A bunch of practice questions January 31, 2008

Size: px
Start display at page:

Download "A bunch of practice questions January 31, 2008"

Transcription

1 A bunch of practice questions January 3, 28. Which of the following functions corresponds to the one plotted to the right? 7 6 (a) f(x) = x 3 4x 2 +, (b) f(x) = 2x 3 3x 2 +, (c) f(x) = x 3 4x 2 + 2x +, (d) f(x) = x 2 + 6x +. f(x) x 2. Match the plotted functions to the functions given by A(x) = x 2, B(x) = x 6 and C(x) = x /3? Given expression Number on plot A(x) = x 2.8 ().6 B(x) = x (2) (3) C(x) = x /3 3. Let f(x) = x 2 3x. (a) Calculate the slope of the secant line to the graph of f(x) between the points x = and x = 2. (b) Calculate the slope of the secant line to the graph of f(x) between the points x = and x = +h. (c) Using the definition of the derivative, calculate the derivative of the function f(x) at x =. 4. Let g(s) = s 3 4s. (a) Find the zeros of g(s), that is, the values of s at which g(s) =. (b) Find the locations of all local maxima and minima of g(s). For each one, be sure to state how you know that it is a maximum or a minimum. (c) Find all inflections points of g(s). On which intervals is g(s) concave up? On which intervals is g(s) concave down? (d) Using your answers to (a), (b) and (c), sketch the graph of g(s). Be sure to label all zeros, maxima, minima and inflections points.. Show that the sum of the x and y intercepts of any tangent line to the curve x + y = c is equal to c. Sketch the curve. Note: c is a constant. x

2 6. Hill functions A single protein can undergo three distinct enzymatic reaction depending on the other reactants present. Each reaction proceeds at a rate given by a Hill function of the form v = K max c n k n m + c n where c is the concentration of the protein and v is the reaction rate. The three Hill functions, one for each reaction, are plotted below. Match each Hill function (A, B, and C) with the correct set of parameters from the list below. 4 (a) K max = 4, k m =, n =. (b) K max = 2, k m =, n =. (c) K max = 2, k m =, n = 3. (d) K max = 4, k m =, n = 3. (e) K max = 4, k m = 2, n =. Rate of reaction (mol/sec) A B C (f) K max = 2, k m = 2, n =. 2 Concentration of protein (µ M) 7. Find the tangent line to the graph of the function h(x) = 3x 2 x + 2 at the point x =. Use this to estimate the value h(.). Is your approximation an underestimate or an overestimate? 8. Find all maxima and minima for the function f(x) = ln(x 2 +) 2 x2. Make a table to summarize your answer listing the x and f(x) values for each minimum and maximum as well as f (x) and whether the point is minimum or maximum. Use this information to sketch the graph of the function. 9. Suppose a population of rabbits reproduces at a rate proportional to the population size with constant of proportionality b = ln(3) individuals per capita per month. However, the population also has a death rate proportional to the population size with constant of proportionality m = ln(2) individuals per capita per month. Suppose the population starts with 6 members. After 4 months, how many rabbits will there be?. A colony of bacteria consists of two strains, one susceptible (S) to a particular antibiotic and the other resistant (R) to the same antibiotic. Upon treatment with the antibiotic, the population size of the susceptible strain as a function of time is S(t) = 2 ( t ) while the population size of the resistant strain is R(t) = 2 t. Here, t is measured in months with t = corresponding to the beginning of treatment. (a) How many of each strain of bacteria are there at the beginning of the treatment? (b) At what time will the resistant strain consist of 8% of the total colony (of the total colony at that time, not of the initial colony)? (c) How big are the two strains at that time?. A microtubule (MT) is a linear polymer that grows by addition of tubulin subunits at its tips. Tubulin subunits are placed in a rectangular microfabricated chamber (a micron-scale hole etched out of glass) with dimensions 2µm 8µm 8µm at an initial concentration of µm. No microtubules are initially present. At a particular moment in time, six MTs spontaneously form, each with a negligible (essentially 2

