Pascal triangle variation and its properties

Size: px
Start display at page:

Download "Pascal triangle variation and its properties"

Transcription

1 Pascal triangle variation and its properties Mathieu Parizeau-Hamel 18 february 2013 Abstract The goal of this work was to explore the possibilities harnessed in the the possible variations of the famous Pascal triangle and in the incorporation of the Fibonacci and Lucas number sequences. Many relations of interest were found and the results helped to understand mathematical principles such as number sequence recurrence relations and seed numbers. Most of the relations present in the triangle remain to be found and this opens the door to number series never before seen. 1 Introduction In mathematics, the Pascal triangle was named after Blaise Pascal as he was the first to develop a significant quantity of uses for the triangular array of binomial coefficients [1, 2, 3]. Starting with an apex of 1 with positions outside the triangle counting as 0 and other numbers constituted of the sum of the above left and right numbers, one of the most well-known relations in the Pascal triangle is the Fibonacci series relation. When the numbers in the diagonals shown in Figure 1 were added, the results of the sums were to be the Fibonacci sequence [4, 5]. The Fibonacci sequence was named after Leonardo Pisano Bigollo, an Italian mathematician of the middle ages which is also responsible for the spreading of our present numeral system throughout Europe [8, 9]. It can be found in any subject that respects the golden ratio. One of these is the Fibonacci tiling which is obtained by adding a square to the right side of another square which side will be as big as the sum of all the sides of the 1

2 other squares it touches. The numbers that represent the length of the side of each square are found to be the fibonacci numbers. They are defined by the recurrence relation With seed values of The first numbers of this sequence are listed below F n = F n 1 + F n 2 (1) F 0 = 0, F 1 = 1 (2) 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, (3) These numbers can be generalized to obtain a different sequence of numbers called the Lucas numbers which employ the same relation [6, 7] With seed values of And are found in the integer sequence below L n = L n 1 + L n 2 (4) L 0 = 0, L 1 = 1 (5) 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, (6) Following the dynamic of the Pascal triangle, the Fibonacci numbers and of the Lucas numbers, two new triangles were created with different addition arrangements, one with the Fibonacci sequence and another with the Lucas sequence. The goal was to see what sequences of numbers would come out of such arrangements, if any relations could be observed out of these and to better represent the Fibonacci relation and its generalizations such as the Lucas sequence in the conditions of the Pascal triangle variation. 2

3 2 The basics of the Pascal triangle and of its variation The principle of seed number and recurrence relation along with the understanding of the Pascal triangle variation rules and addition arrangement is critical to the good understanding of the results. These factors are closely related to one another and their individual or common modification can alter each other, resulting in interesting or unwanted results. 2.1 Pascal triangle variation rules and addition arrangement Unlike the original version of the Pascal triangle where one number was the sum of the above left and right numbers, the variation presents a different approach to the shape medium of the triangle. First of all the Fibonacci numbers are placed at the left of the triangle in increasing order so that the apex of the triangle is equal to F 0 as depicted in Figure 1 Then, the triangle is completed such as depicted in figure 1 and 2 for the variation of Fibonacci and Lucas respectively. This process is repeated throughout the shape. The number sequence can be changed with any generalization of the Fibonacci sequence as long as the recurrence relation (1) or (4) are respected for most of the results below to remain true. The Pascal triangle variation that is found reveals interesting properties that will be further explained in the result section of this paper 2.2 Fibonacci and Lucas seed numbers The Fibonacci series use the seed numbers F 0 = 0 and F 1 = 1 to initiate the whole sequence (3). If any of these numbers were to change, the sequence is likely to become very different. It is indeed what Edouard Anatole Lucas did by changing the seeds to F 0 = 2 and F 1 = 1 and gave what is now known as the Lucas sequence (6). For example, if the seed numbers of the recurrence relation G n = G n 1 +G n 2 3

4 Figure 1: Pascal triangle variation rules with the Fibonacci sequence 4

5 Figure 2: Pascal triangle variation rules with the Lucas sequence 5

6 were to be G 0 = 1 and G 1 = 1 the following integer sequence would be found And so, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, (7) For F n having the interger sequence depicted in (3). G n = F n+1 (8) 2.3 Fibonacci and Lucas recurrent relation Although the different seeds numbers of the Fibonacci and Lucas sequences produce some quite different number suites, their recurrent relation is the same. What it does is adding the two numbers to the left of the desired number starting with the sum of the given seeds. It is also possible to change the recurrence relation in order to provide a different number sequence that differs from the Fibonacci and Lucas sequences. For example, the recurrence relation H n = H n 1 H n 2 (9) For seed numbers seen in (2) would give the integer sequence 0, 1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, (10) 2.4 Bisection of a number sequence The bisection of a number sequence only contain one part of the original number sequence. The Fibonacci and Lucas number sequences are respectively defined such as F 2 n ; F 2 n 1 (11) and L 2 n ; L 2 n 1 (12) 6

7 3 Results While completing the Pascal triangle variation and exploring its properties, newfound number sequences and the their attributes, many interesting results were found and are presented below. 3.1 Pascal triangle variation properties One of the most apparent properties about this variation is present as long as the recurrent relations (1) or (4) are respected. In this sense, both Fibonacci an Lucas sequence will express the same properties in this subsection. When the addition arrangement is respected, the Fibonacci sequence or any generalization of its seeds repeats itself to give the number sequences depicted in Figure 3. Figure 3: Pascal triangle variation property with the Fibonacci sequence 7

