 2 s+2r 2 42rs 2 42rs+42s 2), D () 2 = h 3 r s 2 (r s) 2 (s ) 2 ( 8r 42s+36rs 9r 2 s 8r 2 +5r 3), D () 3 = h 3 r (r ) 2 (s ) 2 ( 5r 3 8r 2 s 9r 2 +8rs 2 +36rs 42s 2), D () 2 = h 3 s r 2 (r s) 2 (r ) 2 ( 42r 8s 36rs+9rs 2 +8s 2 5s 3), D () 22 = h 3 s 3 260(r s) 2 (s ) 2 ( 2r 2 s 2 42r 2 s+42r 2 5rs 3 +48rs 2 42rs+5s 4 5s 3 +2s 2), D () 23 = h 3 s (r ) 2 (s ) 2 ( 8r 2 s 42r 2 8rs 2 +36rs+5s 3 9s 2), D () 3 = h r 2 (r s) 2 (r ) 2 ( 9r +8s 36rs+42rs 2 8s 2 5 ), D () 32 = h s 2 (r s) 2 (s ) 2 ( 8r +9s 36rs+42r 2 s 8r 2 5 ), D () 33 = h 3 260(r ) 2 (s ) 2 ( 42r 2 s 2 42r 2 s+2r 2 42rs 2 +48rs 5r +2s 2 5s+5 ), D () 4 = h 2 r 2 840(r s) 2 (r ) 2 ( 5r 4 40r 3 s 40r 3 +28r 2 s 2 +2r 2 s+28r 2 84rs 2 84rs+70s 2), D () 42 = h 2 r 5 840s 2 (r s) 2 (s ) 2 ( 4r 28s+28rs 8r 2 s 6r 2 +5r 3), D () 43 = h 2 r 5 840(r ) 2 (s ) 2 ( 5r 3 6r 2 s 8r 2 +4rs 2 +28rs 28s 2),

18 54 M. Alkasassbeh, Z. Omar D () 5 = h 2 s 5 840r 2 (r s) 2 (r ) 2 ( 28r 4s 28rs+8rs 2 +6s 2 5s 3) D () 52 = h 2 s 2 840(r s) 2 (s ) 2 ( 28r 2 s 2 84r 2 s+70r 2 40rs 3 +2rs 2 84rs+5s 4 40s 3 +28s 2), D () 53 = h 2 s 5 840(r ) 2 (s ) 2 ( 4r 2 s 28r 2 6rs 2 +28rs+5s 3 8s 2), D () 6 = h 2 840r 2 (r s) 2 (r ) 2 ( 8r +6s 28rs+28rs 2 4s 2 5 ), D () 62 = h 2 840s 2 (r s) 2 (s ) 2 ( 6r +8s 28rs+28r 2 s 4r 2 5 ), D () 63 = h 2 840(r ) 2 (s ) 2 ( 70r 2 s 2 84r 2 s+28r 2 84rs 2 +2rs 40r +28s 2 40s+5 ). Appidex III E = ( (hi r i )y (i) y hry 2520s 3 (h 2 y (2) r 2 (882s 3 +0r 5 (+s) 68rs 2 (+s)+36r 3 (+s) 3 6r 2 s(5+4s+5s 2 ) r 4 (36+ 53s+36s 2 ))) h i+2 y (i+2) [ 2520( +r) 3 (r s) 3 ) (r)i (r 2 (05r s 3 385r 5 (+s) 966rs 2 (+s)+6r 2 s(20+403s+20s 2 )+r 4 ( s+468s 2 ) 36r 3 (5+5s+5s 2 +5s 3 )) (2520(r s) 3 ( +s) 3 s 3 )) (r 6 (0r 4 ( +2s)+42s 2 ( 5+7s)+r 3 (36 25s 75s 2 ) 6rs( s+42s 2 )+9r 2 ( 4 2s+27s 2 +7s 3 ))(s) i (2520( +r) 3 ( +s) 3 ) (r 6 (0r 4 ( 2+s)+42s 2 ( 7+5s)+r 3 (75+25s 36s 2 ) 6rs( 42 23s+33s 2 )+9r 2 ( 7 27s+2s 2 +4s 3 ))] (2520s 2 ) (h3 y (3) r 3 (5r s 2 8r 3 (+s) 84rs(+s)+8r 2 (+4s+s 2 )))+ h i+3 y (i+3) [ (260( +r) 2 (r s) 2 )) ri ((r 3 (5r 4 +42s 2 5r 3 (+s) 42rs(+s)+2r 2 (+4s+s 2 ))) (2520(r s) 2 ( +s) 2 s 2 ) si ((r 6 (5r 3 42s 9r 2 (2+s)+8r (+2s)))) (2520( +r) 2 ( +s) 2 ) ((r6 (5r 3 42s 2 +8rs(2+s) 9r 2 (+2s))) ),