3 zero) length. From that time on, tubulin continually adds to and falls off the two tips of each polymer the rate of addition at each tip is proportional to the tubulin concentration with rate constant k on = subunits/(second µm) and the rate of removal is a constant rate k off = 2 subunits/second. Some assumptions that will be useful: () Addition of a single tubulin subunit increases the length of the polymer by approximately δ =. nm. (2) Tubulin subunits are conserved meaning that their total number never changes; they simply change from soluble form (measured in concentration) to polymer form (measured as length) and back. (3) Avogradro s number= (4) Although addition of subunits increases the length in discrete increments, it is reasonable to treat length as a continuous variable. (a) Write down a differential equation for the total length of polymer as a function of time, l(t). What is the appropriate initial condition? This question requires you to think carefully about conversion of units! (b) What is the total polymer length after a long period of time? Do the polymer fit in the chamber without having to bend? (c) What must I mean in the previous question when I say a long period of time? That is, a long time compared to what? (d) Simplify and solve the equation. 2. Skibbens et al. (993) measured the movement of a chromosome during mitosis before capture by the spindle was complete (plotted below). Their data show a dramatic oscillation in the position of the chromosome. (a) Use the data on the first graph below to sketch the velocity of the chromosome as a function of time on the second (blank) graph. Be sure to fill in a few values on the vertical axis and indicate the units in the parentheses. (b) On the first graph, circle one location where the acceleration is positively large and one location where the acceleration is negatively large. Ve locity ( ) Time (sec) 3. When fireworks explode, the vertical position of each flaming piece emerging from the explosion undergoes vertical motion described by y(t) = y + v t 2 gt2 where y is the height at which the firework explodes, v is the initial velocity of the flaming piece in question and g m/s 2 is the gravitational constant. (a) Find an expression for the time at which the flaming piece reaches its maximum height in terms of the initial velocity v. Be sure to consider all possibilities, that is v and v <. (b) Give an expression for the maximum height achieved in terms of v (again, consider all possibilities). 3

4 4. Suppose that a population of fish, measured as N in thousands of individuals, has a natural growth rate that depends on its density as described by the function G(N) = N(N )(3 N). If the population size is N = thousand and a few fish are removed, do you predict that the population size recover to? If not, what does it do? What if the population size is N = 3 thousand - will it recover from a similar removal of a few fish? When the population size is at we refer to it as steady but unstable. The population size at 3 is referred to as steady and stable. This should make sense based on your answer to the previous question. If you remove fish at a rate EN so that the total growth rate is now determined by the natural growth rate and the fishing rate, find the new stable steady population. Note that this population size is a function of E; call it N ss (E). Larger E means more fishing and hence a smaller stable steady population - check that your expression for N ss (E) decreases with larger E as one might intuit. What is the upper limit on E for which there is a stable steady population? What happens above this value of E? What is the yield (fish taken per unit time) when fishing occurs with rate constant E? Find the fishing rate constant, E max at which the yield is largest. What is the maximum sustainable yield (i.e. maximum yield that does not cause the population to crash)? Check that your answer for E max is within the allowable range. Try to provide a graphical interpretation of your answers.. Suppose you have just taken a spherical allergy pill with radius r. The volume of the pill gradually decreases as your stomach digests it but it remains spherical throughout. Suppose the rate of change of volume (V ) of the remaining portion of the pill is proportional to its surface area (S) with rate constant k. Derive an equation for the radius of the pill as a function of time. Solve the equation and calculate the length of time required to completely digest the pill or if more appropriate the time constant associated with the pill s dissolving. 6. Comparing functions It has been observed that wildebeest often migrate in extremely large herds (numbering in the thousands). Assume that the herds tend to be circular in form and the number of individuals per unit area is the same in all herds. If hyenas, the primary predator of wildebeest, can only reach members of the herd at its outer edge, explain why it is safer for the entire herd (on average) to be larger rather than smaller. Do this by writing down and comparing expressions for the total number of individuals in a herd and the number of exposed members at the outer edge. Explain your observation in words and include a sketch to illustrate your point. A herd of wildebeest grazing. 7. As an individual bacterium grows, its surface area increases and so it must produce new cell-wall material. In an attempt to measure this rate of cell-wall production using a microscope, we can look at two cross sections of the bacterium and measure the rates of cross-sectional area increase in the plane of the cross section (see grey areas in the figure below). The bacterium is shaped like a rod, composed of a cylindrical body capped by a half-sphere on each end. The measured rate of increase for cross-section is µm2 /min and for cross section 2 is µm2 /min. Calculate the rate of cell-wall (i.e. surface area) production. There is a way to solve this without knowing the radius and length - try eliminating those variables as early as possible. 4