8 The the sum of each number present in individual latitudes of the triangle can be expressed in the form below n F 2i 1 i=1 n F i 1 (13) i=1 Following the principles of this relation, it can be said that every number in the Pascal triangle variation is part of the number sequence that initiated the triangle since adding to consecutive numbers in these sequences will give the next number. The geometry of the triangle makes this possible even though it can be represented in altered forms. 3.2 Fibonacci and Lucas bisection number sequences Many number sequences can be found in the triangle but both bisections of the Fibonacci or Lucas sequences, depending on what sequence was used in the making of the triangle, can be found repetitively like depicted in Figure 4 which directly links the triangle variation to a new window of possibilities. For the Lucas sequence, the following bisections can be found 2, 3, 7, 18, 47, 123, 322, 843, 2207, (14) 1, 4, 11, 29, 76, 199, 521, 1364, 3571, (15) For the Fibonacci sequence, the following bisections can be found 0, 1, 3, 8, 21, 55, 144, 377, 987, (16) 1, 2, 5, 13, 34, 89, 233, 610, 1597, (17) 3.3 Pascal triangle variation sequence conjecture An important conjecture is that numbers repeat themselves in the triangle in straight diagonal lines such as depicted in Figure 5 and the order of these lines respects the one of the initial number sequence. The sum of each of these lines could be expressed in the following if n is an even number and the recurrent relation is the same as (1) and (4) ( n 2 + 1) F n; ( n 2 + 1) L n (18) 8

9 Figure 4: Pascal triangle variation with the Fibonacci bisection sequences 9

10 And if n is an odd number ( n ) F n; ( n ) L n (19) If the initial sequence used in the making of the triangle is the Fibonacci sequence, this number sequence will result And for the Lucas sequence 0, 1, 2, 4, 9, 15, 32, 52, 105, (20) 2, 1, 6, 8, 21, 33, 72, 116, 235, (21) These sequences may differ significantly from their original number sequences but are closely related to them. The Pascal triangle variation tremendously help to show such relations. 10

11 Figure 5: Pascal triangle variation relation with the Fibonacci sequence 11

12 4 Conclusion Starting from 3 classic concepts of discrete mathematics including the Pascal Triangle, the Fibonacci sequence and the Lucas sequence, a new approach was adopted to further investigate the variation of the well known Pascal triangle while directly including the Fibonacci series and one of it s most popular generalizations, the Lucas series. After the variation was completed, it showed relevant properties absent from the original triangle. The first one of these was the presence of the selfrepetition of the sequence used to complete the variation present in a partial form defined in the result section (11). This lead to the conclusion that this representation was of great value to better understand the workings of the Fibonacci sequence recurrent relation F n = F n 1 + F n 2. It also lead to the discovery that this relation was true for any seed of this same relation, meaning it was also true for the Lucas series. Afterwards, it also became apparent that the triangle harnessed sequences already covered by other papers such as the Fibonacci and Lucas Bisection number sequences which only included one half of their original Fibonacci and Lucas series. Also, newfound sequences were explored such as the 3.3 sequence given by straight lines featuring the same Fibonacci of Lucas numbers. The triangle helped to show how much the differing sequences obtained were related to the original sequence used in the making of the triangle. Before interesting number series were found, the search for relations within them proved to be very difficult. The triangle might not have a direct applications but it helps to show many mathematical concepts. Since only a few sequences and relations have been studied, it would be greatly interesting to investigate the several number series that have yet to be studied and the possible relations they may have. Also, the geometry of the numbers in the triangle remain of great interest and could have a potential for future researches. 12

13 5 Acknowledgements I would like to thank Julien Chartrand and Emile Boily-Auclair for their guidance, help and moral support throughout the realization of this document. References [1] Peter Fox (1998). Cambridge University Library: the great collections. Cambridge University Press. p. 13. ISBN [2] A. W. F. Edwards. Pascal s arithmetical triangle: the story of a mathematical idea. JHU Press, Pages [3] Gale, Thomson. Research Article: Pascal s Triangle. BookRags. BookRags, n.d. Web. 17 Feb [4] Goonatilake, Susantha (1998). Toward a Global Science. Indiana University Press. p ISBN [5] Singh, Parmanand (1985). The So-called Fibonacci numbers in ancient and medieval India. Historia Mathematica 12 (3): doi: / (85) [6] Goonatilake, Susantha (1998). Toward a Global Science. Indiana University Press. p ISBN [7] Chris Caldwell, The Prime Glossary: Lucas prime from The Prime Pages. [8] The Fibonacci Series - Biographies - Leonardo Fibonacci (ca ca.1240). Library.thinkquest.org. Retrieved [9] Leonardo Pisano - page 3: Contributions to number theory. Encyclopdia Britannica Online, Retrieved 18 September

Generalization of Fibonacci sequence

Generalization of Fibonacci sequence Generalization of Fibonacci sequence Etienne Durand Julien Chartrand Maxime Bolduc February 18th 2013 Abstract After studying the fibonacci sequence, we found three interesting theorems. The first theorem

More information

Named numbres. Ngày 25 tháng 11 năm () Named numbres Ngày 25 tháng 11 năm / 7

Named numbres. Ngày 25 tháng 11 năm () Named numbres Ngày 25 tháng 11 năm / 7 Named numbres Ngày 25 tháng 11 năm 2011 () Named numbres Ngày 25 tháng 11 năm 2011 1 / 7 Fibonacci, Catalan, Stirling, Euler, Bernoulli Many sequences are famous. 1 1, 2, 3, 4,... the integers. () Named

More information

n F(n) 2n F(2n) Here are some values of the series in comparison to Fibonacci number:

n F(n) 2n F(2n) Here are some values of the series in comparison to Fibonacci number: I did my exploration on Lucas numbers because different series fascinate me and it was related to the Fibonacci numbers which is pretty well known to all the mathematicians across the world so I wanted

More information

Pascal s Triangle Introduction!

