Math 4153 Exam 1 Review

Size: px
Start display at page:

Download "Math 4153 Exam 1 Review"

Transcription

1 The syllabus for Exam 1 is Chapters 1 3 in Axler. 1. You should be sure to know precise definition of the terms we have used, and you should know precise statements (including all relevant hypotheses) for the main theorems proved. Know how to do all of the homework problems. 2. Outline of subjects for Exam 1: Vector spaces Subspaces Sums and direct sums of subspaces Linearly independent and spanning lists Bases and dimension Linear maps; nullspace, range, and invertibility Matrices of linear maps 3. Definitions: The complex numbers C (in terms of real numbers R) A vector space F n, where F = R or F = C. P n (F) and P(F) Mat(m, n, F) A subspace U V A sum of subspaces U + W A direct sum of subspaces V = U W A linearly independent list A spanning list A basis A finite-dimensional vector space V The dimension dim V of a finite-dimensional vector space A linear map T : V W The vector space L(V, W ) of all linear maps from V to W Injectivity, surjectivity, and invertibility of linear maps Nullspace and range of linear maps Isomorphisms and inverses of linear maps 4. Computations involving subspaces and direct sums: 1 1

2 Recognize whether something is a subspace or not. Compute intersections and sums of subspaces. Are unions of subspaces a subspace? Recognize whether a sum of subspaces is direct or not. 5. Computations involving linearly independent and spanning lists: Determine if a list is linearly independent, a spanning list, or a basis. How to extend linearly independent lists to bases and reduce spanning lists to bases Show that if U V and V is finite dimensional, then U = {0} if and only if dim U = 0 and U = V if and only if dim U = dim V. Otherwise 0 < dim U < dim V. 6. Linear maps: What does a linear transformation from F n F m look like? Know how to compute the matrix of a linear map. 7. Major results. Know the statements, but don t memorize them word for word know what they say mathematically. Especially important ones are in bold. How to prove properties of vector spaces: Propositions : don t memorize any proofs or statements! Just know how to do something like this and be able to know if a given statement is true or false. Propositions 1.8 and 1.9. Theorem 2.6, and how it implies Theorem Theorem 2.12 and how it implies Theorem 2.13 Maximal linearly independent lists span Minimal spanning lists are linearly independent Theorem 2,18, and Proposition Theorem 3.4. How Theorem 3.4 implies corollaries 3.5 and 3.6, and results such as Exercises 9 and 10 (Chapter 3). Theorem 3.18 Theorem 3.21 Generalizing Theorem 3.21: Let V and W be finite-dimensional of the same dimension. then T L(V, W ) is invertible if and only if it is injective if and only if it is surjective. 2 2

3 Review Exercises 1. Determine if each of the following statements is true or false. (a) If the list (v 1,..., v m ) contains the vector 0, then the list is linearly dependent. Solution. True. If v i = 0 then a nontrivial linear dependence relation is given by 0 v v i v n = 0. (b) If the list (v 1,..., v 6 ) is linearly independent, then the list (v 1, v 3, v 5 ) is linearly independent. Solution. True Any linear dependence relation on the sublist is a linear dependence relation on the larger list by taking a 2 = a 4 = a 6 = 0. (c) If the list (v 1,..., v 6 ) is linearly dependent, then the list (v 1, v 3, v 5 ) is linearly dependent. Solution. False A counterexample is the list (e 1, 0, e 2, 0, e 3, 0) in F 3 where (e 1, e 2, e 3 ) is the standard basis of F 3. (d) If the list (v 1, v 2, v 3 ) is linearly dependent, then v i is a scalar multiple of v j for some i and j with i = j. Solution. False A counterexample is ((1, 0), (0, 1), (1, 1)). 2. Let U and V be subspaces of R 405 of dimensions 400 and 300 respectively. (a) List all possibilities for dim(u V ). Solution. dim(u V ) = dim U +dim V dim(u +V ) = dim(u +V ). Since U + V contains both U and V and is a subset of R 405, we have that 400 dim(u + V ) 405. Thus, the possible values for dim(u + V ) are 400, 401, 402, 403, 404, and 405, which then give the following values for dim(u V ): 300, 299, 298, 297, 296, and 295. (b) Is it possible to choose U and V so that every element of R 405 can be written uniquely as u + v with u U and v V? (Naturally, reasons are expected.) Solution. This is not possible. If every element of R 405 can be written uniquely as u + v with u U and v V, then this means that R 405 = U V, which is true if and only if U + V = R 405 and U V = {0}. The second condition cannot be true since, from part (a), dim(u V ) > (a) Define a subspace of a vector space. 3 3