19 GENERALIZED TWO-HYBRID ONE-STEP IMPLICIT E 2 = E 3 = [ (hi s i )y (i) y hsy (2520r 3 ) (h2 y (2) s 2 (2s 3 (8 8s+5s 2 ) 2r 2 s (4+2s 9s 2 +3s 3 )+6r 3 (47 28s 5s 2 +6s 3 )+rs 2 ( 90+08s 53s 2 +0s 3 ))) h i+2 y (i+2) [ (2520( +r) 3 r 3 (r s) 3 ) (r)i ((s 6 (2r 3 (4 2s +3s 2 ) 2s 2 (8 8s+5s 2 )+rs(98 08s 25s 2 +20s 3 ) 3r 2 (70+46s 8s 2 +25s 3 ))))+ (2520(r s) 3 ( +s) 3 ) (s)i ((s 2 (s 3 (80 468s+385s 2 05s 3 ) +6r 3 ( 63+6s 20s 2 +30s 3 ) 6r 2 s( 6+403s 306s 2 +78s 3 )+rs 2 ( s 457s s 3 )))) (2520( +r) 3 ( +s) 3 )) (((s6 (s 2 ( 63+75s 20s 2 )+6r 3 (35 33s+6s 2 ) 6r 2 (49 23s 8s 2 +6s 3 )+rs( s +25s 2 +0s 3 ))))] [ (2520r 2 ) (h3 y (3) (s 3 (6r 2 (2 4s+3s 2 ) 6rs(4 2s+3s 2 ) +s 2 (8 8s+5s 2 ))))] h i+3 y (i+3) 840 [ (2520( +r) 2 r 2 (r s) 2 ) ri ((s 6 (r( 42+36s 9s 2 )+s(8 8s+5s 2 )))) (260(r s) 2 ( +s) 2 )) si (((s 3 (6r 2 (7 7s+2s 2 ) 3rs ] (4 6s+5s 2 )+s 2 (2 5s+5s 2 )))) (s6 ( 8r( 2+s)s+6r 2 ( 7+3s)+s 2 ( 9+5s))), ( (2520( +r) 2 ( +s) 2 ) ] (hi )y(i) y hy 2520r 3 s (h 2 y (2) 3 (2s(5 8s+8s 2 )+r(0 53s +08s 2 90s 3 ) 2r 2 (3 9s+2s 2 +4s 3 )+6r 3 (6 5s 28s 2 +47s 3 )) h i+2 y (i+2) [ (2520( +r) 3 r 3 (r s) 3 ) ri ((2r 3 (3 2s+4s 2 ) 2s(5 8s +8s 2 ) 3r 2 (25 8s+46s 2 +70s 3 )+r(20 25s 08s 2 +98s 3 )))+ (2520(r s) 3 ( +s) 3 s 3 ) si ((s( 20+75s 63s 2 )+6r 3 (6 33s+35s 2 ) 6r 2 (6 8s 23s 2 +49s 3 )+r(0+25s 243s s 3 )))+ (2520( +r) 3 ( +s) 3 ) ((05 385s+468s 2 80s 3 +6r 3 ( 30+20s 6s 2 +63s 3 ) 6r 2 ( s 403s 2 +6s 3 )+r( s 836s s 3 )))] (2520r 2 s 2 ) (h3 y (3) (5 8s+8s 2 6r(3 2s+4s 2 )+6r 2 (3 4s+2s 2 ))) [(2520( +r) 2 r 2 (r s) 2 ) ri ((5 8s+8s 2 +r( 9+36s 42s 2 )))+ (2520(r s) 2 ( +s) 2 s 2 ) si ((5 9s+8r( +2s) 6r 2 ( 3+7s))) h i+3 y (i+3) (260( +r) 2 ( +s) 2 ) (( 5+5s 2s2 6r 2 (2 7s+7s 2 )+3r(5 6s+4s 2 )))] ), E 4 = ( (hi r i )y (i+) y (420s 3 ) (hy(2) r(20s 3 +5r 5 (+s) 56rs 2 (+s) r 4 (6+23s+6s 2 ) 28r 2 (s+s 3 )+2r 3 (7+20s+20s 2 +7s 3 ))) h i+ y (i+2) [ (420( +r) 3 (r s) 3 ) ri (r(05r 6 +20s 3 350r 5 (+s) 574rs 2

20 56 M. Alkasassbeh, Z. Omar (+s)+4r 2 s(35+s+35s 2 )+r 4 (388+87s+388s 2 ) 2r 3 (70+67s +67s 2 +70s 3 )))+ (420(r s) 3 ( +s) 3 s 3 )) si ( ((r 5 (5r 4 ( +2s)+4s 2 ( 5+7s) +r 3 (6 0s 35s 2 ) 4rs( 5+3s+7s 2 )+2r 2 ( 7 23s+49s 2 +4s 3 )))) + (420( +r) 3 ( +s) 3 )) ( r5 (5r 4 ( 2+s)+4s 2 ( 7+5s)+r 3 (35+0s 6s 2 ) +4rs(7+3s 5s 2 )+2r 2 ( 4 49s+23s 2 +7s 3 )))] (840s 2 ) (h2 y (3) (r 2 (5r 4 +70s 2 6r 3 (+s) 56rs(+s)+4r 2 (+4s+s 2 ))))+ h i+2 y (i+3) [ (840( +r) 2 (r s) 2 )) ri ( ((r 2 (5r 4 +70s 2 40r 3 (+s) 84rs(+s)+28r 2 (+4s+s 2 ))))+ (840(r s) 2 ( +s) 2 s 2 ) si ((r 5 (5r 3 28s 8r 2 (2+s)+4r(+2s)))) ) + (840( +r) 2 ( +s) 2 ) ((r5 (5r 3 28s 2 +4rs(2+s) 8r 2 (+2s))))], ( s E 5 = i (hi )y (i+) y (420r 3 )) (hy(2) s(s 3 (4 6s+5s 2 )+4r 3 (5 4s 2s 2 +s 3 ) 8r 2 s(7 5s 2 +2s 3 )+rs 2 ( 28+40s 23s 2 +5s 3 ))) [ (420( +r) 3 r 3 (r s) 3 ) ri ((s 5 (s 2 ( 4+6s 5s 2 )+4r 3 (7 7s+2s 2 ) 7r 2 (0+6s 4s 2 +5s 3 )+2rs(35 23s 5s 2 +5s 3 ))))+ (420(r s) 3 ( +s) 3 )) s i (s(s 3 (40 388s+350s 2 05s 3 )+4r 3 ( 5+4s 35s 2 +0s 3 ) 2r 2 s( s 67s 2 +94s 3 )+rs 2 ( s 87s s 3 )))+ (420( +r) 3 ( +s) 3 )) ( s5 (s 2 ( 28+35s 0s 2 )+4r 3 (5 5s+s 2 ) +r 2 ( 98+42s+46s 2 6s 3 )+rs(98 98s+0s 2 +5s 3 )))] (840r 2 ) (h 2 y (3) (s 2 (4r 2 (5 4s+s 2 ) 8rs(7 7s+2s 2 )+s 2 (4 6s+5s 2 )))) + h i+2 y (i+3) [ (840( +r) 2 r 2 (r s) 2 ) ri ((s 5 ( 4r(7 7s+2s 2 )+s(4 6s +5s 2 ))))+ (840(r s) 2 ( +s) 2 )) si ( ((s 2 (4r 2 (5 6s+2s 2 ) 4rs(2 28s+ ) 0s 2 )+s 2 (28 40s+5s 2 ))))+ (s5 (4r 2 ( 2+s) 4rs( 7+4s)+s 2 ( 8+5s))) (840( +r) 2 ( +s) 2 ) ], h i+ y (i+2) E 6 = ( (hi )y(i+) y (420r 3 s 3 )) (hy(2) (s(5 6s+4s 2 )+r(5 23s+40s 2 28s 3 ) 8r 2 (2 5s+7s 3 )+4r 3 ( 2s 4s 2 +5s 3 ))) h i+ y (i+2) [ (420( +r) 3 r 3 (r s) 3 ) ri ((s( 5+6s 4s 2 )+4r 3 (2 7s+7s 2 ) 7r 2 (5 4s+6s 2 +0s 3 )+2r(5 5s 23s 2 +35s 3 )))+ (420(r s) 3 ( +s) 3 s 3 ) si ((s( 0 +35s 28s 2 )+4r 3 ( 5s+5s 2 )+r 2 ( 6+46s+42s 2 98s 3 )+r(5+0s 98s 2 +98s 3 )))+ (420( +r) 3 ( +s) 3 )) ((05 350s+388s2 40s 3 +4r 3 ( 0 +35s 4s 2 +5s 3 ) 2r 2 ( 94+67s 777s s 3 )+r( s