Pascal s Triangle Introduction! Math 0 Section 2A! Page! 209 Eitel Section 2A Lecture Pascal s Triangle Introduction! A Rich Source of Number Patterns Many interesting number patterns can be found in Pascal's Triangle. This pattern was

More information

Unit 5: Sequences, Series, and Patterns

Unit 5: Sequences, Series, and Patterns Unit 5: Sequences, Series, and Patterns Section 1: Sequences and Series 1. Sequence: an ordered list of numerical terms 2. Finite Sequence: has a first term (a beginning) and a last term (an end) 3. Infinite

More information

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay QuestionofDay Question of the Day Using 1 1 square tiles and 1 2 dominoes, one can tile a 1 3 strip of squares three different ways. (Find them!) In how many different ways can one tile a 1 4 strip of

More information

SEVENTH EDITION and EXPANDED SEVENTH EDITION

SEVENTH EDITION and EXPANDED SEVENTH EDITION SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide 5-1 Chapter 5 Number Theory and the Real Number System 5.1 Number Theory Number Theory The study of numbers and their properties. The numbers we use to

More information

MCR3U Unit 7 Lesson Notes

MCR3U Unit 7 Lesson Notes 7.1 Arithmetic Sequences Sequence: An ordered list of numbers identified by a pattern or rule that may stop at some number or continue indefinitely. Ex. 1, 2, 4, 8,... Ex. 3, 7, 11, 15 Term (of a sequence):

More information

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by Chapter Fibonacci numbers The Fibonacci sequence The Fibonacci numbers F n are defined recursively by F n+ = F n + F n, F 0 = 0, F = The first few Fibonacci numbers are n 0 5 6 7 8 9 0 F n 0 5 8 55 89

More information

Ratio by Using Coefficients of Fibonacci Sequence

Ratio by Using Coefficients of Fibonacci Sequence International J.Math. Combin. Vol.3(2013), 96-103 Ratio by Using Coefficients of Fibonacci Sequence Megha Garg and Pertik Garg (Punjab Technical University, Jalanahar, Punjab) Ravinder Kumar (Bhai Gurdas

More information

{ 0! = 1 n! = n(n 1)!, n 1. n! =

{ 0! = 1 n! = n(n 1)!, n 1. n! = Summations Question? What is the sum of the first 100 positive integers? Counting Question? In how many ways may the first three horses in a 10 horse race finish? Multiplication Principle: If an event

More information

Situation: Summing the Natural Numbers

Situation: Summing the Natural Numbers Situation: Summing the Natural Numbers Prepared at Penn State University Mid-Atlantic Center for Mathematics Teaching and Learning 14 July 005 Shari and Anna Edited at University of Georgia Center for

More information

5. Sequences & Recursion

5. Sequences & Recursion 5. Sequences & Recursion Terence Sim 1 / 42 A mathematician, like a painter or poet, is a maker of patterns. Reading Sections 5.1 5.4, 5.6 5.8 of Epp. Section 2.10 of Campbell. Godfrey Harold Hardy, 1877

More information

#A91 INTEGERS 18 (2018) A GENERALIZED BINET FORMULA THAT COUNTS THE TILINGS OF A (2 N)-BOARD

#A91 INTEGERS 18 (2018) A GENERALIZED BINET FORMULA THAT COUNTS THE TILINGS OF A (2 N)-BOARD #A91 INTEGERS 18 (2018) A GENERALIZED BINET FORMULA THAT COUNTS THE TILINGS OF A (2 N)-BOARD Reza Kahkeshani 1 Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan,

More information

Algebra. Table of Contents

Algebra. Table of Contents Algebra...4 Patterns...5 Adding Real Numbers...7 Subtracting Real Numbers...9 Multiplying Real Numbers...11 Dividing Real Numbers...12 Order of Operations...13 Real-Number Operations with Absolute Value...16

More information

Fibonacci (Leonardo Pisano) ? Statue in Pisa Italy FIBONACCI NUMBERS AND RECURRENCES

Fibonacci (Leonardo Pisano) ? Statue in Pisa Italy FIBONACCI NUMBERS AND RECURRENCES Fibonacci (Leonardo Pisano) 1170-1240? Statue in Pisa Italy FIBONACCI NUMBERS AND RECURRENCES Lecture 23 CS2110 Fall 2015 Prelim 2 Thursday at 5:30 and 7:30 2 5:30. Statler Auditorium. Last name M..Z 7:30.

More information

Generalized Lucas Sequences Part II

Generalized Lucas Sequences Part II Introduction Generalized Lucas Sequences Part II Daryl DeFord Washington State University February 4, 2013 Introduction Èdouard Lucas: The theory of recurrent sequences is an inexhaustible mine which contains

More information

PRIME GENERATING LUCAS SEQUENCES

PRIME GENERATING LUCAS SEQUENCES PRIME GENERATING LUCAS SEQUENCES PAUL LIU & RON ESTRIN Science One Program The University of British Columbia Vancouver, Canada April 011 1 PRIME GENERATING LUCAS SEQUENCES Abstract. The distribution of

More information

Radical. Anthony J. Browne. April 23, 2016 ABSTRACT

Radical. Anthony J. Browne. April 23, 2016 ABSTRACT Radical Anthony J. Browne April 23, 2016 ABSTRACT Approximations of square roots are discussed. A very close approximation to their decimal expansion is derived in the form of a simple fraction. Their