4 Solution. A subset U of a vector space V is a subspace if U is a vector space using the vector addition and scalar multiplication of V. (b) Suppose that V is a finite dimensional vector space and that U V is a subspace such that dim U = dim V. Prove carefully that U = V. Solution. Let (u 1,..., u m ) be a basis of U. Thus m = dim U = dim V. Since (u 1,..., u m ) is a basis of U, it is, in particular, a linearly independent list of vectors in U V. Since m = dim V, Proposition 2.17 shows that this linearly independent list is in fact a basis of V. In particular, span(u 1,..., u m ) = V. But (u 1,..., u m ) is a basis of U so we also have U = span(u 1,..., u m ). Therefore, U = V. 4. Let T : F 4 F 7 be a linear map. Show that range(t ) cannot be the subspace U = { (x 1,..., x 7 ) F 7 : x x 7 = 0 }. Solution. Note that U = null(s) where S : F 7 F is the linear map S(x 1,..., x 7 ) = x x 7. Since range(s) = F it follows that dim U = dim null(s) = dim F 7 dim F = 7 1 = 6. However, 4 = dim F 4 = dim null(t ) + dim range(t ) so that dim range(t ) 4 < 6 = dim U. Therefore, it is not possible for range(t ) = U. 5. If (u, v, w) is a linearly independent list, show that (u v, v w, w + v) is also a linearly independent list. Solution. Suppose there is a linear dependence relation a 1 (u v) + a 2 (v w) + a 3 (w + v) = 0. Rewrite this as a linear dependence relation on the list (u, v, w): a 1 u + (a 2 a 1 + a 3 )v + (a 3 a 2 )w = 0. Since the list (u, v, w) is linearly independent, this means that the coefficients of u, v, and w must all be 0. That is, a 1 = 0 a 2 a 1 + a 3 = 0 a 3 a 2 = 0. Solving this system of equations gives a 1 = a 2 = a 3 = 0, which implies that the list (u v, v w, w + v) is linearly independent. 6. (a) Find a basis for the subspace U = { (y 1, y 2, y 3, y 4 ) F 4 : y 1 = y 2 and y 3 = y 4 }, and prove that the list you give is in fact a basis of U. 4 4

5 Solution. If u U, then u = (y 1, y 2, y 3, y 4 ) = (y 1, y 1, y 4, y 4 ) = y 1 (1, 1, 0, 0) + y 4 (0, 0, 1, 1). This shows that U = span((1, 1, 0, 0), (0, 0, 1, 1)) and since neither of two vectors in this list is a scalar multiple of the other, it follows that the list is linearly independent and hence a basis. (b) Suppose that W is another subspace of F 4 such that U + W = F 4. What can you say about dim W? Solution. Since 4 = dim F 4 = dim(u +W ) = dim U +dim W dim(u W ) = 2 + dim W dim(u W ), it follows that dim W = 2 + dim(u W ) 2. (c) Suppose instead that U W = F 4. Now what can you say about dim W? Solution. In this case U W = {0} so we must have dim W = 2 + dim(u W ) = 2 7. Let T : V W be a linear map. Suppose that (v 1,..., v n ) is a linearly independent list in V and T is injective. Show that the list (T v 1,..., T v n ) is linearly independent. Solution. Suppose that there is a linear dependence relation a 1 T v a n T v n = 0. Since T is a linear map, this implies that we have T (a 1 v a n v n ) = 0. But T is assumed to be injective, so this means that a 1 v a n v n = 0, and since (v 1,..., v n ) is a linearly independent list in V, this implies that a 1 = = a n = 0 and we conclude that the list (T v 1,..., T v n ) is linearly independent. 8. (a) Show that a linear map T : V W is injective if and only if null(t ) = {0}. Solution. This is Proposition 3.2, page 43. (b) Define T : P 3 (F) P 3 (F) by T (p) = (z 2 + z)p where p denotes the second derivative of p. Describe null(t ) and range(t ). What are their dimensions. 5 5

