On The Non-Real Nature of x 0 (x R 0 ) The Set of Null Imaginary Numbers I Part I: Fundamentals

Size: px
Start display at page:

Download "On The Non-Real Nature of x 0 (x R 0 ) The Set of Null Imaginary Numbers I Part I: Fundamentals"

Transcription

1 On The Non-Real Nature of x (x R ) The Set of Null Imaginary Numbers I Part I: Fundamentals Saulo Queiroz sauloqueiroz@utfpr.edu.br Academic Department of Informatics Federal University of Technology (UTFPR) Ponta Grossa, Brazil October 23, 28 Abstract In this letter we discuss the inconsistencies of / x = y, x, y R from the perspective of the zero property multiplication (ZPM) x = y on R. We axiomatize x as a number i (x) that has a real part R(i (x)) = but indeed is not real. From this we define the set of null imaginary numbers I as {i (x) x R } {}. We present the elementary algebra on I based on the definitions of uniqueness (i.e., if x y i (x) i (y)) and the null division (i.e., i (x)/ = x ). Also, under the condition of existence of I, we show that / = i ()/i () = does not cause the logic trivialism of the real mathematic. Introduction. Elementary Inconsistencies of / R Division by zero is forbidden for real numbers because we do not know how to prevent the inconsistencies that result. To briefly recall some of those inconsistencies, let us define the inequalities, 2 and 3 for the constants x, y R. x () y (2) x y (3) The zero property of multiplication (ZPM) tells us the Eq. 4 is valid. x = y = (4)

2 From Eq. 4 one may wonder whether the equality 5 holds. If / = then x = y, which contradicts the initial statement 3. If / = then y = which contradicts the initial statement 2. / x? = y (5).2 What Really Does Cause the Inconsistencies of /? ZPM defines zero as the absorbing element for multiplication on R. The inconsistencies we have just described in section. strongly suggests that there may be a dimension in which ZPM fails to absorb two distinct numbers in exactly the same way. In fact, the true nature of x cannot be entirely explained in R (even in C) unless one forbids division by zero. Because of this, it seems to be more appropriate to axiomatize x as a number that has a null real part but, indeed, is not real. Thus, to account the differences in the absorptions x and y (x y R ), we propose the function i (x), x R, we refer to as the null imaginary number of x. 2 Notation, Definitions and Properties In this section we present definitions and properties of the null imaginary numbers I. We always denote both x and y as distinct non-zero real numbers unless differently stated. Similarly, all usual properties of R does hold for I unless differently stated. 2. Fundamentals The process of multiplying x R by zero we refer to as imagination (Def. ). Definition (Imagination) We define a null imaginary number i (x) I, x R as x = i (x) (6) Imagination on x yields a null imaginary number (or just n-imaginary) i (x) which is member of the null imaginary set of numbers I (Def. 2). Definition 2 (The Set I of Null Imaginary Numbers) I = {i (x) x R } {}. (7) No two real numbers lead to the same n-imaginary number on I (Def. 3). We extend this definition for the n-imaginary numbers too (Def. 4). Definition 3 (Uniqueness of Imaginary Numbers) x y i (x) i (y), x, y R (8) 2

3 Definition 4 (Null imaginary Power) Let i (x) I, x R and n N. Then: n x = i (x) n (9) i= i (x) = i (x) n n = () Despite the uniqueness on I, all n-imarginary numbers preserve and share the same null real part (Def. 5). Definition 5 (The Real Part R(i (x)) of a Null Imaginary Number i (x)) R(i (x)) =, x R () In other words, Defs. 3 and 5 tell us that Eqs. 2 and 3 do hold, respectively. x y (2) R(x ) = R(y ) = (3) The reverse process of imagination (i.e., dividing a null imaginary number by zero) we refer to as realization (Def. 6). Definition 6 (Realization) i (x) = x (4) We define i () = as the shared origin of I and R (Def. 7). Definition 7 (Dual Nature of Zero) in other words, i (x) = x x = (5) i () = (6) i (x) x, x R (7) I R = {} (8) 2.2 Real and Null Imaginary Division Another form of imagination for a real number x R is division by zero, (Property ). Property (Imagination by Division) Let x R. Then, x/ is an n- imaginary number. x x = = x i (x ) 3 (9)