More information

Decrypting Fibonacci and Lucas Sequences. Contents

Decrypting Fibonacci and Lucas Sequences. Contents Contents Abstract Introduction 3 Chapter 1 U(n) Formula in 3 unknowns 7 Chapter Polynomial Expression of L(kn) in Terms of L(n) 19 Introduction of the Tables (Fibonacci Table, Lucas-Fibonacci Table and

More information

Figurate Numbers: presentation of a book

Figurate Numbers: presentation of a book Figurate Numbers: presentation of a book Elena DEZA and Michel DEZA Moscow State Pegagogical University, and Ecole Normale Superieure, Paris October 2011, Fields Institute Overview 1 Overview 2 Chapter

More information

From Pascal Triangle to Golden Pyramid

From Pascal Triangle to Golden Pyramid Asian Research Journal of Mathematics 6(): -9, 07; Article no.arjom.9964 ISSN: 456-477X From Pascal Triangle to Golden Pyramid Lovemore Mamombe * Department of Civil Engineering, University of Zimbabwe,

More information

Approaches differ: Catalan numbers

Approaches differ: Catalan numbers ISSN: 2455-4227 Impact Factor: RJIF 5.12 www.allsciencejournal.com Volume 2; Issue 6; November 2017; Page No. 82-89 Approaches differ: Catalan numbers 1 Mihir B Trivedi, 2 Dr. Pradeep J Jha 1 Research

More information

Proof of Infinite Number of Triplet Primes. Stephen Marshall. 28 May Abstract

Proof of Infinite Number of Triplet Primes. Stephen Marshall. 28 May Abstract Proof of Infinite Number of Triplet Primes Stephen Marshall 28 May 2014 Abstract This paper presents a complete and exhaustive proof that an Infinite Number of Triplet Primes exist. The approach to this

More information

Hence, the sequence of triangular numbers is given by., the. n th square number, is the sum of the first. S n

Hence, the sequence of triangular numbers is given by., the. n th square number, is the sum of the first. S n Appendix A: The Principle of Mathematical Induction We now present an important deductive method widely used in mathematics: the principle of mathematical induction. First, we provide some historical context

More information

From Simplest Recursion to the Recursion of Generalizations of Cross Polytope Numbers

From Simplest Recursion to the Recursion of Generalizations of Cross Polytope Numbers Kennesaw State University DigitalCommons@Kennesaw State University Honors College Capstones and Theses Honors College Spring 5-6-2017 From Simplest Recursion to the Recursion of Generalizations of Cross

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

The Fibonacci Sequence

The Fibonacci Sequence Elvis Numbers Elvis the Elf skips up a flight of numbered stairs, starting at step 1 and going up one or two steps with each leap Along with an illustrious name, Elvis parents have endowed him with an

More information

Ross Program 2017 Application Problems

Ross Program 2017 Application Problems Ross Program 2017 Application Problems This document is part of the application to the Ross Mathematics Program, and is posted at http://u.osu.edu/rossmath/. The Admission Committee will start reading

More information

Fibonacci (Leonardo Pisano) ? Statue in Pisa Italy FIBONACCI NUMBERS GOLDEN RATIO, RECURRENCES

Fibonacci (Leonardo Pisano) ? Statue in Pisa Italy FIBONACCI NUMBERS GOLDEN RATIO, RECURRENCES Fibonacci (Leonardo Pisano) 1170-1240? Statue in Pisa Italy FIBONACCI NUMBERS GOLDEN RATIO, RECURRENCES Lecture 23 CS2110 Fall 2016 Prelim tonight 2 You know already whether you are taking it at 5:30 or

More information

A NICE DIOPHANTINE EQUATION. 1. Introduction

A NICE DIOPHANTINE EQUATION. 1. Introduction A NICE DIOPHANTINE EQUATION MARIA CHIARA BRAMBILLA Introduction One of the most interesting and fascinating subjects in Number Theory is the study of diophantine equations A diophantine equation is a polynomial

More information

The solutions to the two examples above are the same.

The solutions to the two examples above are the same. One-to-one correspondences A function f : A B is one-to-one if f(x) = f(y) implies that x = y. A function f : A B is onto if for any element b in B there is an element a in A such that f(a) = b. A function

More information

Pascal s Triangle. Jean-Romain Roy. February, 2013

Pascal s Triangle. Jean-Romain Roy. February, 2013 Pascal s Triangle Jean-Romain Roy February, 2013 Abstract In this paper, I investigate the hidden beauty of the Pascals triangle. This arithmetical object as proved over the year to encompass seemingly

More information

Bijective Proofs with Spotted Tilings

Bijective Proofs with Spotted Tilings Brian Hopkins, Saint Peter s University, New Jersey, USA Visiting Scholar, Mahidol University International College Editor, The College Mathematics Journal MUIC Mathematics Seminar 2 November 2016 outline

More information

Advanced Counting Techniques. Chapter 8

Advanced Counting Techniques. Chapter 8 Advanced Counting Techniques Chapter 8 Chapter Summary Applications of Recurrence Relations Solving Linear Recurrence Relations Homogeneous Recurrence Relations Nonhomogeneous Recurrence Relations Divide-and-Conquer

More information

Counting With Repetitions

Counting With Repetitions Counting With Repetitions The genetic code of an organism stored in DNA molecules consist of 4 nucleotides: Adenine, Cytosine, Guanine and Thymine. It is possible to sequence short strings of molecules.