6 Solution. Since T (p) = (z 2 + z)p and z 2 + z = 0 it follows that p null(t ) if and only if p = 0. But the second derivative of a polynomial is 0 if and only if the polynomial has the form az + b. That is, it is a polynomial of degree at most 1. Thus null(t ) = P 1 (F) P 3 (F). Hence, dim null(t ) = dim P 1 (F) = 2 and thus, dim range(t ) = 4 2 = 2. To describe the range of T, note that the range of the second derivative map is just P 1 (F), that is, the polynomials of degree at most 1. Thus, the range of T consists of all polynomials of degree at most 3 of the form (z 2 + z)(az + b) = az 3 + (a + b)z 2 + bz. That is, a polynomial of degree at most 3 is in the range of T provided that there is no constant term and the coefficient of z 2 is the sum of the coefficients of z and z 3. (c) Find the matrix M(T ) that represents T with respect to the standard basis (1, z, z 2, z 3 ) of P 3 (F). Solution. T (1) = 0, T (z) = 0, T (z 2 ) = 2z 2 + 2z, and T (z 3 ) = 6z 3 + 6z 2. Therefore the matrix of T with respect to the standard basis is M(T ) =

Math 4153 Exam 3 Review. The syllabus for Exam 3 is Chapter 6 (pages ), Chapter 7 through page 137, and Chapter 8 through page 182 in Axler.

Math 4153 Exam 3 Review. The syllabus for Exam 3 is Chapter 6 (pages ), Chapter 7 through page 137, and Chapter 8 through page 182 in Axler. Math 453 Exam 3 Review The syllabus for Exam 3 is Chapter 6 (pages -2), Chapter 7 through page 37, and Chapter 8 through page 82 in Axler.. You should be sure to know precise definition of the terms we

More information

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by MATH 110 - SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER 2009 GSI: SANTIAGO CAÑEZ 1. Given vector spaces V and W, V W is the vector space given by V W = {(v, w) v V and w W }, with addition and scalar

More information

Math 550 Notes. Chapter 2. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes. Chapter 2. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010 Math 550 Notes Chapter 2 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 2 Fall 2010 1 / 20 Linear algebra deals with finite dimensional

More information

Test 3, Linear Algebra

Test 3, Linear Algebra Test 3, Linear Algebra Dr. Adam Graham-Squire, Fall 2017 Name: I pledge that I have neither given nor received any unauthorized assistance on this exam. (signature) DIRECTIONS 1. Don t panic. 2. Show all

More information

( 9x + 3y. y 3y = (λ 9)x 3x + y = λy 9x + 3y = 3λy 9x + (λ 9)x = λ(λ 9)x. (λ 2 10λ)x = 0

( 9x + 3y. y 3y = (λ 9)x 3x + y = λy 9x + 3y = 3λy 9x + (λ 9)x = λ(λ 9)x. (λ 2 10λ)x = 0 Math 46 (Lesieutre Practice final ( minutes December 9, 8 Problem Consider the matrix M ( 9 a Prove that there is a basis for R consisting of orthonormal eigenvectors for M This is just the spectral theorem:

More information

Vector Spaces and Linear Maps

Vector Spaces and Linear Maps Vector Spaces and Linear Maps Garrett Thomas August 14, 2018 1 About This document is part of a series of notes about math and machine learning. You are free to distribute it as you wish. The latest version

More information

Math 113 Midterm Exam Solutions

Math 113 Midterm Exam Solutions Math 113 Midterm Exam Solutions Held Thursday, May 7, 2013, 7-9 pm. 1. (10 points) Let V be a vector space over F and T : V V be a linear operator. Suppose that there is a non-zero vector v V such that

More information

Practice Midterm Solutions, MATH 110, Linear Algebra, Fall 2013

Practice Midterm Solutions, MATH 110, Linear Algebra, Fall 2013 Student ID: Circle your GSI and section: If none of the above, please explain: Scerbo 8am 200 Wheeler Scerbo 9am 3109 Etcheverry McIvor 12pm 3107 Etcheverry McIvor 11am 3102 Etcheverry Mannisto 12pm 3

More information

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer. Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

More information

Math 110, Spring 2015: Midterm Solutions

Math 110, Spring 2015: Midterm Solutions Math 11, Spring 215: Midterm Solutions These are not intended as model answers ; in many cases far more explanation is provided than would be necessary to receive full credit. The goal here is to make

More information

Lecture notes - Math 110 Lec 002, Summer The reference [LADR] stands for Axler s Linear Algebra Done Right, 3rd edition.

Lecture notes - Math 110 Lec 002, Summer The reference [LADR] stands for Axler s Linear Algebra Done Right, 3rd edition. Lecture notes - Math 110 Lec 002, Summer 2016 BW The reference [LADR] stands for Axler s Linear Algebra Done Right, 3rd edition. 1 Contents 1 Sets and fields - 6/20 5 1.1 Set notation.................................