4 In fact, considering the property 2, (i.e., y i (x) = i (xy)), from Eq. 9 one gets the equality 2: x i (x ) = Property 2 (Multiplication R I ) i (x x ) = i () (2) y i (x) = i (yx) (2) y i (x) = y x = y x = yx = i (yx) 2.3 Meaning of / Based on I Let us consider now the uniqueness on I (i.e., x y, definition 3) to Def. / (Eq. 22). Based on Def. (Eq. 6), one gets Eq. 25. Next, Eq. 28 results according to Def. 6 (Eq. 4). Therefore, by defining the set I, we define / =. Property 3 (The Set I defines / = ) i() Therefore, assuming the existence of I, = x = x = x = x, (Def. ) (22) = x (23) = x, (Def. 6) (24) = (25) 4

5 2.4 Elementary Algebra on I Property 4 (Sum) Let x, y R. Then i (x) + i (y) = i (x + y) (26) i (x) + i (y) = x + y = (x + y) = i (x + y) Property 5 (Multiplication) Let i (x), i (y) I, x, y R. Then i (x) i (y) = i (xy) 2 (27) i (x) i (y) = x y = x y = xy = i (xy), (Def. ) i (x) i (y) = i (xy) 2, (Def. 4) (28) Property 6 (Division) Let i (x), i (y) I, x, y R. Then i (x) i (y) = x y (29) i (x) i (y) i (x) i (y) = x y = x, (Prop. 3) (3) y Definition 8 (Multiplicative identity) i (x) = i (x) (3) 5

6 2.5 Null Subtraction Let us consider the specific case x x, x R in face of I. Considering a pure real domain, Def. 5 ensures R(x x) =. However, one concerning on the null-imaginary nature of (x x), may find out it can be neither i (x) nor i ( x). In fact, realization (Def. 6) tells us that i (x)/ = x x x as well as i ( x)/ = x x x. Thus, we define x x I according to the Def. 9. Definition 9 (Real Null Subtraction) x x = i (x x) = i (±x) (32) R(x x) = R(i (x x)) = R(i (±x)) = (33) The subtraction of an n-imaginary number by itself is defined in Def. 7 considering Def. 9. Property 7 (Null Imaginary Subtraction) Let i (x) I, x R. Then i (x) i (x) = i (±x) 2 (34) i (x) i (x) = x x (35) = (x x) 2.6 Euler s Identity and i (±) = (i (±x)), (Def. 9) = i (±x) 2, (Def. 4) (36) The n-imaginary number = i (±) seems to play a special rule for I because it lies in any subtraction of the type x x. In fact, x x = x ( ). Assuming the existence of I and admiting the usage of the unit imaginary i =, i (±) re-writes as the Euler s identity (Prop. 8). Property 8 (Euler s Null Imaginary Identity) Assuming the existence of I, the Euler s identity becomes the (elementary) n-imaginary number i (±) with null real-part, i.e., e iπ + = i (±) (37) R(e iπ + ) = (38) e iπ + = e iπ + = i (±), (Def. 9) R(e iπ + ) = R(i (±)) =, (Def. 5) 6

7 3 Summary In this letter we introduced the set of null imaginary numbers I by revisiting the zero-property multiplication on R. We defined I such that any two null imaginary numbers i (x) = x (x R ) and i (y) = y (x y R ) are distinct but present the same real part R(i (x)) = R(i (y)) =. We showed that the existence of I (along with its elementary algebra we also defined) enables / = without bringing inconsistency to R. The meaning of i (x) and i (y) can translate, for instance, the amount of energy-amplitude transferred to the null imaginary dimension during the destructive interferences f (t) = xcos(2πt) + xcos(2πt + π) and f 2 (t) = ycos(2πt) + ycos(2πt + π), respectively. We plan to present deeper discussion about the physical interpretation of I as well as its complex extension in future work. 7

Numbers, proof and all that jazz.

Numbers, proof and all that jazz. CHAPTER 1 Numbers, proof and all that jazz. There is a fundamental difference between mathematics and other sciences. In most sciences, one does experiments to determine laws. A law will remain a law,

More information

Section 1.3 Review of Complex Numbers

Section 1.3 Review of Complex Numbers 1 Section 1. Review of Complex Numbers Objective 1: Imaginary and Complex Numbers In Science and Engineering, such quantities like the 5 occur all the time. So, we need to develop a number system that

More information

Sect Complex Numbers

Sect Complex Numbers 161 Sect 10.8 - Complex Numbers Concept #1 Imaginary Numbers In the beginning of this chapter, we saw that the was undefined in the real numbers since there is no real number whose square is equal to a

More information

Exponents. Reteach. Write each expression in exponential form (0.4)

Exponents. Reteach. Write each expression in exponential form (0.4) 9-1 Exponents You can write a number in exponential form to show repeated multiplication. A number written in exponential form has a base and an exponent. The exponent tells you how many times a number,