5 Cross section Cross section 2 R L

Semester 1 Review. Name. Period

Semester 1 Review. Name. Period P A (Calculus )dx Semester Review Name Period Directions: Solve the following problems. Show work when necessary. Put the best answer in the blank provided, if appropriate.. Let y = g(x) be a function

More information

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions Sections 4.1 & 4.2: Using the Derivative to Analyze Functions f (x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f (c) = 0 (tangent line is horizontal),

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions. A bacteria culture initially contains 00 cells and grows at a rate proportional to its size. After an hour the population has increased to 40 cells. (a) Find an expression for the

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2 AB CALCULUS Page 1 of 6 NAME DATE 1. Evaluate each it: AB CALCULUS Show all work on separate paper. x 3 x 9 x 5x + 6 x 0 5x 3sin x x 7 x 3 x 3 5x (d) 5x 3 x +1 x x 4 (e) x x 9 3x 4 6x (f) h 0 sin( π 6

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

What is on today. 1 Linear approximation. MA 123 (Calculus I) Lecture 17: November 2, 2017 Section A2. Professor Jennifer Balakrishnan,

What is on today. 1 Linear approximation. MA 123 (Calculus I) Lecture 17: November 2, 2017 Section A2. Professor Jennifer Balakrishnan, Professor Jennifer Balakrishnan, jbala@bu.edu What is on today 1 Linear approximation 1 1.1 Linear approximation and concavity....................... 2 1.2 Change in y....................................

More information

Math 121: Final Exam Review Sheet

Math 121: Final Exam Review Sheet Exam Information Math 11: Final Exam Review Sheet The Final Exam will be given on Thursday, March 1 from 10:30 am 1:30 pm. The exam is cumulative and will cover chapters 1.1-1.3, 1.5, 1.6,.1-.6, 3.1-3.6,

More information

Final Examination 201-NYA-05 May 18, 2018

Final Examination 201-NYA-05 May 18, 2018 . ( points) Evaluate each of the following limits. 3x x + (a) lim x x 3 8 x + sin(5x) (b) lim x sin(x) (c) lim x π/3 + sec x ( (d) x x + 5x ) (e) lim x 5 x lim x 5 + x 6. (3 points) What value of c makes

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Definition A function f has an absolute maximum (or global maximum) at c if f ( c) f ( x) for all x in D, where D is the domain of f. The number

More information

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, 2011 NAME EID Section time (circle one): 11:00am 1:00pm 2:00pm No books, notes, or calculators. Show all your work. Do NOT open this exam booklet

More information

AP Calculus AB. Chapter IV Lesson B. Curve Sketching

AP Calculus AB. Chapter IV Lesson B. Curve Sketching AP Calculus AB Chapter IV Lesson B Curve Sketching local maxima Absolute maximum F I A B E G C J Absolute H K minimum D local minima Summary of trip along curve critical points occur where the derivative

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

Math Fall 08 Final Exam Review

Math Fall 08 Final Exam Review Math 173.7 Fall 08 Final Exam Review 1. Graph the function f(x) = x 2 3x by applying a transformation to the graph of a standard function. 2.a. Express the function F(x) = 3 ln(x + 2) in the form F = f

More information

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation.

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation. Math1314-TestReview2-Spring2016 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) Is the point (-5, -3) on the circle defined

More information

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1.

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1. F16 MATH 15 Test November, 016 NAME: SOLUTIONS CRN: Use only methods from class. You must show work to receive credit. When using a theorem given in class, cite the theorem. Reminder: Calculators are not

More information

Exam Review Sheets Combined

Exam Review Sheets Combined Exam Review Sheets Combined Fall 2008 1 Fall 2007 Exam 1 1. For each part, if the statement is always true, circle the printed capital T. If the statement is sometimes false, circle the printed capital

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

Calculus I Sample Exam #01

Calculus I Sample Exam #01 Calculus I Sample Exam #01 1. Sketch the graph of the function and define the domain and range. 1 a) f( x) 3 b) g( x) x 1 x c) hx ( ) x x 1 5x6 d) jx ( ) x x x 3 6 . Evaluate the following. a) 5 sin 6

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

AP CALCULUS AB Study Guide for Midterm Exam 2017

AP CALCULUS AB Study Guide for Midterm Exam 2017 AP CALCULUS AB Study Guide for Midterm Exam 2017 CHAPTER 1: PRECALCULUS REVIEW 1.1 Real Numbers, Functions and Graphs - Write absolute value as a piece-wise function - Write and interpret open and closed

More information

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes.