More information

Lecture 6: Corrections; Dimension; Linear maps

Lecture 6: Corrections; Dimension; Linear maps Lecture 6: Corrections; Dimension; Linear maps Travis Schedler Tues, Sep 28, 2010 (version: Tues, Sep 28, 4:45 PM) Goal To briefly correct the proof of the main Theorem from last time. (See website for

More information

NAME MATH 304 Examination 2 Page 1

NAME MATH 304 Examination 2 Page 1 NAME MATH 4 Examination 2 Page. [8 points (a) Find the following determinant. However, use only properties of determinants, without calculating directly (that is without expanding along a column or row

More information

Midterm solutions. (50 points) 2 (10 points) 3 (10 points) 4 (10 points) 5 (10 points)

Midterm solutions. (50 points) 2 (10 points) 3 (10 points) 4 (10 points) 5 (10 points) Midterm solutions Advanced Linear Algebra (Math 340) Instructor: Jarod Alper April 26, 2017 Name: } {{ } Read all of the following information before starting the exam: You may not consult any outside

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1)

Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1) Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1) Travis Schedler Thurs, Nov 17, 2011 (version: Thurs, Nov 17, 1:00 PM) Goals (2) Polar decomposition

More information

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) March 5, 2015

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) March 5, 2015 Midterm 1 Advanced Linear Algebra Math 4377 / 638 (Spring 215) March 5, 215 2 points 1. Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain

More information

x 2 For example, Theorem If S 1, S 2 are subspaces of R n, then S 1 S 2 is a subspace of R n. Proof. Problem 3.

x 2 For example, Theorem If S 1, S 2 are subspaces of R n, then S 1 S 2 is a subspace of R n. Proof. Problem 3. .. Intersections and Sums of Subspaces Until now, subspaces have been static objects that do not interact, but that is about to change. In this section, we discuss the operations of intersection and addition

More information

1 Invariant subspaces

1 Invariant subspaces MATH 2040 Linear Algebra II Lecture Notes by Martin Li Lecture 8 Eigenvalues, eigenvectors and invariant subspaces 1 In previous lectures we have studied linear maps T : V W from a vector space V to another

More information

Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1)

Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1) Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1) Travis Schedler Thurs, Nov 17, 2011 (version: Thurs, Nov 17, 1:00 PM) Goals (2) Polar decomposition

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

Definition Suppose S R n, V R m are subspaces. A map U : S V is linear if

Definition Suppose S R n, V R m are subspaces. A map U : S V is linear if .6. Restriction of Linear Maps In this section, we restrict linear maps to subspaces. We observe that the notion of linearity still makes sense for maps whose domain and codomain are subspaces of R n,

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Homework 11 Solutions. Math 110, Fall 2013.

Homework 11 Solutions. Math 110, Fall 2013. Homework 11 Solutions Math 110, Fall 2013 1 a) Suppose that T were self-adjoint Then, the Spectral Theorem tells us that there would exist an orthonormal basis of P 2 (R), (p 1, p 2, p 3 ), consisting

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

Math 113 Winter 2013 Prof. Church Midterm Solutions

Math 113 Winter 2013 Prof. Church Midterm Solutions Math 113 Winter 2013 Prof. Church Midterm Solutions Name: Student ID: Signature: Question 1 (20 points). Let V be a finite-dimensional vector space, and let T L(V, W ). Assume that v 1,..., v n is a basis

More information

Solution to Homework 1

Solution to Homework 1 Solution to Homework Sec 2 (a) Yes It is condition (VS 3) (b) No If x, y are both zero vectors Then by condition (VS 3) x = x + y = y (c) No Let e be the zero vector We have e = 2e (d) No It will be false

More information

(b) The nonzero rows of R form a basis of the row space. Thus, a basis is [ ], [ ], [ ]

(b) The nonzero rows of R form a basis of the row space. Thus, a basis is [ ], [ ], [ ] Exam will be on Monday, October 6, 27. The syllabus for Exam 2 consists of Sections Two.III., Two.III.2, Two.III.3, Three.I, and Three.II. You should know the main definitions, results and computational

More information

Then x 1,..., x n is a basis as desired. Indeed, it suffices to verify that it spans V, since n = dim(v ). We may write any v V as r

Then x 1,..., x n is a basis as desired. Indeed, it suffices to verify that it spans V, since n = dim(v ). We may write any v V as r Practice final solutions. I did not include definitions which you can find in Axler or in the course notes. These solutions are on the terse side, but would be acceptable in the final. However, if you

