ON NEW FORMS OF THE RECIPROCITY THEOREMS

Size: px
Start display at page:

Download "ON NEW FORMS OF THE RECIPROCITY THEOREMS"

Transcription

1 Gulf Joural of Mathematics Vol 3, Issue ) ON NEW FORMS OF THE RECIPROCITY THEOREMS D. D. SOMASHEKARA 1, K. NARASIMHA MURTHY 2, S. L. SHALINI 3 Abstract. I his lost otebook, Ramauja has stated a beautiful two variable reciprocity theorem. I the recet past, three ad four variable geeralizatios of the reciprocity theorem of Ramauja were established. I this paper we establish ew symmetric ad elegat forms of all the three reciprocity theorems. We also deduce therefrom some q-gamma, q-beta ad eta fuctio idetities. 1. Itroductio ad prelimiaries O page 40 of his lost otebook 14, Ramauja has give the followig beautiful two variable reciprocity theorem. 1 ρa, b) ρb, a) = b 1 ) aq/b, bq/a, q), 1.1) a aq, bq) ρa, b) = ) 1) q +1)/2 a b 1.2) b aq) ad a, b are complex umbers other tha 0 ad q. Throughout this paper, we assume q < 1 ad employ the customary otatios a) := a; q) := 1 aq ), a) := a; q) := a), is a iteger, aq ) a 1, a 2,..., a m ) = a 1 ) a 2 )...a m ), is a iteger or. Adrews 4 was the first to establish 1.1) by employig his four-variable idetity ad the well-kow Jacobi s triple product idetity which is a special case of 1.1). Somashekara ad Fathima 15 used Ramauja s 1 ψ 1 summatio formula ad Heie s trasformatio formula to establish a equivalet versio of 1.1). Bhargava, Somashekara ad Fathima 8 provided aother proof of 1.1). Kim, Somashekara ad Fathima 12 gave a proof of 1.1) usig oly q-biomial theorem. Guruprasad ad Pradeep 10 also have devised a proof of 1.1) usig q-biomial theorem. Adiga ad Aitha 1 established a proof of 1.1) by the method of Date: Received: Sep 4, 2013; Accepted: Feb 24, Correspodig author Mathematics Subject Classificatio. Primary 33D15; Secodary 33D05, 11F20. Key words ad phrases. q-series, reciprocity theorems, q-gamma, q-beta, eta fuctios. 104

2 ON NEW FORMS OF THE RECIPROCITY THEOREMS 105 aalytic cotiuatio. Berdt, Cha, Yeap ad Yee 7 foud three differet proofs of 1.1). Kag 11 costructed a proof of 1.1) alog the lies of Vekatachaliegar s proof of Ramauja s 1 ψ 1 summatio formula. I 17, Somashekara ad Narasimha Murthy gave a proof of 1.1) usig Abel s lemma ad Jacobi s triple product idetity. Recetly, Somashekara, Narasimha Murthy ad Shalii 19 have proved a equivalet form of the geeral idetity of Adrews 4 usig the parameter augumetatio method ad employed the same to derive 1.1). Further, Somashekara ad Narasimha Murthy 18 have give a fiite form of 1.1). For more details oe may refer the book by Adrews ad Berdt 5. Kag 11 has established the followig three ad four variable geeralizatios of 1.1). 1 ρ 3 a, b; c) ρ 3 b, a; c) = b 1 ) c, aq/b, bq/a, q), 1.3) a c/a, c/b, aq, bq) ρ 3 a, b; c) := ) c) 1) q +1)/2 a b 1.4) b aq) c/b) +1 ad c < a < 1 ad c < b < 1. ρ 4 a, b; c, d) ρ 4 b, a; c, d) 1 = b 1 ) c, d, cd/ab, aq/b, bq/a, q), 1.5) a c/a, c/b, d/a, d/b, aq, bq) ρ 4 a, b; c, d) := ad c, d < a, b < ) c, d, cd/ab) 1 + cdq 2 /b) 1) q +1)/2 a b 1.6) b aq) c/b, d/b) +1 To derive 1.3), Kag 11 has employed Ramauja s 1 ψ 1 summatio formula ad Jackso s trasformatio of 2 φ 1 ad 2 φ 2 series. Later, Adiga ad Guruprasad 2 have give a proof of 1.3) usig q-biomial theorem ad q-gauss summatio formula. Somashekara ad Mamta 16 have obtaied 1.3) usig 1.1) by parameter augmetatio method. Oe more proof of 1.3) was give by Zhag 21. Recetly, i 19, Somashekara, Narasimha Murthy ad Shalii have give a proof of 1.3) ad i 18, Somashekara ad Narasimha Murthy have give a fiite form of 1.3). Kag 11 has established the four variable reciprocity theorem 1.5) by employig Adrews geeralizatio of 1 ψ 1 summatio formula 4, Theorem 6, Sear s trasformatio for 3 φ 2 series ad a limitig case of Watso s trasformatio for a termiatig very well-poised 8 φ 7 series. Adiga ad Guruprasad 3 have derived 1.5) usig a idetity of Adrews 4, Theorem 1, Ramauja s 1 ψ 1 summatio formula ad Watso s trasformatio. Recetly, Somashekara,