21 GENERALIZED TWO-HYBRID ONE-STEP IMPLICIT s s 3 )))] (840r 2 s 2 ) (hi+2 y (3) (5 6s+4s 2 +4r 2 ( 4s+5s 2 ) 8r(2 7s+7s 2 ))) h i+2 y (i+3) [ (840( +r) 2 r 2 (r s) 2 ) ri ((5 6s+4s 2 4r (2 7s+7s 2 )))+ (840(r s) 2 ( +s) 2 s 2 ) si ((5+r 2 (4 28s) 8s+4r( 4+7s))) + (840( +r) 2 ( +s) 2 ) (( 5+40s 28s2 4r 2 (2 6s+5s 2 )+4r(0 28s+ 2s 2 ))) ).

22 58

A Class of Blended Block Second Derivative Multistep Methods for Stiff Systems

A Class of Blended Block Second Derivative Multistep Methods for Stiff Systems Iteratioal Joural of Iovative Mathematics, Statistics & Eerg Policies ():-6, Ja.-Mar. 7 SEAHI PUBLICATIONS, 7 www.seahipa.org ISSN: 67-8X A Class of Bleded Bloc Secod Derivative Multistep Methods for Stiff

More information

Five Steps Block Predictor-Block Corrector Method for the Solution of ( )

Five Steps Block Predictor-Block Corrector Method for the Solution of ( ) Applied Mathematics, 4,, -66 Published Olie May 4 i SciRes. http://www.scirp.org/oural/am http://dx.doi.org/.46/am.4.87 Five Steps Block Predictor-Block Corrector y = f x, y, y Method for the Solutio of

More information

A NEW CLASS OF 2-STEP RATIONAL MULTISTEP METHODS

A NEW CLASS OF 2-STEP RATIONAL MULTISTEP METHODS Jural Karya Asli Loreka Ahli Matematik Vol. No. (010) page 6-9. Jural Karya Asli Loreka Ahli Matematik A NEW CLASS OF -STEP RATIONAL MULTISTEP METHODS 1 Nazeeruddi Yaacob Teh Yua Yig Norma Alias 1 Departmet

More information

A Pseudo Spline Methods for Solving an Initial Value Problem of Ordinary Differential Equation

A Pseudo Spline Methods for Solving an Initial Value Problem of Ordinary Differential Equation Joural of Matematics ad Statistics 4 (: 7-, 008 ISSN 549-3644 008 Sciece Publicatios A Pseudo Splie Metods for Solvig a Iitial Value Problem of Ordiary Differetial Equatio B.S. Ogudare ad G.E. Okeca Departmet

More information

Implicit One-Step Legendre Polynomial Hybrid Block Method for the Solution of First-Order Stiff Differential Equations

Implicit One-Step Legendre Polynomial Hybrid Block Method for the Solution of First-Order Stiff Differential Equations British Joural of Mathematics & Computer Sciece 8(6): 482-49, 205, Article o.bjmcs.205.80 ISSN: 223-085 SCIENCEDOMAIN iteratioal www.sciecedomai.org Implicit Oe-Step Legedre Polyomial Hybrid Block Method

More information

A Continuous Block Integrator for the Solution of Stiff and Oscillatory Differential Equations

A Continuous Block Integrator for the Solution of Stiff and Oscillatory Differential Equations IOSR Joural of Mathematics (IOSR-JM) e-issn: 78-578,p-ISSN: 39-765X, Volume 8, Issue 3 (Sep. - Oct. 3), PP 75-8 www.iosrourals.org A Cotiuous Block Itegrator for the Solutio of Stiff ad Oscillatory Differetial

More information

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION Iteratioal Joural of Pure ad Applied Mathematics Volume 103 No 3 2015, 537-545 ISSN: 1311-8080 (prited versio); ISSN: 1314-3395 (o-lie versio) url: http://wwwijpameu doi: http://dxdoiorg/1012732/ijpamv103i314

More information

μ are complex parameters. Other

μ are complex parameters. Other A New Numerical Itegrator for the Solutio of Iitial Value Problems i Ordiary Differetial Equatios. J. Suday * ad M.R. Odekule Departmet of Mathematical Scieces, Adamawa State Uiversity, Mubi, Nigeria.