More information

Complex Numbers For High School Students

Complex Numbers For High School Students Complex Numbers For High School Students For the Love of Mathematics and Computing Saturday, October 14, 2017 Presented by: Rich Dlin Presented by: Rich Dlin Complex Numbers For High School Students 1

More information

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley Chap. 2 AN ALGEBRAIC FIELD To introduce the notion of an abstract algebraic structure we consider (algebraic) fields. (These should not to

More information

Math Exam 2, October 14, 2008

Math Exam 2, October 14, 2008 Math 96 - Exam 2, October 4, 28 Name: Problem (5 points Find all solutions to the following system of linear equations, check your work: x + x 2 x 3 2x 2 2x 3 2 x x 2 + x 3 2 Solution Let s perform Gaussian

More information

Algebra I - Study Guide for Final

Algebra I - Study Guide for Final Name: Date: Period: Algebra I - Study Guide for Final Multiple Choice Identify the choice that best completes the statement or answers the question. To truly study for this final, EXPLAIN why the answer

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

MATH 271 Summer 2016 Practice problem solutions Week 1

MATH 271 Summer 2016 Practice problem solutions Week 1 Part I MATH 271 Summer 2016 Practice problem solutions Week 1 For each of the following statements, determine whether the statement is true or false. Prove the true statements. For the false statement,

More information

PreCalculus: Semester 1 Final Exam Review

PreCalculus: Semester 1 Final Exam Review Name: Class: Date: ID: A PreCalculus: Semester 1 Final Exam Review Short Answer 1. Determine whether the relation represents a function. If it is a function, state the domain and range. 9. Find the domain

More information

Sums of four squares and Waring s Problem Brandon Lukas

Sums of four squares and Waring s Problem Brandon Lukas Sums of four squares and Waring s Problem Brandon Lukas Introduction The four-square theorem states that every natural number can be represented as the sum of at most four integer squares. Look at the

More information

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST Discrete Mathematics CS204: Spring, 2008 Jong C. Park Computer Science Department KAIST Today s Topics Combinatorial Circuits Properties of Combinatorial Circuits Boolean Algebras Boolean Functions and

More information

How to Do Word Problems. Solving Linear Equations

How to Do Word Problems. Solving Linear Equations Solving Linear Equations Properties of Equality Property Name Mathematics Operation Addition Property If A = B, then A+C = B +C Subtraction Property If A = B, then A C = B C Multiplication Property If

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 1A! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {2, 4, 6, 8, 10, 12, 14, 16,...} and let B = {3, 6, 9, 12, 15, 18,

More information

Basic Equations and Inequalities

Basic Equations and Inequalities Hartfield College Algebra (Version 2017a - Thomas Hartfield) Unit ONE Page - 1 - of 45 Topic 0: Definition: Ex. 1 Basic Equations and Inequalities An equation is a statement that the values of two expressions

More information

Concept: Solving Equations

Concept: Solving Equations Concept: Solving Equations EQ: How do we justify how we solve equations? REI. 1 Vocabulary: Properties of Equality Properties of Operation Justify 1 Solve the equations below, provide an explanation for

More information

Relevant sections from AMATH 351 Course Notes (Wainwright): 1.3 Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 1.1.

Relevant sections from AMATH 351 Course Notes (Wainwright): 1.3 Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 1.1. Lecture 8 Qualitative Behaviour of Solutions to ODEs Relevant sections from AMATH 351 Course Notes (Wainwright): 1.3 Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 1.1.1 The last few

More information

The Basis. [5] The Basis

The Basis. [5] The Basis The Basis [5] The Basis René Descartes Born 1596. After studying law in college,... I entirely abandoned the study of letters. Resolving to seek no knowledge other than that of which could be found in

More information

R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member

R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member Chapter R Review of basic concepts * R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member Ex: Write the set of counting numbers

More information

Self-Directed Course: Transitional Math Module 4: Algebra

Self-Directed Course: Transitional Math Module 4: Algebra Lesson #1: Solving for the Unknown with no Coefficients During this unit, we will be dealing with several terms: Variable a letter that is used to represent an unknown number Coefficient a number placed

More information

Handout - Algebra Review

Handout - Algebra Review Algebraic Geometry Instructor: Mohamed Omar Handout - Algebra Review Sept 9 Math 176 Today will be a thorough review of the algebra prerequisites we will need throughout this course. Get through as much

More information

= x iy. Also the. DEFINITION #1. If z=x+iy, then the complex conjugate of z is given by magnitude or absolute value of z is z =.