More information

The Golden Ratio. The Divine Proportion

The Golden Ratio. The Divine Proportion The Golden Ratio The Divine Proportion The Problem There is a population of rabbits for which it is assumed: 1) In the first month there is just one newborn pair 2) New-born pairs become fertile from their

More information

Extended Binet s formula for the class of generalized Fibonacci sequences

Extended Binet s formula for the class of generalized Fibonacci sequences [VNSGU JOURNAL OF SCIENCE AND TECHNOLOGY] Vol4 No 1, July, 2015 205-210,ISSN : 0975-5446 Extended Binet s formula for the class of generalized Fibonacci sequences DIWAN Daksha M Department of Mathematics,

More information

Table of Contents. 2013, Pearson Education, Inc.

Table of Contents. 2013, Pearson Education, Inc. Table of Contents Chapter 1 What is Number Theory? 1 Chapter Pythagorean Triples 5 Chapter 3 Pythagorean Triples and the Unit Circle 11 Chapter 4 Sums of Higher Powers and Fermat s Last Theorem 16 Chapter

More information

P a g e 1. Prime Gaps. The Structure and Properties of the Differences between Successive Prime Numbers. Jerrad Neff

P a g e 1. Prime Gaps. The Structure and Properties of the Differences between Successive Prime Numbers. Jerrad Neff P a g e 1 Prime Gaps The Structure and Properties of the Differences between Successive Prime Numbers Jerrad Neff P a g e 2 Table of Contents 1. Defining the Prime Gap Function 2. Discoveries and Data

More information

Chapter 4 ARITHMETIC AND GEOMETRIC PROGRESSIONS 2, 5, 8, 11, 14,..., 101

Chapter 4 ARITHMETIC AND GEOMETRIC PROGRESSIONS 2, 5, 8, 11, 14,..., 101 Chapter 4 ARITHMETIC AND GEOMETRIC PROGRESSIONS A finite sequence such as 2, 5, 8, 11, 14,..., 101 in which each succeeding term is obtained by adding a fixed number to the preceding term is called an

More information

Rectangle is actually a spiraling

Rectangle is actually a spiraling The Golden Mean is the ideal moderate position between two extremes. It plays a huge role in the universal cosmetic language called Sacred Geometry. The Golden Mean can be found anywhere from art and architecture

More information

New parameter for defining a square: Exact solution to squaring the circle; proving π is rational

New parameter for defining a square: Exact solution to squaring the circle; proving π is rational American Journal of Applied Mathematics 2014; 2(3): 74-78 Published online May 30, 2014 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.20140203.11 New parameter for defining a square:

More information

On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results

On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results Asia Pacific Journal of Multidisciplinary Research, Vol 3, No 4, November 05 Part I On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results Romer C Castillo, MSc Batangas

More information

Combinatorial proofs of Honsberger-type identities

Combinatorial proofs of Honsberger-type identities International Journal of Mathematical Education in Science and Technology, Vol. 39, No. 6, 15 September 2008, 785 792 Combinatorial proofs of Honsberger-type identities A. Plaza* and S. Falco n Department

More information

Examples of Finite Sequences (finite terms) Examples of Infinite Sequences (infinite terms)

Examples of Finite Sequences (finite terms) Examples of Infinite Sequences (infinite terms) Math 120 Intermediate Algebra Sec 10.1: Sequences Defn A sequence is a function whose domain is the set of positive integers. The formula for the nth term of a sequence is called the general term. Examples

More information

Fibonacci s Numbers. Michele Pavon, Dipartimento di Matematica, Università di Padova, via Trieste Padova, Italy.

Fibonacci s Numbers. Michele Pavon, Dipartimento di Matematica, Università di Padova, via Trieste Padova, Italy. Fibonacci s Numbers Michele Pavon, Dipartimento di Matematica, Università di Padova, via Trieste 63 311 Padova, Italy May 1, 013 1 Elements of combinatorics Consider the tas of placing balls in n cells,

More information

9 Divides no Odd Fibonacci

9 Divides no Odd Fibonacci arxiv:0712.3509v1 [math.co] 20 Dec 2007 9 Divides no Odd Fibonacci Tanya Khovanova December 20, 2007 Abstract I discuss numbers that divide no odd Fibonacci. Number 9 plays a special role among such numbers.

More information

FIFTH ROOTS OF FIBONACCI FRACTIONS. Christopher P. French Grinnell College, Grinnell, IA (Submitted June 2004-Final Revision September 2004)

FIFTH ROOTS OF FIBONACCI FRACTIONS. Christopher P. French Grinnell College, Grinnell, IA (Submitted June 2004-Final Revision September 2004) Christopher P. French Grinnell College, Grinnell, IA 0112 (Submitted June 2004-Final Revision September 2004) ABSTRACT We prove that when n is odd, the continued fraction expansion of Fn+ begins with a

More information

Europe Starts to Wake up: Leonardo of Pisa

Europe Starts to Wake up: Leonardo of Pisa Europe Starts to Wake up: Leonardo of Pisa Leonardo of Pisa, also known as Fibbonaci (from filius Bonaccia, son of Bonnaccio ) was the greatest mathematician of the middle ages. He lived from 75 to 50,

More information

Reverse Fibonacci sequence and its description

Reverse Fibonacci sequence and its description Reverse Fibonacci sequence and its description Jakub Souček 1, Ondre Janíčko 2 1 Pilsen, Czech Republic, mcsacek87@gmail.com 2 Bratislava, Slovak Republic, floch@azet.sk, http://www.reversefibonacci.com

More information

Gottfried Wilhelm Leibniz made many contributions to modern day Calculus, but

Gottfried Wilhelm Leibniz made many contributions to modern day Calculus, but Nikki Icard & Andy Hodges Leibniz's Harmonic Triangle MAT 5930 June 28, 202 Gottfried Wilhelm Leibniz made many contributions to modern day Calculus, but none of his contributions may have been as important

More information

1 Sequences and Summation

1 Sequences and Summation 1 Sequences and Summation A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer. For example, a m, a m+1,...,

More information

Born in Tulsa in 1914 and passed away in Norman in 2010.