3 106 D. D. SOMASHEKARA 1, K. NARASIMHA MURTHY 2, S. L. SHALINI 3 Narasimha Murthy ad Shalii 19 have give a proof of 1.5) ad i 18, Somashekara ad Narasimha Murthy have give a fiite form of 1.5). The mai objective of this paper is to give ew symmetric forms of the reciprocity theorems alog with a uified approach to their proofs ad to ivestigate their applicatios. The paper is orgaised as follows. I sectio 2, we give some basic defiitios ad otatios ad state some results which we use i the remaider of the paper. I sectio 3, we state ad prove the symmetric forms of the reciprocity theorems ad i sectio 4, we preset a umber of applicatios of the mai results. 2. Some stadard defiitios ad otatios We recall some basic defiitios ad otatios. q-gamma fuctio 20 is defied by q-beta fuctio 6 is defied by We also have 6 Γ q x) = q) q x ) 1 q) 1 x, 0 < q < ) B q x, y) = 1 q) The Dedekid eta fuctio is defied by ητ) := e πiτ/12 q +1 ) q +y ) q x. 2.2) B q x, y) = Γ qx)γ q y) Γ q x + y). 2.3) =1 1 e 2πiτ ), Imτ) > 0 := q 1/24 q; q), e 2πiτ = q. 2.4) A q-shifted factorial idetity 9, equatioi.17), p.352 is a) +m = a) m aq m ). 2.5) q-biomial theorem 9, equatioii.3), p.354 is give by a) q) z = az) z). 2.6) Heie s trasformatio of 2 φ 1 -series 9, equatioiii.2), p.359 is A, B) q, C) Z = C/B, BZ) C, Z) ABZ/C, B) q, BZ) ) C. 2.7) B

4 ON NEW FORMS OF THE RECIPROCITY THEOREMS 107 Sear s trasformatio of 3 φ 2 series 9, equatioiii.9), p.359 is A, B, C) q, D, E) ) DE ABC = E/A, DE/BC) E, DE/ABC) A, D/B, D/C) q, D, DE/BC) ) E. 2.8) A I 19, Somashekara, Narasimha Murthy ad Shalii have established the followig idetity which is equivalet to the geeral idetity of Adrews 4 5, Theorem6.2.1), p.114. c, d) q c, d) ) bq/d) d = aq, bq) a aq, bq) c/a) +1 a ) c, bq/d) a bq) c/a) Mai results ) d. 2.9) a I this sectio, we establish ew symmetric forms of all the three reciprocity theorems. Theorem 3.1. If a, b < 1 the f 2 a, b) f 2 b, a) = f 2 a, b) = 1 a 1 a 1 ) q, aq/b, bq/a), 3.1) b a, b) ) q b). a Proof. I 2.6), set a = aq m ad shift the ier idex of summatio to + m to obtai aq m ) +m z +m = azq m ). 3.2) q) +m z) = m Usig the q-shifted factorial idetity 2.5) i 3.2), we obtai a) z = az) azq m ) m q) m q m+1 ) z) aq m ) m z m = m = az) q/az) m q) m z) q/a) m. 3.3) Lettig m i 3.3), we obtai a) z = az, q/az, q). 3.4) z, q/a) =