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes. Learning Target: I can sketch the graphs of rational functions without a calculator Consider the graph of y= f(x), where f(x) = 3x 3 (x+2) 2 a. Determine the equation(s) of the asymptotes. b. Find the

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

= 2 x. So, when 0 < x < 2 it is increasing but it is decreasing

= 2 x. So, when 0 < x < 2 it is increasing but it is decreasing Math 1A UCB, Spring 2010 A. Ogus Solutions 1 for Problem Set 10.5 # 5. y = x + x 1. Domain : R 2. x-intercepts : x + x = 0, i.e. x = 0, x =. y-intercept : y = 0.. symmetry : no. asymptote : no 5. I/D intervals

More information

4.2: What Derivatives Tell Us

4.2: What Derivatives Tell Us 4.2: What Derivatives Tell Us Problem Fill in the following blanks with the correct choice of the words from this list: Increasing, decreasing, positive, negative, concave up, concave down (a) If you know

More information

Math 111 Calculus I Fall 2005 Practice Problems For Final December 5, 2005

Math 111 Calculus I Fall 2005 Practice Problems For Final December 5, 2005 Math 111 Calculus I Fall 2005 Practice Problems For Final December 5, 2005 As always, the standard disclaimers apply In particular, I make no claims that all the material which will be on the exam is represented

More information

Math 206 Practice Test 3

Math 206 Practice Test 3 Class: Date: Math 06 Practice Test. The function f (x) = x x + 6 satisfies the hypotheses of the Mean Value Theorem on the interval [ 9, 5]. Find all values of c that satisfy the conclusion of the theorem.

More information

, find the value(s) of a and b which make f differentiable at bx 2 + x if x 2 x = 2 or explain why no such values exist.

, find the value(s) of a and b which make f differentiable at bx 2 + x if x 2 x = 2 or explain why no such values exist. Math 171 Exam II Summary Sheet and Sample Stuff (NOTE: The questions posed here are not necessarily a guarantee of the type of questions which will be on Exam II. This is a sampling of questions I have

More information

1. Find the real solutions, if any, of a. x 2 + 3x + 9 = 0 Discriminant: b 2 4ac = = 24 > 0, so 2 real solutions. Use the quadratic formula,

1. Find the real solutions, if any, of a. x 2 + 3x + 9 = 0 Discriminant: b 2 4ac = = 24 > 0, so 2 real solutions. Use the quadratic formula, Math 110, Winter 008, Sec, Instructor Whitehead P. 1 of 8 1. Find the real solutions, if any, of a. x + 3x + 9 = 0 Discriminant: b 4ac = 3 3 4 1 9 = 7 < 0, so NO real solutions b. x 4x = 0 Discriminant:

More information

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1).

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1). Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20 # 18, page 18: If f(x) = x2 x 2 1, find f( 1 2 ), f( 1 2 ), and f(a + 1). # 22, page 18: When a solution of acetylcholine

More information

Week In Review #7 - Test 2 Review

Week In Review #7 - Test 2 Review Li Chen @Spring 006 Week In Review #7 - Test Review Covers sections:.1 -.4, 3.1-3.5, 4.1-4.3 This review gives one or two examples from each section. It is NOT a thorough review by itself, but rather some

More information

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 5.2 5.7, 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems

More information

Final Exam 12/11/ (16 pts) Find derivatives for each of the following: (a) f(x) = 3 1+ x e + e π [Do not simplify your answer.

Final Exam 12/11/ (16 pts) Find derivatives for each of the following: (a) f(x) = 3 1+ x e + e π [Do not simplify your answer. Math 105 Final Exam 1/11/1 Name Read directions carefully and show all your work. Partial credit will be assigned based upon the correctness, completeness, and clarity of your answers. Correct answers

More information

Solutions to Math 41 Second Exam November 5, 2013

Solutions to Math 41 Second Exam November 5, 2013 Solutions to Math 4 Second Exam November 5, 03. 5 points) Differentiate, using the method of your choice. a) fx) = cos 03 x arctan x + 4π) 5 points) If u = x arctan x + 4π then fx) = fu) = cos 03 u and

More information

sec x dx = ln sec x + tan x csc x dx = ln csc x cot x

sec x dx = ln sec x + tan x csc x dx = ln csc x cot x Name: Instructions: The exam will have eight problems. Make sure that your reasoning and your final answers are clear. Include labels and units when appropriate. No notes, books, or calculators are permitted

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 2) h(x) = x2-5x + 5

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 2) h(x) = x2-5x + 5 Assignment 7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Using the derivative of f(x) given below, determine the critical points of f(x).