More information

Linear Vector Spaces

Linear Vector Spaces CHAPTER 1 Linear Vector Spaces Definition 1.0.1. A linear vector space over a field F is a triple (V, +, ), where V is a set, + : V V V and : F V V are maps with the properties : (i) ( x, y V ), x + y

More information

Lecture 4: Linear independence, span, and bases (1)

Lecture 4: Linear independence, span, and bases (1) Lecture 4: Linear independence, span, and bases (1) Travis Schedler Tue, Sep 20, 2011 (version: Wed, Sep 21, 6:30 PM) Goals (2) Understand linear independence and examples Understand span and examples

More information

Kernel and range. Definition: A homogeneous linear equation is an equation of the form A v = 0

Kernel and range. Definition: A homogeneous linear equation is an equation of the form A v = 0 Kernel and range Definition: The kernel (or null-space) of A is ker A { v V : A v = 0 ( U)}. Theorem 5.3. ker A is a subspace of V. (In particular, it always contains 0 V.) Definition: A is one-to-one

More information

Review 1 Math 321: Linear Algebra Spring 2010

Review 1 Math 321: Linear Algebra Spring 2010 Department of Mathematics and Statistics University of New Mexico Review 1 Math 321: Linear Algebra Spring 2010 This is a review for Midterm 1 that will be on Thursday March 11th, 2010. The main topics

More information

Lecture 17: Section 4.2

Lecture 17: Section 4.2 Lecture 17: Section 4.2 Shuanglin Shao November 4, 2013 Subspaces We will discuss subspaces of vector spaces. Subspaces Definition. A subset W is a vector space V is called a subspace of V if W is itself

More information

Math 369 Exam #2 Practice Problem Solutions

Math 369 Exam #2 Practice Problem Solutions Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.

More information

Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church.

Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church. Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church. Exercise 5.C.1 Suppose T L(V ) is diagonalizable. Prove that V = null T range T. Proof. Let v 1,...,

More information

Math 110, Summer 2012: Practice Exam 1 SOLUTIONS

Math 110, Summer 2012: Practice Exam 1 SOLUTIONS Math, Summer 22: Practice Exam SOLUTIONS Choose 3/5 of the following problems Make sure to justify all steps in your solutions Let V be a K-vector space, for some number field K Let U V be a nonempty subset

More information

MODEL ANSWERS TO THE FIRST QUIZ. 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function

MODEL ANSWERS TO THE FIRST QUIZ. 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function MODEL ANSWERS TO THE FIRST QUIZ 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function A: I J F, where I is the set of integers between 1 and m and J is

More information

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a Practice Exercises for Exam Exam will be on Monday, September 8, 7. The syllabus for Exam consists of Sections One.I, One.III, Two.I, and Two.II. You should know the main definitions, results and computational

More information

Vector Spaces and Linear Transformations

Vector Spaces and Linear Transformations Vector Spaces and Linear Transformations Wei Shi, Jinan University 2017.11.1 1 / 18 Definition (Field) A field F = {F, +, } is an algebraic structure formed by a set F, and closed under binary operations

More information

Practice problems for Exam 3 A =

Practice problems for Exam 3 A = Practice problems for Exam 3. Let A = 2 (a) Determine whether A is diagonalizable. If so, find a matrix S such that S AS is diagonal. If not, explain why not. (b) What are the eigenvalues of A? Is A diagonalizable?

More information

Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1)

Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1) Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1) Travis Schedler Tue, Oct 18, 2011 (version: Tue, Oct 18, 6:00 PM) Goals (2) Solving systems of equations

More information

Abstract Vector Spaces

Abstract Vector Spaces CHAPTER 1 Abstract Vector Spaces 1.1 Vector Spaces Let K be a field, i.e. a number system where you can add, subtract, multiply and divide. In this course we will take K to be R, C or Q. Definition 1.1.

More information

Eigenvalues, Eigenvectors, and Invariant Subspaces

Eigenvalues, Eigenvectors, and Invariant Subspaces CHAPTER 5 Statue of Italian mathematician Leonardo of Pisa (7 25, approximate dates), also known as Fibonacci. Exercise 6 in Section 5.C shows how linear algebra can be used to find an explicit formula

More information

Problem set #4. Due February 19, x 1 x 2 + x 3 + x 4 x 5 = 0 x 1 + x 3 + 2x 4 = 1 x 1 x 2 x 4 x 5 = 1.