5 108 D. D. SOMASHEKARA 1, K. NARASIMHA MURTHY 2, S. L. SHALINI 3 The equatio 3.4) ca be writte as a) z q 1 1) q +1)/2 q ) az, q/az, q) =. 3.5) az 1 q/a) q 2 /a) az z, q/a) Puttig B = q, C = q 2 /a, Z = q 2 /axz) i 2.7) ad the lettig x, we obtai 1) q +1)/2 q ) = 1 q ) q ) q ). 3.6) q 2 /a) az a z a Usig 3.6) i 3.5), we obtai q ) q ) q ) a) z az) q/az) q) =. 3.7) az z a z) q/a) Replacig a by q/a ad z by b i 3.7), we obtai 3.1), after some simplificatios. This completes the proof. Theorem 3.2. If c < a < 1 ad c < b < 1, the 1 f 3 a, b; c) f 3 b, a; c) = a 1 ) q, aq/b, bq/a, c), 3.8) b a, b, c/a, c/b) f 3 a, b; c) = 1 a q/a) c/a) +1 b). Proof. Settig A = q, B = bq/d, C = c, D = cq/a ad E = bq i 2.8), we obtai bq/d, c) bq) c/a) +1 ) d = 1 + b) a Substitutig 3.9) i 2.9), we obtai c, d) q c, d) = aq, bq) a aq, bq) a ) 1 + b) cd/ab, q/a) c/a, d/a) +1 b). 3.9) bq/d) c/a) +1 d/a) cd/ab, q/a) c/a, d/a) +1 b). 3.10) Iterchagig c ad d i 3.10) ad the settig d = 0 i the resultig idetity, we obtai c) q c) ) ) bq c = aq, bq) a aq, bq) c a ) q/a) 1 + b) b). 3.11) a c/a) +1

6 ON NEW FORMS OF THE RECIPROCITY THEOREMS 109 Iterchagig a ad b i 3.11), we obtai c) q c) = aq, bq) b aq, bq) + ) aq b c ) 1 + a) c Subtractig 3.12) from 3.11), we obtai after some simplificatios 1 a q/a) b) 1 q/b) a) c/a) +1 b c/b) +1 c) 1 ) ) bq c = 1 ) aq a, b) a c a b c b ) q/b) c/b) +1 a). 3.12) ) c. 3.13) b Replacig a by c/b ad b by c/a i 3.1) ad the usig the resultig idetity i 3.13), we obtai 3.8) after some simplificatios. This completes the proof. Theorem 3.3. If c, d < a, b < 1, the f 4 a, b; c, d) f 4 b, a; c, d) 1 = a 1 ) q, aq/b, bq/a, c, d, cd/ab), 3.14) b a, b, c/a, c/b, d/a, d/b) f 4 a, b; c, d) = 1 q/a, cd/ab) b). a c/a, d/a) +1 Proof. Iterchage a ad b i 2.9) to obtai c, d) q = c, d) aq, bq) b aq, bq) b Subtract 3.15) from 3.10) to obtai q/a, cd/ab) b) 1 c/a, d/a) +1 b = c, d) 1 bq/c) a, b) a d/a) +1 1 a ) 1 + a) aq/d) c/b) +1 d/b) q/b, cd/ab) a) c/b, d/b) +1 ) c 1 aq/c) a b d/b) +1 cd/ab, q/b) c/b, d/b) +1 a). 3.15) ) c. 3.16) b Replacig a by c/b ad b by c/a i 3.8) ad usig the resultig idetity i 3.16), we obtai 3.14) after some simplificatios. This completes the proof.