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0 Some Math 35 review problems With answers 2/6/2005 The following problems are based heavily on problems written by Professor Stephen Greenfield for his Math 35 class in spring 2005. His willingness to

More information

. CALCULUS AB. Name: Class: Date:

. CALCULUS AB. Name: Class: Date: Class: _ Date: _. CALCULUS AB SECTION I, Part A Time- 55 Minutes Number of questions -8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each of the following problems, using

More information

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1 Math 131. The Derivative and the Tangent Line Problem Larson Section.1 From precalculus, the secant line through the two points (c, f(c)) and (c +, f(c + )) is given by m sec = rise f(c + ) f(c) f(c +

More information

+ 1 for x > 2 (B) (E) (B) 2. (C) 1 (D) 2 (E) Nonexistent

+ 1 for x > 2 (B) (E) (B) 2. (C) 1 (D) 2 (E) Nonexistent dx = (A) 3 sin(3x ) + C 1. cos ( 3x) 1 (B) sin(3x ) + C 3 1 (C) sin(3x ) + C 3 (D) sin( 3x ) + C (E) 3 sin(3x ) + C 6 3 2x + 6x 2. lim 5 3 x 0 4x + 3x (A) 0 1 (B) 2 (C) 1 (D) 2 (E) Nonexistent is 2 x 3x

More information

SOLUTIONS 1 (27) 2 (18) 3 (18) 4 (15) 5 (22) TOTAL (100) PROBLEM NUMBER SCORE MIDTERM 2. Form A. Recitation Instructor : Recitation Time :

SOLUTIONS 1 (27) 2 (18) 3 (18) 4 (15) 5 (22) TOTAL (100) PROBLEM NUMBER SCORE MIDTERM 2. Form A. Recitation Instructor : Recitation Time : Math 5 March 8, 206 Form A Page of 8 Name : OSU Name.# : Lecturer:: Recitation Instructor : SOLUTIONS Recitation Time : SHOW ALL WORK in problems, 2, and 3. Incorrect answers with work shown may receive

More information

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1.

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1. MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS ) If x + y =, find y. IMPLICIT DIFFERENTIATION Solution. Taking the derivative (with respect to x) of both sides of the given equation, we find that 2 x + 2 y y =

More information

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1 Chapter 11 Differential Equations 11.1 Use separation of variables to solve the following differential equations with given initial conditions. (a) = 2ty, y(0) = 10 (b) = y(1 y), y(0) = 0.5, (Hint: 1 y(y

More information

MATH 18.01, FALL PROBLEM SET # 6 SOLUTIONS

MATH 18.01, FALL PROBLEM SET # 6 SOLUTIONS MATH 181, FALL 17 - PROBLEM SET # 6 SOLUTIONS Part II (5 points) 1 (Thurs, Oct 6; Second Fundamental Theorem; + + + + + = 16 points) Let sinc(x) denote the sinc function { 1 if x =, sinc(x) = sin x if

More information

Math 1A UCB, Fall 2010 A. Ogus Solutions 1 for Problem Set 4

Math 1A UCB, Fall 2010 A. Ogus Solutions 1 for Problem Set 4 Math 1A UCB, Fall 010 A. Ogus Solutions 1 for Problem Set 4.5 #. Explain, using Theorems 4, 5, 7, and 9, why the function 3 x(1 + x 3 ) is continuous at every member of its domain. State its domain. By

More information

Section 3.9. The Geometry of Graphs. Difference Equations to Differential Equations

Section 3.9. The Geometry of Graphs. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.9 The Geometry of Graphs In Section. we discussed the graph of a function y = f(x) in terms of plotting points (x, f(x)) for many different values

More information

Chapter 3: The Derivative in Graphing and Applications

Chapter 3: The Derivative in Graphing and Applications Chapter 3: The Derivative in Graphing and Applications Summary: The main purpose of this chapter is to use the derivative as a tool to assist in the graphing of functions and for solving optimization problems.