= x iy. Also the. DEFINITION #1. If z=x+iy, then the complex conjugate of z is given by magnitude or absolute value of z is z =. Handout # 4 COMPLEX FUNCTIONS OF A COMPLEX VARIABLE Prof. Moseley Chap. 3 To solve z 2 + 1 = 0 we "invent" the number i with the defining property i 2 = ) 1. We then define the set of complex numbers as

More information

Math Released Item Algebra 1. System of Inequalities VF648815

Math Released Item Algebra 1. System of Inequalities VF648815 Math Released Item 2016 Algebra 1 System of Inequalities VF648815 Prompt Rubric Task is worth a total of 3 points. VF648815 Rubric Part A Score Description 1 Student response includes the following element.

More information

Polynomial Operations

Polynomial Operations Chapter 7 Polynomial Operations Sec. 1 Polynomials; Add/Subtract Polynomials sounds tough enough. But, if you look at it close enough you ll notice that students have worked with polynomial expressions

More information

Chapter Five Notes N P U2C5

Chapter Five Notes N P U2C5 Chapter Five Notes N P UC5 Name Period Section 5.: Linear and Quadratic Functions with Modeling In every math class you have had since algebra you have worked with equations. Most of those equations have

More information

REVIEW Chapter 1 The Real Number System

REVIEW Chapter 1 The Real Number System REVIEW Chapter The Real Number System In class work: Complete all statements. Solve all exercises. (Section.4) A set is a collection of objects (elements). The Set of Natural Numbers N N = {,,, 4, 5, }

More information

Commutative Banach algebras 79

Commutative Banach algebras 79 8. Commutative Banach algebras In this chapter, we analyze commutative Banach algebras in greater detail. So we always assume that xy = yx for all x, y A here. Definition 8.1. Let A be a (commutative)

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,...,

Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,..., Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,..., where a and c represent real numbers and c 0. Details and Remarks The definition

More information

Homework 10 M 373K by Mark Lindberg (mal4549)

Homework 10 M 373K by Mark Lindberg (mal4549) Homework 10 M 373K by Mark Lindberg (mal4549) 1. Artin, Chapter 11, Exercise 1.1. Prove that 7 + 3 2 and 3 + 5 are algebraic numbers. To do this, we must provide a polynomial with integer coefficients

More information

6. Linear Transformations.

6. Linear Transformations. 6. Linear Transformations 6.1. Matrices as Transformations A Review of Functions domain codomain range x y preimage image http://en.wikipedia.org/wiki/codomain 6.1. Matrices as Transformations A Review

More information

Introduction to Vector Spaces Linear Algebra, Fall 2008

Introduction to Vector Spaces Linear Algebra, Fall 2008 Introduction to Vector Spaces Linear Algebra, Fall 2008 1 Echoes Consider the set P of polynomials with real coefficients, which includes elements such as 7x 3 4 3 x + π and 3x4 2x 3. Now we can add, subtract,

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way EECS 16A Designing Information Devices and Systems I Fall 018 Lecture Notes Note 1 1.1 Introduction to Linear Algebra the EECS Way In this note, we will teach the basics of linear algebra and relate it

More information

THE DIVISION THEOREM IN Z AND R[T ]

THE DIVISION THEOREM IN Z AND R[T ] THE DIVISION THEOREM IN Z AND R[T ] KEITH CONRAD 1. Introduction In both Z and R[T ], we can carry out a process of division with remainder. Theorem 1.1. For any integers a and b, with b nonzero, there

More information

ALGEBRA GRADE 7 MINNESOTA ACADEMIC STANDARDS CORRELATED TO MOVING WITH MATH. Part B Student Book Skill Builders (SB)

ALGEBRA GRADE 7 MINNESOTA ACADEMIC STANDARDS CORRELATED TO MOVING WITH MATH. Part B Student Book Skill Builders (SB) MINNESOTA ACADEMIC STANDARDS CORRELATED TO MOVING WITH MATH ALGEBRA GRADE 7 NUMBER AND OPERATION Read, write, represent and compare positive and negative rational numbers, expressed as integers, fractions

More information

GUIDED NOTES 2.2 LINEAR EQUATIONS IN ONE VARIABLE

GUIDED NOTES 2.2 LINEAR EQUATIONS IN ONE VARIABLE GUIDED NOTES 2.2 LINEAR EQUATIONS IN ONE VARIABLE LEARNING OBJECTIVES In this section, you will: Solve equations in one variable algebraically. Solve a rational equation. Find a linear equation. Given

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18. PIDs Definition 1 A principal ideal domain (PID) is an integral

More information

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) LIOR SILBERMAN Version 1.0 compiled September 9, 2015. 1.1. List of examples. 1. RELATIONS Equality of real numbers: for some x,y R we have x = y. For other pairs

More information

1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : 5 points

1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : 5 points Introduction to Discrete Mathematics 3450:208 Test 1 1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : The inverse of E : The

More information

Dividing Polynomials: Remainder and Factor Theorems

Dividing Polynomials: Remainder and Factor Theorems Dividing Polynomials: Remainder and Factor Theorems When we divide one polynomial by another, we obtain a quotient and a remainder. If the remainder is zero, then the divisor is a factor of the dividend.