7 110 D. D. SOMASHEKARA 1, K. NARASIMHA MURTHY 2, S. L. SHALINI 3 4. q-gamma, q-beta ad Eta fuctio idetities I this sectio, we deduce some iterestig q-gamma, q-beta ad eta fuctio idetities usig symmetric forms of the reciprocity theorems. Equatio 3.1) ca be writte as ) q a) b ) q b) = q, aq/b, b/a). 4.1) b a a a, b) Settig a = q x ad b = q x+y i 4.1), we obtai ) q 1 x y qx q ) y q 1 x qx+y ) = q, q1 y, q y ). 4.2) q x, q x+y ) Usig 2.1) i 4.2), we obtai after some simplificatios Γ q x) Γ q 1 y)γ q y) = qx+y ) ) q 1 x y 1 q) x q) 2 qx q ) y q 1 x qx+y ). Similarly, settig a = q x ad b = q 3x i 4.1) ad the usig 2.1) i the resultig idetity, we obtai after some simplificatios Γ q x)γ q 3x) 1 q)1 4x = ) q 1 3x Γ q 2x)Γ q 1 2x) q) qx q ) 2x q 1 x q3x. Settig a = q x ad b = q 1 y i 4.1) ad the usig 2.1), we obtai after some simplificatios Γ q x)γ q 1 y) = 1 q)1+y x q) q y+x, q 1 y x ) q y ) q x q ) 1 y x q 1 x q1 y ). Chagig q to q 2 ad the settig a = q ad b = q 2 i 4.1) ad the usig 2.4), we obtai after some simplificatios η 7 2τ) η 3 τ)η 3 4τ) = q 1/24 2 q 2 ; q 2) 1 q + 1) q; q 2 ) q 2+1. Chagig q to q 2 ad the settig a = q ad b = q i 4.1) ad the usig 2.4), we obtai after some simplificatios η 3 4τ) η 2 2τ) = q1/3 1) q; q 2 ) q + ) q; q 2 2 q. Settig a = q 1/2 ad b = q ad the chagig q to q 2 i 4.1) ad the usig 2.4), we obtai after some simplificatios η 3 τ) η 2 2τ) = q 1/24 2 1) q 2 ; q 2 ) 1 q 1) q; q 2 ) q 2+1.

8 ON NEW FORMS OF THE RECIPROCITY THEOREMS 111 Chagig q to q 2 ad the settig a = q ad b = q 2 i 4.1), we obtai after some simplificatios χq) = ) q; q 2 q2+1, χq) = q; q 2 ), which ca be foud i Ramauja s otebook 13, p.197. Settig a = q 1/3 ad b = q 2/3 ad the chagig q to q 3 i 4.1), we obtai after some simplificatios η 2 τ)η6τ) η2τ)η3τ) = q1/8 1) q; q 3 ) q 1) q 2 ; q 3 ) q 2+1. Equatio 3.8) ca be writte as q/b) a) b c/b) +1 a q/a) c/a) +1 b) = q, aq/b, b/a, c) a, b, c/a, c/b). 4.3) Settig a = q x, b = q y ad c = q x+y i 4.3), we obtai q 1 y ) q x q y x q 1 x ) q y = q, q1+x y, q y x, q x+y ). 4.4) q x ) +1 q y ) +1 q x, q y ) 2 Usig 2.1) ad 2.3) i 4.4), we obtai after some simplificatios Bq 2 x, y) = 1 q)2 q) q x+y ) q 1 y ) q x q y x q 1 x ) q y. q 1+x y, q y x ) q x ) +1 q y ) +1 Similarly, settig a = q x, b = q y, c = q 2x i 4.3), usig 2.1) ad 2.3), we obtai after some simplificatios B q x, y) = 1 q)qx, q 2x y, q x+y ) q 1+x y, q y x, q 2x ) q 1 y ) q x q y x q 2x y ) +1 q 1 x ) q x ) +1 q y Settig a = q x, b = q 1 x, c = q 2x i 4.3) ad the usig 2.1), we obtai after some simplificatios Γ 2 qx)γ q 1 x)γ q 3x 1) Γ 2 q2x)γ q 1 2x) = 1 q) 2 2x q x ) q 3x 1 ) +1 q x q 1 2x q 1 x ) q x ) +1 q 1 x )..