Problem set #4. Due February 19, x 1 x 2 + x 3 + x 4 x 5 = 0 x 1 + x 3 + 2x 4 = 1 x 1 x 2 x 4 x 5 = 1. Problem set #4 Due February 19, 218 The letter V always denotes a vector space. Exercise 1. Find all solutions to 2x 1 x 2 + x 3 + x 4 x 5 = x 1 + x 3 + 2x 4 = 1 x 1 x 2 x 4 x 5 = 1. Solution. First we

More information

2. (10 pts) How many vectors are in the null space of the matrix A = 0 1 1? (i). Zero. (iv). Three. (ii). One. (v).

2. (10 pts) How many vectors are in the null space of the matrix A = 0 1 1? (i). Zero. (iv). Three. (ii). One. (v). Exam 3 MAS 3105 Applied Linear Algebra, Spring 2018 (Clearly!) Print Name: Apr 10, 2018 Read all of what follows carefully before starting! 1. This test has 7 problems and is worth 110 points. Please be

More information

A linear algebra proof of the fundamental theorem of algebra

A linear algebra proof of the fundamental theorem of algebra A linear algebra proof of the fundamental theorem of algebra Andrés E. Caicedo May 18, 2010 Abstract We present a recent proof due to Harm Derksen, that any linear operator in a complex finite dimensional

More information

A linear algebra proof of the fundamental theorem of algebra

A linear algebra proof of the fundamental theorem of algebra A linear algebra proof of the fundamental theorem of algebra Andrés E. Caicedo May 18, 2010 Abstract We present a recent proof due to Harm Derksen, that any linear operator in a complex finite dimensional

More information

Math 115A: Homework 4

Math 115A: Homework 4 Math A: Homework page question but replace subset by tuple where appropriate and generates with spans page question but replace sets by tuple This won t be graded so do as much as you need Find bases for

More information

Math 308 Practice Test for Final Exam Winter 2015

Math 308 Practice Test for Final Exam Winter 2015 Math 38 Practice Test for Final Exam Winter 25 No books are allowed during the exam. But you are allowed one sheet ( x 8) of handwritten notes (back and front). You may use a calculator. For TRUE/FALSE

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

Footnotes to Linear Algebra (MA 540 fall 2013), T. Goodwillie, Bases

Footnotes to Linear Algebra (MA 540 fall 2013), T. Goodwillie, Bases Footnotes to Linear Algebra (MA 540 fall 2013), T. Goodwillie, Bases November 18, 2013 1 Spanning and linear independence I will outline a slightly different approach to the material in Chapter 2 of Axler

More information

Math Linear Algebra

Math Linear Algebra Math 220 - Linear Algebra (Summer 208) Solutions to Homework #7 Exercise 6..20 (a) TRUE. u v v u = 0 is equivalent to u v = v u. The latter identity is true due to the commutative property of the inner

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix Math 34H EXAM I Do all of the problems below. Point values for each of the problems are adjacent to the problem number. Calculators may be used to check your answer but not to arrive at your answer. That

More information

Lecture 21: The decomposition theorem into generalized eigenspaces; multiplicity of eigenvalues and upper-triangular matrices (1)

Lecture 21: The decomposition theorem into generalized eigenspaces; multiplicity of eigenvalues and upper-triangular matrices (1) Lecture 21: The decomposition theorem into generalized eigenspaces; multiplicity of eigenvalues and upper-triangular matrices (1) Travis Schedler Tue, Nov 29, 2011 (version: Tue, Nov 29, 1:00 PM) Goals

More information

SSEA Math 51 Track Final Exam August 30, Problem Total Points Score

SSEA Math 51 Track Final Exam August 30, Problem Total Points Score Name: This is the final exam for the Math 5 track at SSEA. Answer as many problems as possible to the best of your ability; do not worry if you are not able to answer all of the problems. Partial credit

More information

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002 Solutions to Section 9 Homework Problems Problems 9 (odd) and 8 S F Ellermeyer June The pictured set contains the vector u but not the vector u so this set is not a subspace of The pictured set contains

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show

More information

Midterm #2 Solutions

Midterm #2 Solutions Naneh Apkarian Math F Winter Midterm # Solutions Here is a solution key for the second midterm. The solutions presented here are more complete and thorough than your responses needed to be - in order to

More information

Math 113 Practice Final Solutions

Math 113 Practice Final Solutions Math 113 Practice Final Solutions 1 There are 9 problems; attempt all of them. Problem 9 (i) is a regular problem, but 9(ii)-(iii) are bonus problems, and they are not part of your regular score. So do