More information

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010 Section 6.1: Rational Expressions and Functions Definition of a rational expression Let u and v be polynomials. The algebraic expression u v is a rational expression. The domain of this rational expression

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

Bob Brown, CCBC Essex Math 163 College Algebra, Chapter 1 Section 7 COMPLETED 1 Linear, Compound, and Absolute Value Inequalities

Bob Brown, CCBC Essex Math 163 College Algebra, Chapter 1 Section 7 COMPLETED 1 Linear, Compound, and Absolute Value Inequalities Bob Brown, CCBC Essex Math 163 College Algebra, Chapter 1 Section 7 COMPLETED 1 What is the following symbol? < The inequality symbols < > are used to compare two real numbers. The meaning of anyone of

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways:

irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways: CH 2 VARIABLES INTRODUCTION F irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways: 5 7 5 7 5(7) (5)7 (5)(7)

More information

A generalization of modal definability

A generalization of modal definability A generalization of modal definability Tin Perkov Polytechnic of Zagreb Abstract. Known results on global definability in basic modal logic are generalized in the following sense. A class of Kripke models

More information

College Algebra Through Problem Solving (2018 Edition)

College Algebra Through Problem Solving (2018 Edition) City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College Winter 1-25-2018 College Algebra Through Problem Solving (2018 Edition) Danielle Cifone

More information

Factorizing Algebraic Expressions

Factorizing Algebraic Expressions 1 of 60 Factorizing Algebraic Expressions 2 of 60 Factorizing expressions Factorizing an expression is the opposite of expanding it. Expanding or multiplying out a(b + c) ab + ac Factorizing Often: When

More information

Real Numbers in the Neighborhood of Infinity

Real Numbers in the Neighborhood of Infinity Real Numbers in the Neighborhood of Infinity by Jonathan W. Tooker Abstract We demonstrate the existence of a broad class of real numbers which are not elements of any number field: those in the neighborhood

More information

Math 154 :: Elementary Algebra

Math 154 :: Elementary Algebra Math 4 :: Elementary Algebra Section. Additive Property of Equality Section. Multiplicative Property of Equality Section.3 Linear Equations in One-Variable Section.4 Linear Equations in One-Variable with

More information

MA 460 Supplement: Analytic geometry

MA 460 Supplement: Analytic geometry M 460 Supplement: nalytic geometry Donu rapura In the 1600 s Descartes introduced cartesian coordinates which changed the way we now do geometry. This also paved for subsequent developments such as calculus.

More information

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc.

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc. 1.2 Functions and Their Properties Copyright 2011 Pearson, Inc. What you ll learn about Function Definition and Notation Domain and Range Continuity Increasing and Decreasing Functions Boundedness Local

More information

Section 0. Sets and Relations

Section 0. Sets and Relations 0. Sets and Relations 1 Section 0. Sets and Relations NOTE. Mathematics is the study of ideas, not of numbers!!! The idea from modern algebra which is the focus of most of this class is that of a group

More information

Section 2.3 Solving Linear Equations

Section 2.3 Solving Linear Equations Variable: Defined as A symbol (or letter) that is used to represent an unknown numbers Examples: a, b, c, x, y, z, s, t, m, n, Constant: Defined as A single number Examples: 1, 2, 3, 6, 1, π, e, π, 1.6,

More information

Order of Operations. Real numbers

Order of Operations. Real numbers Order of Operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply and divide from left to right. 4. Add

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way EECS 16A Designing Information Devices and Systems I Spring 018 Lecture Notes Note 1 1.1 Introduction to Linear Algebra the EECS Way In this note, we will teach the basics of linear algebra and relate

More information

Order of Operations Practice: 1) =

Order of Operations Practice: 1) = Order of Operations Practice: 1) 24-12 3 + 6 = a) 6 b) 42 c) -6 d) 192 2) 36 + 3 3 (1/9) - 8 (12) = a) 130 b) 171 c) 183 d) 4,764 1 3) Evaluate: 12 2-4 2 ( - ½ ) + 2 (-3) 2 = 4) Evaluate 3y 2 + 8x =, when

More information

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0.