More information

Study guide for the Math 115 final Fall 2012

Study guide for the Math 115 final Fall 2012 Study guide for the Math 115 final Fall 2012 This study guide is designed to help you learn the material covered on the Math 115 final. Problems on the final may differ significantly from these problems

More information

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016 INSTRUCTIONS: The test has a total of 32 pages including this title page and 9 questions which are marked out of 10 points; ensure that you do not omit a page by mistake. Please write your name and AK-Nummer

More information

Chapter 3: Derivatives and Graphing

Chapter 3: Derivatives and Graphing Chapter 3: Derivatives and Graphing 127 Chapter 3 Overview: Derivatives and Graphs There are two main contexts for derivatives: graphing and motion. In this chapter, we will consider the graphical applications

More information

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40 Extreme Values in an Interval AP Calculus BC 1. The absolute maximum value of x = f ( x) x x 1 on the closed interval, 4 occurs at A) 4 B) C) 1 D) 0 E). The maximum acceleration attained on the interval

More information

Solutions to Math 41 Final Exam December 10, 2012

Solutions to Math 41 Final Exam December 10, 2012 Solutions to Math 4 Final Exam December,. ( points) Find each of the following limits, with justification. If there is an infinite limit, then explain whether it is or. x ln(t + ) dt (a) lim x x (5 points)

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

MA 113 Calculus I Fall 2016 Exam 3 Tuesday, November 15, True/False 1 T F 2 T F 3 T F 4 T F 5 T F. Name: Section:

MA 113 Calculus I Fall 2016 Exam 3 Tuesday, November 15, True/False 1 T F 2 T F 3 T F 4 T F 5 T F. Name: Section: MA 113 Calculus I Fall 2016 Exam 3 Tuesday, November 15, 2016 Name: Section: Last 4 digits of student ID #: This exam has five true/false questions (two points each), ten multiple choice questions (five

More information

ExtremeValuesandShapeofCurves

ExtremeValuesandShapeofCurves ExtremeValuesandShapeofCurves Philippe B. Laval Kennesaw State University March 23, 2005 Abstract This handout is a summary of the material dealing with finding extreme values and determining the shape

More information

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then 3.4 The Chain Rule To find the derivative of a function that is the composition of two functions for which we already know the derivatives, we can use the Chain Rule. The Chain Rule: Suppose F (x) = f(g(x)).

More information

Chapter 5. Increasing and Decreasing functions Theorem 1: For the interval (a,b) f (x) f(x) Graph of f + Increases Rises - Decreases Falls

Chapter 5. Increasing and Decreasing functions Theorem 1: For the interval (a,b) f (x) f(x) Graph of f + Increases Rises - Decreases Falls Chapter 5 Section 5.1 First Derivative and Graphs Objectives: The student will be able to identify increasing and decreasing functions and local extrema The student will be able to apply the first derivative

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

(a) The best linear approximation of f at x = 2 is given by the formula. L(x) = f(2) + f (2)(x 2). f(2) = ln(2/2) = ln(1) = 0, f (2) = 1 2.

(a) The best linear approximation of f at x = 2 is given by the formula. L(x) = f(2) + f (2)(x 2). f(2) = ln(2/2) = ln(1) = 0, f (2) = 1 2. Math 180 Written Homework Assignment #8 Due Tuesday, November 11th at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 180 students,

More information

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY MATH00 (Calculus).1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY Name Group No. KEYWORD: increasing, decreasing, constant, concave up, concave down, and inflection point Eample 1. Match the

More information

Math 115 Final Exam April 28, 2014

Math 115 Final Exam April 28, 2014 On my honor, as a student, I have neither given nor received unauthorized aid on this academic work. Signed: Math 115 Final Exam April 8, 014 Name: Instructor: Section: 1. Do not open this exam until you

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Sample Mathematics 106 Questions

Sample Mathematics 106 Questions Sample Mathematics 106 Questions x 2 + 8x 65 (1) Calculate lim x 5. x 5 (2) Consider an object moving in a straight line for which the distance s (measured in feet) it s travelled from its starting point

More information

Find the following limits. For each one, if it does not exist, tell why not. Show all necessary work.