Born in Tulsa in 1914 and passed away in Norman in 2010. Sooner Math Bowl 2016 November 16, 2016 Photo Martin Gardner by Alex Bellos in 2008 in Norman Born in Tulsa in 1914 and passed away in Norman in 2010. 1 Stage 1 2 Stage 1, Round 1 (2 Questions, 3 Minutes)

More information

1 Let s Get Cooking: A Variety

1 Let s Get Cooking: A Variety 1 Let s Get Cooking: A Variety of Mathematical Ingredients We begin our mathematical journey by introducing (or reminding you about) some basic objects of mathematics. These include prime numbers, triangular

More information

CONVOLUTION TREES AND PASCAL-T TRIANGLES. JOHN C. TURNER University of Waikato, Hamilton, New Zealand (Submitted December 1986) 1.

CONVOLUTION TREES AND PASCAL-T TRIANGLES. JOHN C. TURNER University of Waikato, Hamilton, New Zealand (Submitted December 1986) 1. JOHN C. TURNER University of Waikato, Hamilton, New Zealand (Submitted December 986). INTRODUCTION Pascal (6-66) made extensive use of the famous arithmetical triangle which now bears his name. He wrote

More information

Divisibility properties of Fibonacci numbers

Divisibility properties of Fibonacci numbers South Asian Journal of Mathematics 2011, Vol. 1 ( 3 ) : 140 144 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE Divisibility properties of Fibonacci numbers K. Raja Rama GANDHI 1 1 Department of Mathematics,

More information

Balancing And Lucas-balancing Numbers With Real Indices

Balancing And Lucas-balancing Numbers With Real Indices Balancing And Lucas-balancing Numbers With Real Indices A thesis submitted by SEPHALI TANTY Roll No. 413MA2076 for the partial fulfilment for the award of the degree Master Of Science Under the supervision

More information

SUMS OF POWERS AND BERNOULLI NUMBERS

SUMS OF POWERS AND BERNOULLI NUMBERS SUMS OF POWERS AND BERNOULLI NUMBERS TOM RIKE OAKLAND HIGH SCHOOL Fermat and Pascal On September 22, 636 Fermat claimed in a letter that he could find the area under any higher parabola and Roberval wrote

More information

X(^+(2^i) = i + X02^r + i.

X(^+(2^i) = i + X02^r + i. Peter R. Christopher Department of Mathematics Sciences Worcester Polytechnic Institute, Worcester, MA 69 John W. Kennedy Mathematics Department, Pace University, New York, NY 38 (Submitted May 995). INTRODUCTION

More information

Generalized Identities on Products of Fibonacci-Like and Lucas Numbers

Generalized Identities on Products of Fibonacci-Like and Lucas Numbers Generalized Identities on Products of Fibonacci-Like and Lucas Numbers Shikha Bhatnagar School of Studies in Mathematics, Vikram University, Ujjain (M P), India suhani_bhatnagar@rediffmailcom Omrakash

More information

Magic of numbers and Fibonacci Sequence. March 10, 2018 Mathematics Circle

Magic of numbers and Fibonacci Sequence. March 10, 2018 Mathematics Circle Magic of numbers and Fibonacci Sequence March 10, 2018 Mathematics Circle Natural Numbers Kronecker, the German Mathematician said the following: GOD CREATED THE NATURAL NUMBERS, THE REST ARE MAN S HANDIWORK

More information

The Emergence of Medieval Mathematics. The Medieval time period, or the Middle Ages as it is also known, is a time period in

The Emergence of Medieval Mathematics. The Medieval time period, or the Middle Ages as it is also known, is a time period in The Emergence of Medieval Mathematics The Medieval time period, or the Middle Ages as it is also known, is a time period in history marked by the fall of the Roman civilization in the 5 th century to the

More information

Discrete Math. Instructor: Mike Picollelli. Day 10

Discrete Math. Instructor: Mike Picollelli. Day 10 Day 10 Fibonacci Redux. Last time, we saw that F n = 1 5 (( 1 + ) n ( 5 2 1 ) n ) 5. 2 What Makes The Fibonacci Numbers So Special? The Fibonacci numbers are a particular type of recurrence relation, a

More information

Spreadsheets and the discovery of new knowledge

Spreadsheets and the discovery of new knowledge Spreadsheets in Education (ejsie) Volume 3 Issue Article 1 7-31-009 Spreadsheets and the discovery of new knowledge Sergei Abramovich State University of New York at Potsdam, abramovs@potsdam.edu Gennady

More information

Lecture 1 Maths for Computer Science. Denis TRYSTRAM Lecture notes MoSIG1. sept. 2017

Lecture 1 Maths for Computer Science. Denis TRYSTRAM Lecture notes MoSIG1. sept. 2017 Lecture 1 Maths for Computer Science Denis TRYSTRAM Lecture notes MoSIG1 sept. 2017 1 / 21 Context The main idea of this preliminary lecture is to show how to obtain some results in Mathematics (in the

More information

The mighty zero. Abstract

The mighty zero. Abstract The mighty zero Rintu Nath Scientist E Vigyan Prasar, Department of Science and Technology, Govt. of India A 50, Sector 62, NOIDA 201 309 rnath@vigyanprasar.gov.in rnath07@gmail.com Abstract Zero is a

More information

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n.