More information

Some New Iterative Methods for Solving Nonlinear Equations

Some New Iterative Methods for Solving Nonlinear Equations World Applied Scieces Joural 0 (6): 870-874, 01 ISSN 1818-495 IDOSI Publicatios, 01 DOI: 10.589/idosi.wasj.01.0.06.830 Some New Iterative Methods for Solvig Noliear Equatios Muhammad Aslam Noor, Khalida

More information

Solution of Differential Equation from the Transform Technique

Solution of Differential Equation from the Transform Technique Iteratioal Joural of Computatioal Sciece ad Mathematics ISSN 0974-3189 Volume 3, Number 1 (2011), pp 121-125 Iteratioal Research Publicatio House http://wwwirphousecom Solutio of Differetial Equatio from

More information

PAijpam.eu ON DERIVATION OF RATIONAL SOLUTIONS OF BABBAGE S FUNCTIONAL EQUATION

PAijpam.eu ON DERIVATION OF RATIONAL SOLUTIONS OF BABBAGE S FUNCTIONAL EQUATION Iteratioal Joural of Pure ad Applied Mathematics Volume 94 No. 204, 9-20 ISSN: 3-8080 (prited versio); ISSN: 34-3395 (o-lie versio) url: http://www.ijpam.eu doi: http://dx.doi.org/0.2732/ijpam.v94i.2 PAijpam.eu

More information

wavelet collocation method for solving integro-differential equation.

wavelet collocation method for solving integro-differential equation. IOSR Joural of Egieerig (IOSRJEN) ISSN (e): 5-3, ISSN (p): 78-879 Vol. 5, Issue 3 (arch. 5), V3 PP -7 www.iosrje.org wavelet collocatio method for solvig itegro-differetial equatio. Asmaa Abdalelah Abdalrehma

More information

Higher-order iterative methods by using Householder's method for solving certain nonlinear equations

Higher-order iterative methods by using Householder's method for solving certain nonlinear equations Math Sci Lett, No, 7- ( 7 Mathematical Sciece Letters A Iteratioal Joural http://dxdoiorg/785/msl/5 Higher-order iterative methods by usig Householder's method for solvig certai oliear equatios Waseem

More information

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation Iteratioal Joural of Mathematics Research. ISSN 0976-5840 Volume 9 Number 1 (017) pp. 45-51 Iteratioal Research Publicatio House http://www.irphouse.com A collocatio method for sigular itegral equatios

More information

Two Step Hybrid Block Method with Two Generalized Off-step Points for Solving Second Ordinary Order Differential Equations Directly

Two Step Hybrid Block Method with Two Generalized Off-step Points for Solving Second Ordinary Order Differential Equations Directly Global Journal of Pure and Applied Matematics. ISSN 0973-768 Volume 2, Number 2 (206), pp. 59-535 Researc India Publications ttp://www.ripublication.com/gjpam.tm Two Step Hybrid Block Metod wit Two Generalized

More information

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS. If g( is cotiuous i [a,b], te uder wat coditio te iterative (or iteratio metod = g( as a uique solutio i [a,b]? '( i [a,b].. Wat

More information

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations Numerical Methods for Ordiary Differetial Equatios Braislav K. Nikolić Departmet of Physics ad Astroomy, Uiversity of Delaware, U.S.A. PHYS 460/660: Computatioal Methods of Physics http://www.physics.udel.edu/~bikolic/teachig/phys660/phys660.html

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Modified Decomposition Method by Adomian and. Rach for Solving Nonlinear Volterra Integro- Differential Equations

Modified Decomposition Method by Adomian and. Rach for Solving Nonlinear Volterra Integro- Differential Equations Noliear Aalysis ad Differetial Equatios, Vol. 5, 27, o. 4, 57-7 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/ade.27.62 Modified Decompositio Method by Adomia ad Rach for Solvig Noliear Volterra Itegro-

More information

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft.

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft. International Journal of Mathematical Analysis Vol. 9, 015, no. 46, 57-7 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.57181 Developing a Single Step Hybrid Block Method with Generalized

More information

Direct Solution of Initial Value Problems of Fourth Order Ordinary Differential Equations Using Modified Implicit Hybrid Block Method

Direct Solution of Initial Value Problems of Fourth Order Ordinary Differential Equations Using Modified Implicit Hybrid Block Method Joural of Scietific Research & Reports (): 79-8, ; Article o. JSRR...7 ISSN: 7 SCIENCEDOMAIN iteratioal www.sciecedoai.org Direct Solutio of Iitial Value Probles of Fourth Order Ordiary Differetial Equatios

More information

Research Article A New Second-Order Iteration Method for Solving Nonlinear Equations

Research Article A New Second-Order Iteration Method for Solving Nonlinear Equations Abstract ad Applied Aalysis Volume 2013, Article ID 487062, 4 pages http://dx.doi.org/10.1155/2013/487062 Research Article A New Secod-Order Iteratio Method for Solvig Noliear Equatios Shi Mi Kag, 1 Arif

More information

Exact Solutions for a Class of Nonlinear Singular Two-Point Boundary Value Problems: The Decomposition Method

Exact Solutions for a Class of Nonlinear Singular Two-Point Boundary Value Problems: The Decomposition Method Exact Solutios for a Class of Noliear Sigular Two-Poit Boudary Value Problems: The Decompositio Method Abd Elhalim Ebaid Departmet of Mathematics, Faculty of Sciece, Tabuk Uiversity, P O Box 741, Tabuki

More information

A Continuous Formulation of A(α)-Stable Second Derivative Linear Multistep Methods for Stiff IVPs in ODEs

A Continuous Formulation of A(α)-Stable Second Derivative Linear Multistep Methods for Stiff IVPs in ODEs Joural of Algorithms & Computatioal Techology Vol. 6 No. 79 A Cotiuous Formulatio of A(α)-Stable Secod Derivative Liear Multistep Methods for Stiff IVPs i ODEs R. I. Ouoghae ad M. N. O. Ihile Departmet

More information

Taylor polynomial solution of difference equation with constant coefficients via time scales calculus

Taylor polynomial solution of difference equation with constant coefficients via time scales calculus TMSCI 3, o 3, 129-135 (2015) 129 ew Treds i Mathematical Scieces http://wwwtmscicom Taylor polyomial solutio of differece equatio with costat coefficiets via time scales calculus Veysel Fuat Hatipoglu