Find the following limits. For each one, if it does not exist, tell why not. Show all necessary work. Calculus I Eam File Spring 008 Test #1 Find the following its. For each one, if it does not eist, tell why not. Show all necessary work. 1.) 4.) + 4 0 1.) 0 tan 5.) 1 1 1 1 cos 0 sin 3.) 4 16 3 1 6.) For

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

Math 131 Week-in-Review #7 (Exam 2 Review: Sections , , and )

Math 131 Week-in-Review #7 (Exam 2 Review: Sections , , and ) Math 131 WIR, copyright Angie Allen 1 Math 131 Week-in-Review #7 (Exam 2 Review: Sections 2.6-2.8, 3.1-3.4, and 3.7-3.9) Note: This collection of questions is intended to be a brief overview of the exam

More information

f ', the first derivative of a differentiable function, f. Use the

f ', the first derivative of a differentiable function, f. Use the f, f ', and The graph given to the right is the graph of graph to answer the questions below. f '' Relationships and The Extreme Value Theorem 1. On the interval [0, 8], are there any values where f(x)

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

Review for the Final Exam

Review for the Final Exam Calculus Lia Vas. Integrals. Evaluate the following integrals. (a) ( x 4 x 2 ) dx (b) (2 3 x + x2 4 ) dx (c) (3x + 5) 6 dx (d) x 2 dx x 3 + (e) x 9x 2 dx (f) x dx x 2 (g) xe x2 + dx (h) 2 3x+ dx (i) x

More information

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 611b Assignment #6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find a formula for the function graphed. 1) 1) A) f(x) = 5 + x, x < -

More information

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS The Department of Applied Mathematics administers a Math Placement test to assess fundamental skills in mathematics that are necessary to begin the study

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom Free Response Questions 1969-010 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions 1. If y x 3 x and dx dt 5, find dy dt when x. We have that dy dt 3 x dx dt dx dt 3 x 5 5, and this is equal to 3 5 10 70 when x.. A spherical balloon is being inflated so that its

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

1. Find the domain of the function f(x) = (A) D = (-, 2) (2, ) (B) D = (-, -2) (-2, ) (C) D = (2, ) (D) D = (-2, ) (E) none of the above

1. Find the domain of the function f(x) = (A) D = (-, 2) (2, ) (B) D = (-, -2) (-2, ) (C) D = (2, ) (D) D = (-2, ) (E) none of the above 1. Find the domain of the function f(x) = (A) D = (-, ) (, ) (B) D = (-, -) (-, ) (C) D = (, ) (D) D = (-, ) x. x + 1). A cell phone company offers a plan of $39 per month for 400 minutes. Each additional

More information

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3)

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Final Exam Review AP Calculus AB Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Use the graph to evaluate the limit. 2) lim x

More information

Honors Calculus Homework 1, due 9/8/5

Honors Calculus Homework 1, due 9/8/5 Honors Calculus Homework 1, due 9/8/5 Question 1 Calculate the derivatives of the following functions: p(x) = x 4 3x 3 + 5 x 4x 1 3 + 23 q(x) = (1 + x)(1 + x 2 )(1 + x 3 )(1 + x 4 ). r(t) = (1 + t)(1 +

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

MA 123 Recitation Activity Sheets

MA 123 Recitation Activity Sheets MA 123 Recitation Activity Sheets You will need to bring this packet with you to recitation each week. Some of the exercises included in this packet closely follow the lecture material and homework problems.

More information

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e MA23 Elem. Calculus Spring 206 Final Exam 206-05-05 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

More information

Calculus I (Math 241) (In Progress)

Calculus I (Math 241) (In Progress) Calculus I (Math 241) (In Progress) The following is a collection of Calculus I (Math 241) problems. Students may expect that their final exam is comprised, more or less, of one problem from each section,

More information

Calculus I 5. Applications of differentiation

Calculus I 5. Applications of differentiation 2301107 Calculus I 5. Applications of differentiation Chapter 5:Applications of differentiation C05-2 Outline 5.1. Extreme values 5.2. Curvature and Inflection point 5.3. Curve sketching 5.4. Related rate

More information

Math 115 Second Midterm March 25, 2010

Math 115 Second Midterm March 25, 2010 Math 115 Second Midterm March 25, 2010 Name: EXAM SOLUTIONS Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 9 pages including this cover. There are 8 problems.