9 112 D. D. SOMASHEKARA 1, K. NARASIMHA MURTHY 2, S. L. SHALINI 3 Settig a = q x, b = q y, c = q 2x+y i 4.3) ad the usig 2.1), we obtai after some simplificatios Γ q x)γ q 2x)Γ q y) = 1 q)3 3x y q) 2 q x+y ) q 1+x y, q y x, q 2x+y ) q 1 y ) q x q y x q 1 x ) q y. q 2x ) +1 q x+y ) +1 Settig a = q x, b = q 2x+y, c = q 3x i 4.3) ad the usig 2.1), we obtai after some simplificatios Γ q x)γ q 2x) Γ q 3x) = 1 q)q2x+y, q x y ) q 1 x y, q x+y ) q 1 2x y ) q x q x+y q x y ) +1 q 1 x ) q 2x ) +1 q 2x+y ) Settig a = q x, b = q x+y, c = q 2x i 4.3) ad the usig 2.1), we obtai after some simplificatios Γ 2 qx) Γ q 2x)Γ q y)γ q 1 y) = qx+y, q x y ) q) 2 q 1 x y ) q x q y q x y ) +1 q 1 x ) q x ) +1 q x+y ) Settig a = q x, b = q 2x, c = q 3x i 4.3) ad the usig 2.1), we obtai after some simplificatios Γ q x)γ 2 q2x) q 1 2x ) = 1 q)2 3x q x q x q 1 x ) q 2x. Γ q 3x)Γ q 1 x) q x ) +1 q 2x ) +1 Settig a = q 1 x, b = q 2x 1, c = q 2x i 4.3) ad the usig 2.1), we obtai after some simplificatios Γ q 1 x) Γ q 3 3x) = 1 q2x 1 )1 q) 2 2x 1 q 3x 2 ) q 2 2x ) q 1 x ) q 3x 2 q) +1 q x ) q 3x 1 ) +1 q 2x 1 ) Settig a = q x, b = q 1 y, c = q 1 x i 4.3) ad the usig 2.1), we obtai after some simplificatios Γ q x)γ q 1 y)γ q 1 2x) = 1 q)1+y q) q y x ) Γ q 1 x) q x+y, q 1 y x ) q y ) q x q 1 x y q 1 x ) q 1 y ). q y x ) +1 q 1 2x ) +1...

10 ON NEW FORMS OF THE RECIPROCITY THEOREMS 113 Chagig q to q 2 ad the settig a = q, b = c = q 2 i 4.3) ad the usig 2.4), we obtai after some simplificatios φ 2 q q) = q 2 ) + 1) q 2, 1 q 2+1 ) φq) = = q 2 = q; q2 ) q 2 ; q 2 ) q; q 2 ) q 2 ; q 2 ) is oe of the theta fuctios i Ramauja s otebook 13, p.197. Chagig q to q 2 ad the settig a = q, b = c = q 2 i 4.3) ad the usig 2.4), we obtai after some simplificatios η 3 2τ) η 2 τ)η4τ) = 1 2 q; q 2 ) q; q 2 ) +1 q 2+1. Chagig q to q 2 ad the settig a = q, b = q ad c = q 2 i 4.3) ad the usig 2.4), we obtai after some simplificatios η 4 4τ) η 3 2τ) = q5/12 q; q 2 ) 1) q q; q 2 ) + q. 2 q; q 2 ) +1 q; q 2 ) +1 Chagig q to q 2 ad the settig a = q, b = q ad c = q 3 i 4.3), we obtai after some simplificatios η 2 4τ)ητ) = q1/8 q; q 2 ) 1) q q; q 2 ) + q. η 3 2τ) 2 q 2 ; q 2 ) +1 q 2 ; q 2 ) +1 Chagig q to q 2 ad the settig a = q 2, b = q 2 ad c = q 3 i 4.3) ad the usig 2.4), we obtai after some simplificatios η4τ) ητ) = q 2 ; q 2 ) 1 q1/8 1 + q) q 2. q; q 2 ) +1 Equatio 3.14) ca be writte as q/b, cd/ab) c/b, d/b) +1 a) b a = q/a, cd/ab) c/a, d/a) +1 b) q, aq/b, b/a, c, d, cd/ab) a, b, c/a, c/b, d/a, d/b). 4.5) Settig a = q 2x, b = q 2y, c = q 3x ad d = q 3y i 4.5), we obtai q 1 2y, q x+y ) q 3x 2y, q y ) +1 q 2x q 2y 2x q 1 2x, q x+y ) q x, q 3y 2x ) +1 q 2y = q, q1+2x 2y, q 2y 2x, q 3x, q 3y, q x+y ) q 2x, q 2y, q x, q y, q 3x 2y, q 3y 2x ). 4.6)