More information

THE NUMERICAL SOLUTION OF THE NEWTONIAN FLUIDS FLOW DUE TO A STRETCHING CYLINDER BY SOR ITERATIVE PROCEDURE ABSTRACT

THE NUMERICAL SOLUTION OF THE NEWTONIAN FLUIDS FLOW DUE TO A STRETCHING CYLINDER BY SOR ITERATIVE PROCEDURE ABSTRACT Europea Joural of Egieerig ad Techology Vol. 3 No., 5 ISSN 56-586 THE NUMERICAL SOLUTION OF THE NEWTONIAN FLUIDS FLOW DUE TO A STRETCHING CYLINDER BY SOR ITERATIVE PROCEDURE Atif Nazir, Tahir Mahmood ad

More information

On the Derivation and Implementation of a Four Stage Harmonic Explicit Runge-Kutta Method *

On the Derivation and Implementation of a Four Stage Harmonic Explicit Runge-Kutta Method * Applied Mathematics, 05, 6, 694-699 Published Olie April 05 i SciRes. http://www.scirp.org/joural/am http://dx.doi.org/0.46/am.05.64064 O the Derivatio ad Implemetatio of a Four Stage Harmoic Explicit

More information

Stability Analysis of the Euler Discretization for SIR Epidemic Model

Stability Analysis of the Euler Discretization for SIR Epidemic Model Stability Aalysis of the Euler Discretizatio for SIR Epidemic Model Agus Suryato Departmet of Mathematics, Faculty of Scieces, Brawijaya Uiversity, Jl Vetera Malag 6545 Idoesia Abstract I this paper we

More information

One-Step Hybrid Block Method with One Generalized Off-Step Points for Direct Solution of Second Order Ordinary Differential Equations

One-Step Hybrid Block Method with One Generalized Off-Step Points for Direct Solution of Second Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 10, 2016, no. 29, 142-142 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.6127 One-Step Hybrid Block Method with One Generalized Off-Step Points for

More information

IN many scientific and engineering applications, one often

IN many scientific and engineering applications, one often INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL 3, NO, FEBRUARY 07 5 Secod Degree Refiemet Jacobi Iteratio Method for Solvig System of Liear Equatio Tesfaye Kebede Abstract Several

More information

THE TRANSFORMATION MATRIX OF CHEBYSHEV IV BERNSTEIN POLYNOMIAL BASES

THE TRANSFORMATION MATRIX OF CHEBYSHEV IV BERNSTEIN POLYNOMIAL BASES Joural of Mathematical Aalysis ISSN: 17-341, URL: http://iliriascom/ma Volume 7 Issue 4(16, Pages 13-19 THE TRANSFORMATION MATRIX OF CHEBYSHEV IV BERNSTEIN POLYNOMIAL BASES ABEDALLAH RABABAH, AYMAN AL

More information

NUMERICAL METHOD FOR SINGULARLY PERTURBED DELAY PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

NUMERICAL METHOD FOR SINGULARLY PERTURBED DELAY PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS THERMAL SCIENCE, Year 07, Vol., No. 4, pp. 595-599 595 NUMERICAL METHOD FOR SINGULARLY PERTURBED DELAY PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS by Yula WANG *, Da TIAN, ad Zhiyua LI Departmet of Mathematics,

More information

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION NEW NEWTON-TYPE METHOD WITH k -ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION R. Thukral Padé Research Cetre, 39 Deaswood Hill, Leeds West Yorkshire, LS7 JS, ENGLAND ABSTRACT The objective

More information

Section A assesses the Units Numerical Analysis 1 and 2 Section B assesses the Unit Mathematics for Applied Mathematics

Section A assesses the Units Numerical Analysis 1 and 2 Section B assesses the Unit Mathematics for Applied Mathematics X0/70 NATIONAL QUALIFICATIONS 005 MONDAY, MAY.00 PM 4.00 PM APPLIED MATHEMATICS ADVANCED HIGHER Numerical Aalysis Read carefully. Calculators may be used i this paper.. Cadidates should aswer all questios.

More information

DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS. Park Road, Islamabad, Pakistan

DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS. Park Road, Islamabad, Pakistan Mathematical ad Computatioal Applicatios, Vol. 9, No. 3, pp. 30-40, 04 DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS Muhammad Aslam Noor, Khalida Iayat Noor ad Asif Waheed

More information

The Sumudu transform and its application to fractional differential equations

The Sumudu transform and its application to fractional differential equations ISSN : 30-97 (Olie) Iteratioal e-joural for Educatio ad Mathematics www.iejem.org vol. 0, No. 05, (Oct. 03), 9-40 The Sumudu trasform ad its alicatio to fractioal differetial equatios I.A. Salehbhai, M.G.

More information

Numerical Conformal Mapping via a Fredholm Integral Equation using Fourier Method ABSTRACT INTRODUCTION

Numerical Conformal Mapping via a Fredholm Integral Equation using Fourier Method ABSTRACT INTRODUCTION alaysia Joural of athematical Scieces 3(1): 83-93 (9) umerical Coformal appig via a Fredholm Itegral Equatio usig Fourier ethod 1 Ali Hassa ohamed urid ad Teh Yua Yig 1, Departmet of athematics, Faculty

More information

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE UPB Sci Bull, Series A, Vol 79, Iss, 207 ISSN 22-7027 NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE Gabriel Bercu We itroduce two ew sequeces of Euler-Mascheroi type which have fast covergece

More information

NTMSCI 5, No. 1, (2017) 26

NTMSCI 5, No. 1, (2017) 26 NTMSCI 5, No. 1, - (17) New Treds i Mathematical Scieces http://dx.doi.org/1.85/tmsci.17.1 The geeralized successive approximatio ad Padé approximats method for solvig a elasticity problem of based o the

More information

The Method of Least Squares. To understand least squares fitting of data.