More information

MATH 1241 FINAL EXAM FALL 2012 Part I, No Calculators Allowed

MATH 1241 FINAL EXAM FALL 2012 Part I, No Calculators Allowed MATH 11 FINAL EXAM FALL 01 Part I, No Calculators Allowed 1. Evaluate the limit: lim x x x + x 1. (a) 0 (b) 0.5 0.5 1 Does not exist. Which of the following is the derivative of g(x) = x cos(3x + 1)? (a)

More information

Motion in Two Dimensions: Centripetal Acceleration

Motion in Two Dimensions: Centripetal Acceleration Motion in Two Dimensions: Centripetal Acceleration Name: Group Members: Date: TA s Name: Apparatus: Rotating platform, long string, liquid accelerometer, meter stick, masking tape, stopwatch Objectives:

More information

Anticipated workload: 6 hours Summer Packets are due Thursday, August 24, 2017 Summer Assignment Quiz (including a unit circle quiz) the same day

Anticipated workload: 6 hours Summer Packets are due Thursday, August 24, 2017 Summer Assignment Quiz (including a unit circle quiz) the same day Dear AP Calculus BC student, Hello and welcome to the wonderful world of AP Calculus! I am excited that you have elected to take an accelerated mathematics course such as AP Calculus BC and would like

More information

Find the rectangular coordinates for each of the following polar coordinates:

Find the rectangular coordinates for each of the following polar coordinates: WORKSHEET 13.1 1. Plot the following: 7 3 A. 6, B. 3, 6 4 5 8 D. 6, 3 C., 11 2 E. 5, F. 4, 6 3 Find the rectangular coordinates for each of the following polar coordinates: 5 2 2. 4, 3. 8, 6 3 Given the

More information

Name: Partners: PreCalculus. Review 5 Version A

Name: Partners: PreCalculus. Review 5 Version A Name: Partners: PreCalculus Date: Review 5 Version A [A] Circle whether each statement is true or false. 1. 3 log 3 5x = 5x 2. log 2 16 x+3 = 4x + 3 3. ln x 6 + ln x 5 = ln x 30 4. If ln x = 4, then e

More information

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t Math 4, Autumn 006 Final Exam Solutions Page of 9. [ points total] Calculate the derivatives of the following functions. You need not simplfy your answers. (a) [4 points] y = 5x 7 sin(3x) + e + ln x. y

More information

MATH 019: Final Review December 3, 2017

MATH 019: Final Review December 3, 2017 Name: MATH 019: Final Review December 3, 2017 1. Given f(x) = x 5, use the first or second derivative test to complete the following (a) Calculate f (x). If using the second derivative test, calculate

More information

Math 180, Final Exam, Fall 2012 Problem 1 Solution

Math 180, Final Exam, Fall 2012 Problem 1 Solution Math 80, Final Exam, Fall 0 Problem Solution. Find the derivatives of the following functions: (a) ln(ln(x)) (b) x 6 + sin(x) e x (c) tan(x ) + cot(x ) (a) We evaluate the derivative using the Chain Rule.

More information

MLC Practice Final Exam. Recitation Instructor: Page Points Score Total: 200.

MLC Practice Final Exam. Recitation Instructor: Page Points Score Total: 200. Name: PID: Section: Recitation Instructor: DO NOT WRITE BELOW THIS LINE. GO ON TO THE NEXT PAGE. Page Points Score 3 20 4 30 5 20 6 20 7 20 8 20 9 25 10 25 11 20 Total: 200 Page 1 of 11 Name: Section:

More information

LSU AP Calculus Practice Test Day

LSU AP Calculus Practice Test Day LSU AP Calculus Practice Test Day AP Calculus AB 2018 Practice Exam Section I Part A AP CALCULUS AB: PRACTICE EXAM SECTION I: PART A NO CALCULATORS ALLOWED. YOU HAVE 60 MINUTES. 1. If y = ( 1 + x 5) 3

More information

AP CALCULUS BC Syllabus / Summer Assignment 2015

AP CALCULUS BC Syllabus / Summer Assignment 2015 AP CALCULUS BC Syllabus / Summer Assignment 015 Name Congratulations! You made it to BC Calculus! In order to complete the curriculum before the AP Exam in May, it is necessary to do some preparatory work

More information

Math 115 Final Exam April 24, 2017

Math 115 Final Exam April 24, 2017 On my honor, as a student, I have neither given nor received unauthorized aid on this academic work. Initials: Do not write in this area Your Initials Only: Math 5 Final Exam April 2, 207 Your U-M ID #

More information

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I CALCULUS I, FINAL EXAM 1 MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM Name (Print last name first):............................................. Student ID Number:...........................

More information

MATH 151, Fall 2015, Week 12, Section

MATH 151, Fall 2015, Week 12, Section MATH 151, Fall 2015, Week 12, Section 5.1-5.3 Chapter 5 Application of Differentiation We develop applications of differentiation to study behaviors of functions and graphs Part I of Section 5.1-5.3, Qualitative/intuitive

More information