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n. 11 Recurrences A recurrence equation or recurrence counts things using recursion. 11.1 Recurrence Equations We start with an example. Example 11.1. Find a recurrence for S(n), the number of subsets of

More information

CISC-102 Fall 2018 Week 11

CISC-102 Fall 2018 Week 11 page! 1 of! 26 CISC-102 Fall 2018 Pascal s Triangle ( ) ( ) An easy ( ) ( way ) to calculate ( ) a table of binomial coefficients was recognized centuries ago by mathematicians in India, ) ( ) China, Iran

More information

Sums of Consecutive Integers

Sums of Consecutive Integers arxiv:math/0701149v1 [math.ho] 4 Jan 007 Sums of Consecutive Integers Wai Yan Pong California State University, Dominguez Hills February, 008 While looking for exercises for a number theory class, I recently

More information

Fibonacci Numbers. By: Sara Miller Advisor: Dr. Mihai Caragiu

Fibonacci Numbers. By: Sara Miller Advisor: Dr. Mihai Caragiu Fibonacci Numbers By: Sara Miller Advisor: Dr. Mihai Caragiu Abstract We will investigate various ways of proving identities involving Fibonacci Numbers, such as, induction, linear algebra (matrices),

More information

1.2 Inductive Reasoning

1.2 Inductive Reasoning 1.2 Inductive Reasoning Goal Use inductive reasoning to make conjectures. Key Words conjecture inductive reasoning counterexample Scientists and mathematicians look for patterns and try to draw conclusions

More information

On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence

On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 21 (2018), Article 18.3.5 On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence Eva Trojovská Department of Mathematics Faculty of Science

More information

Spherical Venn Diagrams with Involutory Isometries

Spherical Venn Diagrams with Involutory Isometries Spherical Venn Diagrams with Involutory Isometries Frank Ruskey Mark Weston Department of Computer Science University of Victoria PO BOX 3055, Victoria, BC Canada V8W 3P6 {ruskey,mweston}@cs.uvic.ca Submitted:

More information

Zigzag Paths and Binary Strings Counting, Pascal s Triangle, and Combinations Part I

Zigzag Paths and Binary Strings Counting, Pascal s Triangle, and Combinations Part I Zigzag Paths and Binary Strings Counting, Pascal s Triangle, and Combinations Part I LAUNCH In this task, you will learn about a special triangular array of numbers called Pascal s triangle. You will explore

More information

arxiv: v1 [math.gm] 11 Jun 2012

arxiv: v1 [math.gm] 11 Jun 2012 AM Comp. Sys. -9 Author version Dynamical Sieve of Eratosthenes Research arxiv:20.279v math.gm] Jun 202 Luis A. Mateos AM Computer Systems Research, 070 Vienna, Austria Abstract: In this document, prime

More information

USING CAS TECHNOLOGY IN A COURSE DESIGNED FOR PRESERVICE TEACHERS. Jay L. Schiffman. Rowan University. 201 Mullica Hill Road. Glassboro, NJ

USING CAS TECHNOLOGY IN A COURSE DESIGNED FOR PRESERVICE TEACHERS. Jay L. Schiffman. Rowan University. 201 Mullica Hill Road. Glassboro, NJ USING CAS TECHNOLOGY IN A COURSE DESIGNED FOR PRESERVICE TEACHERS Jay L. Schiffman Rowan University 201 Mullica Hill Road Glassboro, NJ 08028-1701 schiffman@rowan.edu Abstract: The Common Core articulates

More information

Advanced Counting Techniques

Advanced Counting Techniques . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Advanced Counting

More information

Intermediate Math Circles February 22, 2012 Contest Preparation II

Intermediate Math Circles February 22, 2012 Contest Preparation II Intermediate Math Circles February, 0 Contest Preparation II Answers: Problem Set 6:. C. A 3. B 4. [-6,6] 5. T 3, U and T 8, U 6 6. 69375 7. C 8. A 9. C 0. E Australian Mathematics Competition - Intermediate

More information

Learning Objectives

Learning Objectives Learning Objectives Learn about recurrence relations Learn the relationship between sequences and recurrence relations Explore how to solve recurrence relations by iteration Learn about linear homogeneous

More information

A LATTICE POINT ENUMERATION APPROACH TO PARTITION IDENTITIES

A LATTICE POINT ENUMERATION APPROACH TO PARTITION IDENTITIES A LATTICE POINT ENUMERATION APPROACH TO PARTITION IDENTITIES A thesis presented to the faculty of San Francisco State University In partial fulfilment of The Requirements for The Degree Master of Arts

More information

PELL S EQUATION NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA, ODISHA

PELL S EQUATION NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA, ODISHA PELL S EQUATION A Project Report Submitted by PANKAJ KUMAR SHARMA In partial fulfillment of the requirements For award of the degree Of MASTER OF SCIENCE IN MATHEMATICS UNDER GUIDANCE OF Prof GKPANDA DEPARTMENT

More information

Grade 8 Chapter 7: Rational and Irrational Numbers

Grade 8 Chapter 7: Rational and Irrational Numbers Grade 8 Chapter 7: Rational and Irrational Numbers In this chapter we first review the real line model for numbers, as discussed in Chapter 2 of seventh grade, by recalling how the integers and then the

More information

Example If the function for a sequence is f (n) = 2n 1 then the values are found by substituting the domain values into the function in order