The Method of Least Squares. To understand least squares fitting of data. The Method of Least Squares KEY WORDS Curve fittig, least square GOAL To uderstad least squares fittig of data To uderstad the least squares solutio of icosistet systems of liear equatios 1 Motivatio Curve

More information

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n Review of Power Series, Power Series Solutios A power series i x - a is a ifiite series of the form c (x a) =c +c (x a)+(x a) +... We also call this a power series cetered at a. Ex. (x+) is cetered at

More information

The Numerical Solution of Singular Fredholm Integral Equations of the Second Kind

The Numerical Solution of Singular Fredholm Integral Equations of the Second Kind WDS' Proceedigs of Cotributed Papers, Part I, 57 64, 2. ISBN 978-8-7378-39-2 MATFYZPRESS The Numerical Solutio of Sigular Fredholm Itegral Equatios of the Secod Kid J. Rak Charles Uiversity, Faculty of

More information

Two-step Extrapolated Newton s Method with High Efficiency Index

Two-step Extrapolated Newton s Method with High Efficiency Index Jour of Adv Research i Damical & Cotrol Systems Vol. 9 No. 017 Two-step Etrapolated Newto s Method with High Efficiecy Ide V.B. Kumar Vatti Dept. of Egieerig Mathematics Adhra Uiversity Visakhapatam Idia.

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

Solving a Nonlinear Equation Using a New Two-Step Derivative Free Iterative Methods

Solving a Nonlinear Equation Using a New Two-Step Derivative Free Iterative Methods Applied ad Computatioal Mathematics 07; 6(6): 38-4 http://www.sciecepublishiggroup.com/j/acm doi: 0.648/j.acm.070606. ISSN: 38-5605 (Prit); ISSN: 38-563 (Olie) Solvig a Noliear Equatio Usig a New Two-Step

More information

Find quadratic function which pass through the following points (0,1),(1,1),(2, 3)... 11

Find quadratic function which pass through the following points (0,1),(1,1),(2, 3)... 11 Adrew Powuk - http://www.powuk.com- Math 49 (Numerical Aalysis) Iterpolatio... 4. Polyomial iterpolatio (system of equatio)... 4.. Lier iterpolatio... 5... Fid a lie which pass through (,) (,)... 8...

More information

Inverse Nodal Problems for Differential Equation on the Half-line

Inverse Nodal Problems for Differential Equation on the Half-line Australia Joural of Basic ad Applied Scieces, 3(4): 4498-4502, 2009 ISSN 1991-8178 Iverse Nodal Problems for Differetial Equatio o the Half-lie 1 2 3 A. Dabbaghia, A. Nematy ad Sh. Akbarpoor 1 Islamic

More information

On the convergence, consistence and stability of a standard finite difference scheme

On the convergence, consistence and stability of a standard finite difference scheme AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 2, Sciece Huβ, ttp://www.sciub.org/ajsir ISSN: 253-649X, doi:.525/ajsir.2.2.2.74.78 O te covergece, cosistece ad stabilit of a stadard fiite differece

More information

PAijpam.eu IRREGULAR SET COLORINGS OF GRAPHS

PAijpam.eu IRREGULAR SET COLORINGS OF GRAPHS Iteratioal Joural of Pure ad Applied Mathematics Volume 109 No. 7 016, 143-150 ISSN: 1311-8080 (prited versio); ISSN: 1314-3395 (o-lie versio) url: http://www.ijpam.eu doi: 10.173/ijpam.v109i7.18 PAijpam.eu

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

Løsningsførslag i 4M

Løsningsførslag i 4M Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side 1 av 6 Løsigsførslag i 4M Oppgave 1 a) A sketch of the graph of the give f o the iterval [ 3, 3) is as follows: The Fourier

More information

Convergence Proof of Some Generalised Backward Differentiation (GBDF) Methods to Solve the General Second Order Ordinary Differential Equations (ODE).

Convergence Proof of Some Generalised Backward Differentiation (GBDF) Methods to Solve the General Second Order Ordinary Differential Equations (ODE). Pertaika 7(2), 19-26 (1984) Covergece Proof of Some Geeralised Backward Differetiatio (GBDF) Methods to Solve the Geeral Secod Order Ordiary Differetial Equatios (ODE). MOHAMED BIN SULEIMAN Mathematics

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

An Improved Self-Starting Implicit Hybrid Method

An Improved Self-Starting Implicit Hybrid Method IOSR Joural o Matematics (IOSR-JM e-issn: 78-78, p-issn:9-76x. Volume 0, Issue Ver. II (Mar-Apr. 04, PP 8-6 www.iosrourals.org A Improved Sel-Startig Implicit Hbrid Metod E. O. Adeea Departmet o Matematics/Statistics,

More information

Application of a Two-Step Third-Derivative Block Method for Starting Numerov Method

Application of a Two-Step Third-Derivative Block Method for Starting Numerov Method Iteratioal Joural of eoretical ad Applied Matematics 7; (: -5 ttp://wwwsciecepublisiroupcom//itam doi: 648/itam75 Applicatio of a wo-step ird-derivative Block Metod for Starti Numerov Metod Oluwaseu Adeyeye

More information

*X203/701* X203/701. APPLIED MATHEMATICS ADVANCED HIGHER Numerical Analysis. Read carefully

*X203/701* X203/701. APPLIED MATHEMATICS ADVANCED HIGHER Numerical Analysis. Read carefully X0/70 NATIONAL QUALIFICATIONS 006 MONDAY, MAY.00 PM.00 PM APPLIED MATHEMATICS ADVANCED HIGHER Numerical Aalysis Read carefully. Calculators may be used i this paper.. Cadidates should aswer all questios.