11 114 D. D. SOMASHEKARA 1, K. NARASIMHA MURTHY 2, S. L. SHALINI 3 Usig 2.1) ad 2.3) i 4.6), we obtai after some simplificatios B q x, y)b q 2x, 2y) = 1 q)q3x 2y, q 3y 2x, q 2x+2y ) B q 3x, 3y) q 1+2x 2y, q 2y 2x, q 3x+3y ) q 1 2y, q x+y ) q 2x q 2y 2x q 1 2x, q x+y ) q 2y. q 3x 2y, q y ) +1 q x, q 3y 2x ) +1 Similarly, settig a = q x, b = q y, c = d = q 2x i 4.5) ad the usig 2.1) ad 2.3), we obtai after some simplificatios B q x, y) = 1 q)qx+y ) q 2x y, q x ) 2 q 1+x y, q y x, q 3x y ) q 2x ) 2 q 1 y, q 3x y ) q x q y x q 2x y ) 2 +1 q 1 x, q 3x y ) q y. q x ) 2 +1 Settig a = q x, b = q 1 y+x, c = d = q x+y i 4.5) ad the usig 2.1) ad 2.3), we obtai after some simplificatios Bq 2 x, y) B q x, 1 y) = 1 q)q2y 1 ) 2 q y, q 3y 1 ) q y x, q 3y 1 ) q x q 1 y q 2y 1 ) 2 +1 q 1 x, q 3y 1 ) q 1 y+x ). q y ) 2 +1 Settig a = q x, b = q 1 x, c = d = q 1+y i 4.5) ad the usig 2.1), we obtai after some simplificatios Γ 3 qx)γ q 1 x) Bq 2 x, y)γ q 2x)Γ q 1 2x)Γ q 1 + 2y) = 1 q1+y x ) 2 1 q y ) 2 q x, q 1+2y ) q x q 1 2x q 1 x, q 1+2y ) q 1 x ). q x+y ) 2 +1 q 1+y x ) 2 +1 Settig a = q x 1, b = q 2x 1, c = d = q 2x i 4.5) ad the usig 2.1), we obtai after some simplificatios Γ q x + 1) Γ q 1 x)γ q 2x) = 1 qx 1 )1 q 2x 1 )1 q x+1 ) 1 q)q) q 2 2x, q x+2 ) q x 1 ) q x q 2 x, q x+2 ) q 2x 1 ). q) 2 +1 q x+1 ) 2 +1