More information

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces Chapter 2 General Vector Spaces Outline : Real vector spaces Subspaces Linear independence Basis and dimension Row Space, Column Space, and Nullspace 2 Real Vector Spaces 2 Example () Let u and v be vectors

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

Math 54. Selected Solutions for Week 5

Math 54. Selected Solutions for Week 5 Math 54. Selected Solutions for Week 5 Section 4. (Page 94) 8. Consider the following two systems of equations: 5x + x 3x 3 = 5x + x 3x 3 = 9x + x + 5x 3 = 4x + x 6x 3 = 9 9x + x + 5x 3 = 5 4x + x 6x 3

More information

x y + z = 3 2y z = 1 4x + y = 0

x y + z = 3 2y z = 1 4x + y = 0 MA 253: Practice Exam Solutions You may not use a graphing calculator, computer, textbook, notes, or refer to other people (except the instructor). Show all of your work; your work is your answer. Problem

More information

of A in U satisfies S 1 S 2 = { 0}, S 1 + S 2 = R n. Examples 1: (a.) S 1 = span . 1 (c.) S 1 = span, S , S 2 = span 0 (d.

of A in U satisfies S 1 S 2 = { 0}, S 1 + S 2 = R n. Examples 1: (a.) S 1 = span . 1 (c.) S 1 = span, S , S 2 = span 0 (d. . Complements and Projection Maps In this section, we explore the notion of subspaces being complements. Then, the unique decomposition of vectors in R n into two pieces associated to complements lets

More information

Objective: Introduction of vector spaces, subspaces, and bases. Linear Algebra: Section

Objective: Introduction of vector spaces, subspaces, and bases. Linear Algebra: Section Objective: Introduction of vector spaces, subspaces, and bases. Vector space Vector space Examples: R n, subsets of R n, the set of polynomials (up to degree n), the set of (continuous, differentiable)

More information

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science Section 4.2 Subspaces College of Science MATHS 211: Linear Algebra (University of Bahrain) Subspaces 1 / 42 Goal: 1 Define subspaces. 2 Subspace test. 3 Linear Combination of elements. 4 Subspace generated

More information

Final EXAM Preparation Sheet

Final EXAM Preparation Sheet Final EXAM Preparation Sheet M369 Fall 217 1 Key concepts The following list contains the main concepts and ideas that we have explored this semester. For each concept, make sure that you remember about

More information

Review for Exam 2 Solutions

Review for Exam 2 Solutions Review for Exam 2 Solutions Note: All vector spaces are real vector spaces. Definition 4.4 will be provided on the exam as it appears in the textbook.. Determine if the following sets V together with operations

More information

Linear Algebra Lecture Notes-I

Linear Algebra Lecture Notes-I Linear Algebra Lecture Notes-I Vikas Bist Department of Mathematics Panjab University, Chandigarh-6004 email: bistvikas@gmail.com Last revised on February 9, 208 This text is based on the lectures delivered

More information

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example,

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example, Exam 2 Solutions. Let V be the set of pairs of real numbers (x, y). Define the following operations on V : (x, y) (x, y ) = (x + x, xx + yy ) r (x, y) = (rx, y) Check if V together with and satisfy properties

More information

MATH PRACTICE EXAM 1 SOLUTIONS

MATH PRACTICE EXAM 1 SOLUTIONS MATH 2359 PRACTICE EXAM SOLUTIONS SPRING 205 Throughout this exam, V and W will denote vector spaces over R Part I: True/False () For each of the following statements, determine whether the statement is

More information

Second Exam. Math , Spring March 2015

Second Exam. Math , Spring March 2015 Second Exam Math 34-54, Spring 25 3 March 25. This exam has 8 questions and 2 pages. Make sure you have all pages before you begin. The eighth question is bonus (and worth less than the others). 2. This

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and 6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2 Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

More information

Math 121 Homework 4: Notes on Selected Problems

Math 121 Homework 4: Notes on Selected Problems Math 121 Homework 4: Notes on Selected Problems 11.2.9. If W is a subspace of the vector space V stable under the linear transformation (i.e., (W ) W ), show that induces linear transformations W on W

More information

Lecture Notes for Math 414: Linear Algebra II Fall 2015, Michigan State University

Lecture Notes for Math 414: Linear Algebra II Fall 2015, Michigan State University Lecture Notes for Fall 2015, Michigan State University Matthew Hirn December 11, 2015 Beginning of Lecture 1 1 Vector Spaces What is this course about? 1. Understanding the structural properties of a wide

More information

(II.B) Basis and dimension

(II.B) Basis and dimension (II.B) Basis and dimension How would you explain that a plane has two dimensions? Well, you can go in two independent directions, and no more. To make this idea precise, we formulate the DEFINITION 1.