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

THE REPRESENTATION OF THE REMAINDER IN CLASSICAL BERNSTEIN APPROXIMATION FORMULA

THE REPRESENTATION OF THE REMAINDER IN CLASSICAL BERNSTEIN APPROXIMATION FORMULA Global Joural of Advaced Research o Classical ad Moder Geometries ISSN: 2284-5569, Vol.6, 2017, Issue 2, pp.119-125 THE REPRESENTATION OF THE REMAINDER IN CLASSICAL BERNSTEIN APPROXIMATION FORMULA DAN

More information

A NUMERICAL METHOD OF SOLVING CAUCHY PROBLEM FOR DIFFERENTIAL EQUATIONS BASED ON A LINEAR APPROXIMATION

A NUMERICAL METHOD OF SOLVING CAUCHY PROBLEM FOR DIFFERENTIAL EQUATIONS BASED ON A LINEAR APPROXIMATION U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 4, 7 ISSN -77 A NUMERICAL METHOD OF SOLVING CAUCHY PROBLEM FOR DIFFERENTIAL EQUATIONS BASED ON A LINEAR APPROXIMATION Cristia ŞERBĂNESCU, Marius BREBENEL A alterate

More information

Solving third order boundary value problem with fifth order block method

Solving third order boundary value problem with fifth order block method Matematical Metods i Egieerig ad Ecoomics Solvig tird order boudary value problem wit it order bloc metod A. S. Abdulla, Z. A. Majid, ad N. Seu Abstract We develop a it order two poit bloc metod or te

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Accurac, Stabilit ad Sstems of Equatios November 0, 07 Numerical Solutios of Ordiar Differetial Equatios Accurac, Stabilit ad Sstems of Equatios Larr Caretto Mecaical Egieerig 0AB Semiar i Egieerig Aalsis

More information

POWER SERIES SOLUTION OF FIRST ORDER MATRIX DIFFERENTIAL EQUATIONS

POWER SERIES SOLUTION OF FIRST ORDER MATRIX DIFFERENTIAL EQUATIONS Joural of Applied Mathematics ad Computatioal Mechaics 4 3(3) 3-8 POWER SERIES SOLUION OF FIRS ORDER MARIX DIFFERENIAL EQUAIONS Staisław Kukla Izabela Zamorska Istitute of Mathematics Czestochowa Uiversity

More information

Newton Homotopy Solution for Nonlinear Equations Using Maple14. Abstract

Newton Homotopy Solution for Nonlinear Equations Using Maple14. Abstract Joural of Sciece ad Techology ISSN 9-860 Vol. No. December 0 Newto Homotopy Solutio for Noliear Equatios Usig Maple Nor Haim Abd. Rahma, Arsmah Ibrahim, Mohd Idris Jayes Faculty of Computer ad Mathematical

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

ON POINTWISE BINOMIAL APPROXIMATION

ON POINTWISE BINOMIAL APPROXIMATION Iteratioal Joural of Pure ad Applied Mathematics Volume 71 No. 1 2011, 57-66 ON POINTWISE BINOMIAL APPROXIMATION BY w-functions K. Teerapabolar 1, P. Wogkasem 2 Departmet of Mathematics Faculty of Sciece

More information

On the Variations of Some Well Known Fixed Point Theorem in Metric Spaces

On the Variations of Some Well Known Fixed Point Theorem in Metric Spaces Turkish Joural of Aalysis ad Number Theory, 205, Vol 3, No 2, 70-74 Available olie at http://pubssciepubcom/tjat/3/2/7 Sciece ad Educatio Publishig DOI:0269/tjat-3-2-7 O the Variatios of Some Well Kow

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

Some Variants of Newton's Method with Fifth-Order and Fourth-Order Convergence for Solving Nonlinear Equations

Some Variants of Newton's Method with Fifth-Order and Fourth-Order Convergence for Solving Nonlinear Equations Copyright, Darbose Iteratioal Joural o Applied Mathematics ad Computatio Volume (), pp -6, 9 http//: ijamc.darbose.com Some Variats o Newto's Method with Fith-Order ad Fourth-Order Covergece or Solvig

More information

Numerical Solution of the First-Order Hyperbolic Partial Differential Equation with Point-Wise Advance

Numerical Solution of the First-Order Hyperbolic Partial Differential Equation with Point-Wise Advance Iteratioal oural of Sciece ad Research (ISR) ISSN (Olie): 39-74 Ide Copericus Value (3): 4 Impact Factor (3): 4438 Numerical Solutio of the First-Order Hyperbolic Partial Differetial Equatio with Poit-Wise

More information

On a class of convergent sequences defined by integrals 1

On a class of convergent sequences defined by integrals 1 Geeral Mathematics Vol. 4, No. 2 (26, 43 54 O a class of coverget sequeces defied by itegrals Dori Adrica ad Mihai Piticari Abstract The mai result shows that if g : [, ] R is a cotiuous fuctio such that

More information

A multivariate rational interpolation with no poles in R m

A multivariate rational interpolation with no poles in R m NTMSCI 3, No., 9-8 (05) 9 New Treds i Mathematical Scieces http://www.tmsci.com A multivariate ratioal iterpolatio with o poles i R m Osma Rasit Isik, Zekeriya Guey ad Mehmet Sezer Departmet of Mathematics,

More information

1 6 = 1 6 = + Factorials and Euler s Gamma function

1 6 = 1 6 = + Factorials and Euler s Gamma function Royal Holloway Uiversity of Lodo Departmet of Physics Factorials ad Euler s Gamma fuctio Itroductio The is a self-cotaied part of the course dealig, essetially, with the factorial fuctio ad its geeralizatio

More information

Additional Notes on Power Series

Additional Notes on Power Series Additioal Notes o Power Series Mauela Girotti MATH 37-0 Advaced Calculus of oe variable Cotets Quick recall 2 Abel s Theorem 2 3 Differetiatio ad Itegratio of Power series 4 Quick recall We recall here

More information

Chapter 9: Numerical Differentiation

Chapter 9: Numerical Differentiation 178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

More information

Beyond simple iteration of a single function, or even a finite sequence of functions, results

Beyond simple iteration of a single function, or even a finite sequence of functions, results A Primer o the Elemetary Theory of Ifiite Compositios of Complex Fuctios Joh Gill Sprig 07 Abstract: Elemetary meas ot requirig the complex fuctios be holomorphic Theorem proofs are fairly simple ad are

More information

FLUID LIMIT FOR CUMULATIVE IDLE TIME IN MULTIPHASE QUEUES. Akademijos 4, LT-08663, Vilnius, LITHUANIA 1,2 Vilnius University