12 ON NEW FORMS OF THE RECIPROCITY THEOREMS 115 Settig a = q 1 2x, b = q 1 x, c = d = q x i 4.5) ad the usig 2.1), we obtai after some simplificatios Γ q 1 2x)Γ 2 q3x 1)Γ 2 q2x 1) Γ 3 qx)γ q 5x 2) = 1 q) 2 q x, q 5x 2 ) q 1 2x ) q x q 2x 1 ) 2 +1 q 2x, q 5x 2 ) q 1 x ). q 3x 1 ) 2 +1 Settig a = q 1/2, b = q 1/2, c = d = q ad the chagig q to q 2 i 4.5) ad the usig 2.4), we obtai after some simplificatios η 8 4τ) η 7 2τ) = q3/4 q, q 2 ; q 2 ) q 1) q, q 2 ; q 2 ) + q. 2 q; q 2 ) 2 +1 q; q 2 ) 2 +1 Settig a = q 1/2, b = q 1/2, c = d = q 3/2 ad the chagig q to q 2 i 4.5) ad the usig 2.4), we obtai after some simplificatios 1 1 q)2 q; q 2 ) = q q; q 2 ) q 2 ; q 2 ) +1 1) + q. φq) 2 q 2 ; q 2 ) +1 q 2 ; q 2 ) 2 +1 Chagig q to q 2 ad the settig a = q 2, b = q 2, c = d = q 3 i 4.5) ad the usig 2.4), we obtai after some simplificatios η 2 τ)η 4 4τ) η 6 2τ) = q 1/4 1 q) 2 q 2 ; q 2 ) 1 q 2 ; q 2 ) q 2. q; q 2 ) 2 +1 Chagig q to q 2 ad the settig a = q, b = q 2, c = d = q 3 i 4.5) ad the usig 2.4), we obtai after some simplificatios η 2 2τ) η 2 τ)η 2 4τ) = q 1/4 1 + q) 2 q; q 2 ) q; q 2 ) +1 q 2+1. q 2 ; q 2 ) 2 +1 Chagig q to q 2 ad the settig a = 1, b = q, c = d = q 2 i 4.5) ad the usig 2.4), we obtai after some simplificatios η 6 τ) η 3 2τ) = q3/4 q 2 ; q 2 ) q q 2 ; q 2 ) 1) + q q 2+1 ) q; q 2 ) +1 1 q 2+1 )q; q 2 ) +1 Ackowledgemet. The first author is thakful to Uiversity Grats CommissioUGC), Idia for the fiacial support uder the grat SAP-DRS-1-NO.F.510/2/DRS/2011. The secod author is thakful to Uiversity Grats Commissio, Idia, for the award of Teacher Fellowship uder the grat No.KAMY074-TF ad the third author is thakful to UGC for awardig the Rajiv Gadhi Natioal Fellowship, No.F1-17.1/ /RGNF-SC- KAR-2983/SA-III/Website).

13 116 D. D. SOMASHEKARA 1, K. NARASIMHA MURTHY 2, S. L. SHALINI 3 Refereces 1. C. Adiga ad N. Aitha, O a reciprocity theorem of Ramauja, Tamsui J. Math. Sci ), C. Adiga ad P. S. Guruprasad, O a three variable reciprocity theorem, South East Asia Joural of Mathematics ad Mathematical Scieces 62)2008), C. Adiga ad P. S. Guruprasad, A ote o four variable reciprocity theorem, It. Jour. Math. Math Sci. Vol doi: 10, 1155/2009/ G. E. Adrews, Ramauja s lost otebook. I. partial θ-fuctios, Adv. i Math ), G. E. Adrews ad B. C. Berdt, Ramauja s Lost Notebook, Part II, Spriger, New York, R. Askey, The q-gamma ad q-beta fuctios, Applicable Aal ), B. C. Berdt, S. H. Cha, B. P. Yeap ad A. J. Yee, A reciprocity theorem for certai q-series foud i Ramauja s lost otebook, Ramauja J ), S. Bhargava, D. D. Somashekara ad S. N. Fathima, Some q-gamma ad q-beta fuctio idetities deducible from the reciprocity theorem of Ramauja, Adv. Stud. Cotemp. Math. Kyugshag) ), G. Gasper ad M. Rahma, Basic hypergeometric series, Ecyclopedia of Mathematics, Cambridge Uiversity press. Cambridge, P. S. Guruprasad ad N. Pradeep, A simple proof of Ramauja s reciprocity theorem, Proc. Jagjeo Math. Soc ), S.-Y. Kag, Geeralizatios of Ramauja s reciprocity theorem ad their applicatios, J. Lodo Math. Soc ), T. Kim, D. D. Somashekara ad S. N. Fathima, O a geeralizatio of Jacobi s triple product idetity ad its applicatio, Adv. Stud. Cotemp. Math. Kyugshag) 92004), S. Ramauja, Notebooks 2 Volumes), Tata Istitute of Fudametal Research, Bombay, S. Ramauja, The lost otebook ad other upublished papers, Narosa, New Delhi, D. D. Somashekara ad S. N. Fathima, A iterestig geeralizatio of Jacobi s triple product idetity, Far East J. Math. Sci ), D. D. Somashekara ad D. Mamta, O the three variable reciprocity theorem ad its applicatios, Aus. jour. Math. aal. appl. 91)Art.13)2012), D. D. Somashekara ad K. Narasimha murthy, O A Two Variable reciprocity theorem Of Ramauja Bull. Pure Appl. Math. 51)2011), D. D. Somashekara ad K. Narasimha murthy, Fiite forms of reciprocity theorems, Iteratioal J.Math. Combi ), D. D. Somashekara, K. Narasimha murthy ad S. L. Shalii, O the reciprocity theorem of Ramauja ad its geeralizatios, Proc. Jagjeo Math. Soc. 153)2012), J. Thomae, Beiträge zur theorie der durch die Heiesche reie..., J. Reie Agew. Math ), Z.-Z. Zhag, A ote o a idetity of Adrews with Erratum), Electro. J. Combi ), N3.