More information

AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda 4. BASES AND DIMENSION

AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda 4. BASES AND DIMENSION 4. BASES AND DIMENSION Definition Let u 1,..., u n be n vectors in V. The vectors u 1,..., u n are linearly independent if the only linear combination of them equal to the zero vector has only zero scalars;

More information

MATH 2360 REVIEW PROBLEMS

MATH 2360 REVIEW PROBLEMS MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

Math 24 Spring 2012 Questions (mostly) from the Textbook

Math 24 Spring 2012 Questions (mostly) from the Textbook Math 24 Spring 2012 Questions (mostly) from the Textbook 1. TRUE OR FALSE? (a) The zero vector space has no basis. (F) (b) Every vector space that is generated by a finite set has a basis. (c) Every vector

More information

Solution: (a) S 1 = span. (b) S 2 = R n, x 1. x 1 + x 2 + x 3 + x 4 = 0. x 4 Solution: S 5 = x 2. x 3. (b) The standard basis vectors

Solution: (a) S 1 = span. (b) S 2 = R n, x 1. x 1 + x 2 + x 3 + x 4 = 0. x 4 Solution: S 5 = x 2. x 3. (b) The standard basis vectors .. Dimension In this section, we introduce the notion of dimension for a subspace. For a finite set, we can measure its size by counting its elements. We are interested in a measure of size on subspaces

More information

Matrices related to linear transformations

Matrices related to linear transformations Math 4326 Fall 207 Matrices related to linear transformations We have encountered several ways in which matrices relate to linear transformations. In this note, I summarize the important facts and formulas

More information

Midterm 1 Solutions, MATH 54, Linear Algebra and Differential Equations, Fall Problem Maximum Score Your Score

Midterm 1 Solutions, MATH 54, Linear Algebra and Differential Equations, Fall Problem Maximum Score Your Score Midterm Solutions, MATH 54, Linear Algebra and Differential Equations, Fall 24 Student ID: Circle your section: 2 Shin 8am 7 Evans 22 Lim pm 35 Etcheverry 22 Cho 8am 75 Evans 23 Tanzer 2pm 35 Evans 23

More information

Travis Schedler. Thurs, Oct 27, 2011 (version: Thurs, Oct 27, 1:00 PM)

Travis Schedler. Thurs, Oct 27, 2011 (version: Thurs, Oct 27, 1:00 PM) Lecture 13: Proof of existence of upper-triangular matrices for complex linear transformations; invariant subspaces and block upper-triangular matrices for real linear transformations (1) Travis Schedler

More information

Math 24 Winter 2010 Sample Solutions to the Midterm

Math 24 Winter 2010 Sample Solutions to the Midterm Math 4 Winter Sample Solutions to the Midterm (.) (a.) Find a basis {v, v } for the plane P in R with equation x + y z =. We can take any two non-collinear vectors in the plane, for instance v = (,, )

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true.

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Dimension We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Lemma If a vector space V has a basis B containing n vectors, then any set containing more

More information

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic.

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. MATH 300, Second Exam REVIEW SOLUTIONS NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. [ ] [ ] 2 2. Let u = and v =, Let S be the parallelegram

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

Math 113 Final Exam: Solutions

Math 113 Final Exam: Solutions Math 113 Final Exam: Solutions Thursday, June 11, 2013, 3.30-6.30pm. 1. (25 points total) Let P 2 (R) denote the real vector space of polynomials of degree 2. Consider the following inner product on P

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

Homework 5 M 373K Mark Lindberg and Travis Schedler

Homework 5 M 373K Mark Lindberg and Travis Schedler Homework 5 M 373K Mark Lindberg and Travis Schedler 1. Artin, Chapter 3, Exercise.1. Prove that the numbers of the form a + b, where a and b are rational numbers, form a subfield of C. Let F be the numbers

More information

This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices.

This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices. Exam review This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices. Sample question Suppose u, v and w are non-zero vectors in R 7. They span

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Throughout these notes, F denotes a field (often called the scalars in this context). 1 Definition of a vector space Definition 1.1. A F -vector space or simply a vector space

More information