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0. For some problems, several sample proofs are given here. Problem 1. a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0.

More information

Which one of the following is the solution to the equation? 1) 4(x - 2) + 6 = 2x ) A) x = 5 B) x = -6 C) x = -5 D) x = 6

Which one of the following is the solution to the equation? 1) 4(x - 2) + 6 = 2x ) A) x = 5 B) x = -6 C) x = -5 D) x = 6 Review for Final Exam Math 124A (Flatley) Name Which one of the following is the solution to the equation? 1) 4(x - 2) + 6 = 2x - 14 1) A) x = 5 B) x = -6 C) x = -5 D) x = 6 Solve the linear equation.

More information

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: Byte multiplication 1 Field arithmetic A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: F is an abelian group under addition, meaning - F is closed under

More information

The exponent of a number shows you how many times the number is being multiplied by itself.

The exponent of a number shows you how many times the number is being multiplied by itself. Name Evaluating Numerical Expressions with Exponents- Step-by-Step Lesson Lesson 1 Exponent Problem: Write the expression as an exponent. 4 x 4 x 4 x 4 x 4 Explanation: The exponent of a number shows you

More information

PERT Practice Test #2

PERT Practice Test #2 Class: Date: PERT Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. Ê 1. What is the quotient of 6y 6 9y 4 + 12y 2 ˆ Ê 3y 2 ˆ? a. 2y 4 + 3y

More information

There are two main properties that we use when solving linear equations. Property #1: Additive Property of Equality

There are two main properties that we use when solving linear equations. Property #1: Additive Property of Equality Chapter 1.1: Solving Linear and Literal Equations Linear Equations Linear equations are equations of the form ax + b = c, where a, b and c are constants, and a zero. A hint that an equation is linear is

More information

Matrix Algebra: Vectors

Matrix Algebra: Vectors A Matrix Algebra: Vectors A Appendix A: MATRIX ALGEBRA: VECTORS A 2 A MOTIVATION Matrix notation was invented primarily to express linear algebra relations in compact form Compactness enhances visualization

More information

Practice Set 1.1 Algebraic Expressions and Real Numbers. Translate each English phrase into an algebraic expression. Let x represent the number.

Practice Set 1.1 Algebraic Expressions and Real Numbers. Translate each English phrase into an algebraic expression. Let x represent the number. Practice Set 1.1 Algebraic Expressions and Real Numbers Translate each English phrase into an algebraic expression. Let x represent the number. 1. A number decreased by seven. 1.. Eighteen more than a

More information

Second-Order Homogeneous Linear Equations with Constant Coefficients

Second-Order Homogeneous Linear Equations with Constant Coefficients 15 Second-Order Homogeneous Linear Equations with Constant Coefficients A very important class of second-order homogeneous linear equations consists of those with constant coefficients; that is, those

More information

Executive Assessment. Executive Assessment Math Review. Section 1.0, Arithmetic, includes the following topics:

Executive Assessment. Executive Assessment Math Review. Section 1.0, Arithmetic, includes the following topics: Executive Assessment Math Review Although the following provides a review of some of the mathematical concepts of arithmetic and algebra, it is not intended to be a textbook. You should use this chapter

More information

Lecture 1 Systems of Linear Equations and Matrices

Lecture 1 Systems of Linear Equations and Matrices Lecture 1 Systems of Linear Equations and Matrices Math 19620 Outline of Course Linear Equations and Matrices Linear Transformations, Inverses Bases, Linear Independence, Subspaces Abstract Vector Spaces

More information

Mathematical Reasoning & Proofs

Mathematical Reasoning & Proofs Mathematical Reasoning & Proofs MAT 1362 Fall 2018 Alistair Savage Department of Mathematics and Statistics University of Ottawa This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

More information

Tree sets. Reinhard Diestel

Tree sets. Reinhard Diestel 1 Tree sets Reinhard Diestel Abstract We study an abstract notion of tree structure which generalizes treedecompositions of graphs and matroids. Unlike tree-decompositions, which are too closely linked

More information

Math1a Set 1 Solutions

Math1a Set 1 Solutions Math1a Set 1 Solutions October 15, 2018 Problem 1. (a) For all x, y, z Z we have (i) x x since x x = 0 is a multiple of 7. (ii) If x y then there is a k Z such that x y = 7k. So, y x = (x y) = 7k is also

More information

CH 73 THE QUADRATIC FORMULA, PART II

CH 73 THE QUADRATIC FORMULA, PART II 1 CH THE QUADRATIC FORMULA, PART II INTRODUCTION W ay back in Chapter 55 we used the Quadratic Formula to solve quadratic equations like 6x + 1x + 0 0, whose solutions are 5 and 8. In fact, all of the

More information

Math 54 First Midterm Exam, Prof. Srivastava September 23, 2016, 4:10pm 5:00pm, 155 Dwinelle Hall.