Example If the function for a sequence is f (n) = 2n 1 then the values are found by substituting the domain values into the function in order Section 12 1A: Sequences A sequence is a function whose domain is the positive integers Z +. Z + represents the counting numbers 1, 2, 3, 4, 5, 6, 7,... We use the letter n to represent the domain of the

More information

Arithmetic and Combinatorics

Arithmetic and Combinatorics Arithmetic and Combinatorics Training problems for M 208 term Ted Szylowiec tedszy@gmailcom Calculating prodigies He who refuses to do arithmetic is doomed to talk nonsense Which famous computer scientist

More information

Modular Periodicity of the Euler Numbers and a Sequence by Arnold

Modular Periodicity of the Euler Numbers and a Sequence by Arnold Arnold Math J. (2018) 3:519 524 https://doi.org/10.1007/s40598-018-0079-0 PROBLEM CONTRIBUTION Modular Periodicity of the Euler Numbers and a Sequence by Arnold Sanjay Ramassamy 1 Received: 19 November

More information

Week 2: Sequences and Series

Week 2: Sequences and Series QF0: Quantitative Finance August 29, 207 Week 2: Sequences and Series Facilitator: Christopher Ting AY 207/208 Mathematicians have tried in vain to this day to discover some order in the sequence of prime

More information

12 Sequences and Recurrences

12 Sequences and Recurrences 12 Sequences and Recurrences A sequence is just what you think it is. It is often given by a formula known as a recurrence equation. 12.1 Arithmetic and Geometric Progressions An arithmetic progression

More information

PRINCIPLE OF MATHEMATICAL INDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION Analysis and natural philosopy owe their most important discoveries to this fruitful means, which is called induction Newton was indebted to it for his theorem

More information

ALTERNATING SUMS OF FIBONACCI PRODUCTS

ALTERNATING SUMS OF FIBONACCI PRODUCTS ALTERNATING SUMS OF FIBONACCI PRODUCTS ZVONKO ČERIN Abstract. We consider alternating sums of squares of odd even terms of the Fibonacci sequence alternating sums of their products. These alternating sums

More information

Glossary Common Core Curriculum Maps Math/Grade 9 Grade 12

Glossary Common Core Curriculum Maps Math/Grade 9 Grade 12 Glossary Common Core Curriculum Maps Math/Grade 9 Grade 12 Grade 9 Grade 12 AA similarity Angle-angle similarity. When twotriangles have corresponding angles that are congruent, the triangles are similar.

More information

Tetrads and their Counting

Tetrads and their Counting Baltic J. Modern Computing, Vol. 6 (2018), No. 2, 96-106 https://doi.org/10.22364/bjmc.2018.6.2.01 Tetrads and their Counting Juris ČERŅENOKS, Andrejs CIBULIS Department of Mathematics, University of Latvia

More information

Sequences that satisfy a(n a(n)) = 0

Sequences that satisfy a(n a(n)) = 0 Sequences that satisfy a(n a(n)) = 0 Nate Kube Frank Ruskey October 13, 2005 Abstract We explore the properties of some sequences for which a(n a(n)) = 0. Under the natural restriction that a(n) < n the

More information

Combinatorial Proofs and Algebraic Proofs I

Combinatorial Proofs and Algebraic Proofs I Combinatorial Proofs and Algebraic Proofs I Shailesh A Shirali Shailesh A Shirali is Director of Sahyadri School (KFI), Pune, and also Head of the Community Mathematics Centre in Rishi Valley School (AP).

More information

CHMC: Finite Fields 9/23/17

CHMC: Finite Fields 9/23/17 CHMC: Finite Fields 9/23/17 1 Introduction This worksheet is an introduction to the fascinating subject of finite fields. Finite fields have many important applications in coding theory and cryptography,

More information

Characteristics of Fibonacci-type Sequences

Characteristics of Fibonacci-type Sequences Characteristics of Fibonacci-tye Sequences Yarden Blausa May 018 Abstract This aer resents an exloration of the Fibonacci sequence, as well as multi-nacci sequences and the Lucas sequence. We comare and

More information

Binomial coefficients and k-regular sequences

Binomial coefficients and k-regular sequences Binomial coefficients and k-regular sequences Eric Rowland Hofstra University New York Combinatorics Seminar CUNY Graduate Center, 2017 12 22 Eric Rowland Binomial coefficients and k-regular sequences

More information

Chapter 8: Recursion. March 10, 2008

Chapter 8: Recursion. March 10, 2008 Chapter 8: Recursion March 10, 2008 Outline 1 8.1 Recursively Defined Sequences 2 8.2 Solving Recurrence Relations by Iteration 3 8.4 General Recursive Definitions Recursively Defined Sequences As mentioned

More information

ON THE SUM OF POWERS OF TWO. 1. Introduction

ON THE SUM OF POWERS OF TWO. 1. Introduction t m Mathematical Publications DOI: 0.55/tmmp-06-008 Tatra Mt. Math. Publ. 67 (06, 4 46 ON THE SUM OF POWERS OF TWO k-fibonacci NUMBERS WHICH BELONGS TO THE SEQUENCE OF k-lucas NUMBERS Pavel Trojovský ABSTRACT.

More information

CS1800: Strong Induction. Professor Kevin Gold

CS1800: Strong Induction. Professor Kevin Gold CS1800: Strong Induction Professor Kevin Gold Mini-Primer/Refresher on Unrelated Topic: Limits This is meant to be a problem about reasoning about quantifiers, with a little practice of other skills, too

More information