FLUID LIMIT FOR CUMULATIVE IDLE TIME IN MULTIPHASE QUEUES. Akademijos 4, LT-08663, Vilnius, LITHUANIA 1,2 Vilnius University Iteratioal Joural of Pure ad Applied Mathematics Volume 95 No. 2 2014, 123-129 ISSN: 1311-8080 (prited versio); ISSN: 1314-3395 (o-lie versio) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v95i2.1

More information

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION J Korea Math Soc 44 (2007), No 2, pp 487 498 GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION Gi-Sag Cheo ad Moawwad E A El-Miawy Reprited from the Joural of the Korea Mathematical

More information

Concavity Solutions of Second-Order Differential Equations

Concavity Solutions of Second-Order Differential Equations Proceedigs of the Paista Academy of Scieces 5 (3): 4 45 (4) Copyright Paista Academy of Scieces ISSN: 377-969 (prit), 36-448 (olie) Paista Academy of Scieces Research Article Cocavity Solutios of Secod-Order

More information

Miskolc Mathematical Notes HU e-issn Uniform approximation by means of some piecewise linear functions. Zoltán Finta

Miskolc Mathematical Notes HU e-issn Uniform approximation by means of some piecewise linear functions. Zoltán Finta Miskolc Mathematical Notes HU e-issn 787-43 Vol. 3 (00, No, pp. 0- DOI: 0.854/MMN.00.56 Uiform approimatio by meas of some piecewise liear fuctios Zoltá Fita Mathematical Notes, Miskolc, Vol. 3., No..,

More information

Research Article Some E-J Generalized Hausdorff Matrices Not of Type M

Research Article Some E-J Generalized Hausdorff Matrices Not of Type M Abstract ad Applied Aalysis Volume 2011, Article ID 527360, 5 pages doi:10.1155/2011/527360 Research Article Some E-J Geeralized Hausdorff Matrices Not of Type M T. Selmaogullari, 1 E. Savaş, 2 ad B. E.

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.) Calculus - D Yue Fial Eam Review (Versio //7 Please report ay possible typos) NOTE: The review otes are oly o topics ot covered o previous eams See previous review sheets for summary of previous topics

More information

Lecture 8: Solving the Heat, Laplace and Wave equations using finite difference methods

Lecture 8: Solving the Heat, Laplace and Wave equations using finite difference methods Itroductory lecture otes o Partial Differetial Equatios - c Athoy Peirce. Not to be copied, used, or revised without explicit writte permissio from the copyright ower. 1 Lecture 8: Solvig the Heat, Laplace

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

A 2nTH ORDER LINEAR DIFFERENCE EQUATION

A 2nTH ORDER LINEAR DIFFERENCE EQUATION A 2TH ORDER LINEAR DIFFERENCE EQUATION Doug Aderso Departmet of Mathematics ad Computer Sciece, Cocordia College Moorhead, MN 56562, USA ABSTRACT: We give a formulatio of geeralized zeros ad (, )-discojugacy

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

Numerical Solution of the Two Point Boundary Value Problems By Using Wavelet Bases of Hermite Cubic Spline Wavelets

Numerical Solution of the Two Point Boundary Value Problems By Using Wavelet Bases of Hermite Cubic Spline Wavelets Australia Joural of Basic ad Applied Scieces, 5(): 98-5, ISSN 99-878 Numerical Solutio of the Two Poit Boudary Value Problems By Usig Wavelet Bases of Hermite Cubic Splie Wavelets Mehdi Yousefi, Hesam-Aldie

More information

CS321. Numerical Analysis and Computing

CS321. Numerical Analysis and Computing CS Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 September 8 5 What is the Root May physical system ca

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces IOSR Joural of Mathematics (IOSR-JM) e-issn: 78-578, p-issn:319-765x Volume 10, Issue 3 Ver II (May-Ju 014), PP 69-77 Commo Coupled Fixed Poit of Mappigs Satisfyig Ratioal Iequalities i Ordered Complex

More information

Numerical Solutions of Second Order Boundary Value Problems by Galerkin Residual Method on Using Legendre Polynomials

Numerical Solutions of Second Order Boundary Value Problems by Galerkin Residual Method on Using Legendre Polynomials IOSR Joural of Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 319-765X. Volume 11, Issue 6 Ver. IV (Nov. - Dec. 15), PP 1-11 www.iosrjourals.org Numerical Solutios of Secod Order Boudary Value Problems

More information

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α Nice plottig of proteis: I A widely used display of protei shapes is based o the coordiates of the alpha carbos - - C α -s. The coordiates of the C α -s are coected by a cotiuous curve that roughly follows

More information

Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations Numerical Methods for Partial Differetial Equatios CAAM 45 Sprig 005 Lecture 4 -step time-steppig methods: stability, accuracy Ruge-Kutta Methods, Istructor: Tim Warburto Today Recall AB stability regios

More information

Numerical integration of analytic functions

Numerical integration of analytic functions Numerical itegratio of aalytic fuctios Gradimir V. Milovaović, Dobrilo Ð Tošić, ad Miloljub Albijaić Citatio: AIP Cof. Proc. 1479, 146 212); doi: 1.163/1.4756325 View olie: http://dx.doi.org/1.163/1.4756325

More information

CS537. Numerical Analysis and Computing

CS537. Numerical Analysis and Computing CS57 Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 Jauary 9 9 What is the Root May physical system ca be

More information

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE Vol. 8 o. Joural of Systems Sciece ad Complexity Apr., 5 MOMET-METHOD ESTIMATIO BASED O CESORED SAMPLE I Zhogxi Departmet of Mathematics, East Chia Uiversity of Sciece ad Techology, Shaghai 37, Chia. Email:

More information

Finite Difference Approximation for Transport Equation with Shifts Arising in Neuronal Variability

Finite Difference Approximation for Transport Equation with Shifts Arising in Neuronal Variability Iteratioal Joural of Sciece ad Research (IJSR) ISSN (Olie): 39-764 Ide Copericus Value (3): 64 Impact Factor (3): 4438 Fiite Differece Approimatio for Trasport Equatio with Shifts Arisig i Neuroal Variability

More information