Math 54 First Midterm Exam, Prof. Srivastava September 23, 2016, 4:10pm 5:00pm, 155 Dwinelle Hall. Math 54 First Midterm Exam, Prof Srivastava September 23, 26, 4:pm 5:pm, 55 Dwinelle Hall Name: SID: Instructions: Write all answers in the provided space This exam includes two pages of scratch paper,

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics. College Algebra for STEM

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics. College Algebra for STEM Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics College Algebra for STEM Marcel B. Finan c All Rights Reserved 2015 Edition To my children Amin & Nadia Preface From

More information

MATH 361: NUMBER THEORY FOURTH LECTURE

MATH 361: NUMBER THEORY FOURTH LECTURE MATH 361: NUMBER THEORY FOURTH LECTURE 1. Introduction Everybody knows that three hours after 10:00, the time is 1:00. That is, everybody is familiar with modular arithmetic, the usual arithmetic of the

More information

DIHEDRAL GROUPS II KEITH CONRAD

DIHEDRAL GROUPS II KEITH CONRAD DIHEDRAL GROUPS II KEITH CONRAD We will characterize dihedral groups in terms of generators and relations, and describe the subgroups of D n, including the normal subgroups. We will also introduce an infinite

More information

Algebra I. Book 2. Powered by...

Algebra I. Book 2. Powered by... Algebra I Book 2 Powered by... ALGEBRA I Units 4-7 by The Algebra I Development Team ALGEBRA I UNIT 4 POWERS AND POLYNOMIALS......... 1 4.0 Review................ 2 4.1 Properties of Exponents..........

More information

Math From Scratch Lesson 28: Rational Exponents

Math From Scratch Lesson 28: Rational Exponents Math From Scratch Lesson 28: Rational Exponents W. Blaine Dowler October 8, 2012 Contents 1 Exponent Review 1 1.1 x m................................. 2 x 1.2 n x................................... 2 m

More information

Algebra. Mathematics Help Sheet. The University of Sydney Business School

Algebra. Mathematics Help Sheet. The University of Sydney Business School Algebra Mathematics Help Sheet The University of Sydney Business School Introduction Terminology and Definitions Integer Constant Variable Co-efficient A whole number, as opposed to a fraction or a decimal,

More information

A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers.

A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers. LEAVING CERT Honours Maths notes on Algebra. A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers. The degree is the highest power of x. 3x 2 + 2x

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

MATH 0960 ELEMENTARY ALGEBRA FOR COLLEGE STUDENTS (8 TH EDITION) BY ANGEL & RUNDE Course Outline

MATH 0960 ELEMENTARY ALGEBRA FOR COLLEGE STUDENTS (8 TH EDITION) BY ANGEL & RUNDE Course Outline MATH 0960 ELEMENTARY ALGEBRA FOR COLLEGE STUDENTS (8 TH EDITION) BY ANGEL & RUNDE Course Outline 1. Real Numbers (33 topics) 1.3 Fractions (pg. 27: 1-75 odd) A. Simplify fractions. B. Change mixed numbers

More information

Solving Equations by Adding and Subtracting

Solving Equations by Adding and Subtracting SECTION 2.1 Solving Equations by Adding and Subtracting 2.1 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the addition property to solve equations 3. Determine whether

More information

Lesson #9 Simplifying Rational Expressions

Lesson #9 Simplifying Rational Expressions Lesson #9 Simplifying Rational Epressions A.A.6 Perform arithmetic operations with rational epressions and rename to lowest terms Factor the following epressions: A. 7 4 B. y C. y 49y Simplify: 5 5 = 4

More information

Math 1302 Notes 2. How many solutions? What type of solution in the real number system? What kind of equation is it?

Math 1302 Notes 2. How many solutions? What type of solution in the real number system? What kind of equation is it? Math 1302 Notes 2 We know that x 2 + 4 = 0 has How many solutions? What type of solution in the real number system? What kind of equation is it? What happens if we enlarge our current system? Remember

More information

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS chapter MORE MATRIX ALGEBRA GOALS In Chapter we studied matrix operations and the algebra of sets and logic. We also made note of the strong resemblance of matrix algebra to elementary algebra. The reader

More information

Polynomials; Add/Subtract

Polynomials; Add/Subtract Chapter 7 Polynomials Polynomials; Add/Subtract Polynomials sounds tough enough. But, if you look at it close enough you ll notice that students have worked with polynomial expressions such as 6x 2 + 5x

More information

Contents. Test-Taking Tips... 8

Contents. Test-Taking Tips... 8 Contents Test-Taking Tips... 8 Unit 1 Number and Number Relations... 9 Lesson 1: Number Concepts...10 Computing with Real Numbers 2 Effects of Computations on Real Numbers 2 Evaluating Radical Expressions

More information

6 Lecture 6: More constructions with Huber rings

6 Lecture 6: More constructions with Huber rings 6 Lecture 6: More constructions with Huber rings 6.1 Introduction Recall from Definition 5.2.4 that a Huber ring is a commutative topological ring A equipped with an open subring A 0, such that the subspace

More information

Solutions Manual. Selected odd-numbers problems from. Chapter 3. Proof: Introduction to Higher Mathematics. Seventh Edition

Solutions Manual. Selected odd-numbers problems from. Chapter 3. Proof: Introduction to Higher Mathematics. Seventh Edition Solutions Manual Selected odd-numbers problems from Chapter 3 of Proof: Introduction to Higher Mathematics Seventh Edition Warren W. Esty and Norah C. Esty 5 4 3 2 1 2 Section 3.1. Inequalities Chapter

More information

2-6 Algebraic Proof. State the property that justifies each statement. 1. If m 1 = m 2 and m 2 = m 3, then m 1 = m 3. SOLUTION:

2-6 Algebraic Proof. State the property that justifies each statement. 1. If m 1 = m 2 and m 2 = m 3, then m 1 = m 3. SOLUTION: State the property that justifies each 1. If m 1 = m 2 and m 2 = m 3, then m 1 = m 3. There are two parts to the hypotheses. "If m 1 = m 2 and m 2 = m 3, then m 1 = m 3. "The end of the first part of the

More information

Properties of Real Numbers

Properties of Real Numbers Properties of Real Numbers Essential Understanding. Relationships that are always true for real numbers are called properties, which are rules used to rewrite and compare expressions. Two algebraic expressions

More information

1 First Theme: Sums of Squares

1 First Theme: Sums of Squares I will try to organize the work of this semester around several classical questions. The first is, When is a prime p the sum of two squares? The question was raised by Fermat who gave the correct answer

More information

Name Class Date. t = = 10m. n + 19 = = 2f + 9

Name Class Date. t = = 10m. n + 19 = = 2f + 9 1-4 Reteaching Solving Equations To solve an equation that contains a variable, find all of the values of the variable that make the equation true. Use the equality properties of real numbers and inverse

More information

Math 210 Finite Mathematics Chapter 4.2 Linear Programming Problems Minimization - The Dual Problem

Math 210 Finite Mathematics Chapter 4.2 Linear Programming Problems Minimization - The Dual Problem Math 2 Finite Mathematics Chapter 4.2 Linear Programming Problems Minimization - The Dual Problem Richard Blecksmith Dept. of Mathematical Sciences Northern Illinois University Math 2 Website: http://math.niu.edu/courses/math2.

More information

LESSON 25: LAGRANGE MULTIPLIERS OCTOBER 30, 2017

LESSON 25: LAGRANGE MULTIPLIERS OCTOBER 30, 2017 LESSON 5: LAGRANGE MULTIPLIERS OCTOBER 30, 017 Lagrange multipliers is another method of finding minima and maxima of functions of more than one variable. In fact, many of the problems from the last homework

More information

4.6 Bases and Dimension

4.6 Bases and Dimension 46 Bases and Dimension 281 40 (a) Show that {1,x,x 2,x 3 } is linearly independent on every interval (b) If f k (x) = x k for k = 0, 1,,n, show that {f 0,f 1,,f n } is linearly independent on every interval

More information

7. Dimension and Structure.

7. Dimension and Structure. 7. Dimension and Structure 7.1. Basis and Dimension Bases for Subspaces Example 2 The standard unit vectors e 1, e 2,, e n are linearly independent, for if we write (2) in component form, then we obtain

More information

Complex Numbers CK-12. Say Thanks to the Authors Click (No sign in required)

Complex Numbers CK-12. Say Thanks to the Authors Click  (No sign in required) Complex Numbers CK-12 Say Thanks to the Authors Click http://www.ck12.org/saythanks No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information