14 ON NEW FORMS OF THE RECIPROCITY THEOREMS Departmet of Mathematics, Uiversity of Mysore,Maasagagotri, Mysore , INDIA. address: dsomashekara@yahoo.com 2 Departmet of Mathematics, Uiversity of Mysore,Maasagagotri, Mysore , INDIA. address: simhamurth@yahoo.com 3 Departmet of Mathematics, Uiversity of Mysore,Maasagagotri, Mysore , INDIA. address: shaliisl.maths@gmail.com

Modular Relations for the Sextodecic Analogues of the Rogers-Ramanujan Functions with its Applications to Partitions

Modular Relations for the Sextodecic Analogues of the Rogers-Ramanujan Functions with its Applications to Partitions America Joural of Mathematical Aalysis 0 Vol. No. 6- Available olie at http://pubs.sciepub.com/ajma/// Sciece ad Educatio Publishig DOI:0.69/ajma--- Modular Relatios for the Sextodecic Aalogues of the

More information

A RECIPROCITY RELATION FOR WP-BAILEY PAIRS

A RECIPROCITY RELATION FOR WP-BAILEY PAIRS A RECIPROCITY RELATION FOR WP-BAILEY PAIRS JAMES MC LAUGHLIN AND PETER ZIMMER Abstract We derive a ew geeral trasformatio for WP-Bailey pairs by cosiderig the a certai limitig case of a WP-Bailey chai

More information

On the Equivalence of Ramanujan s Partition Identities and a Connection with the Rogers Ramanujan Continued Fraction

On the Equivalence of Ramanujan s Partition Identities and a Connection with the Rogers Ramanujan Continued Fraction JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 98, 0 996 ARTICLE NO. 007 O the Equivalece of Ramauja s Partitio Idetities ad a Coectio with the RogersRamauja Cotiued Fractio Heg Huat Cha Departmet of

More information

Ramanujan s Famous Partition Congruences

Ramanujan s Famous Partition Congruences Ope Sciece Joural of Mathematics ad Applicatio 6; 4(): - http://wwwopescieceoliecom/joural/osjma ISSN:8-494 (Prit); ISSN:8-494 (Olie) Ramauja s Famous Partitio Cogrueces Md Fazlee Hossai, Nil Rata Bhattacharjee,

More information

Integral Representations and Binomial Coefficients

Integral Representations and Binomial Coefficients 2 3 47 6 23 Joural of Iteger Sequeces, Vol. 3 (2, Article.6.4 Itegral Represetatios ad Biomial Coefficiets Xiaoxia Wag Departmet of Mathematics Shaghai Uiversity Shaghai, Chia xiaoxiawag@shu.edu.c Abstract

More information

ANTI-LECTURE HALL COMPOSITIONS AND ANDREWS GENERALIZATION OF THE WATSON-WHIPPLE TRANSFORMATION

ANTI-LECTURE HALL COMPOSITIONS AND ANDREWS GENERALIZATION OF THE WATSON-WHIPPLE TRANSFORMATION ANTI-LECTURE HALL COMPOSITIONS AND ANDREWS GENERALIZATION OF THE WATSON-WHIPPLE TRANSFORMATION SYLVIE CORTEEL, JEREMY LOVEJOY AND CARLA SAVAGE Abstract. For fixed ad k, we fid a three-variable geeratig

More information

Factors of sums and alternating sums involving binomial coefficients and powers of integers

Factors of sums and alternating sums involving binomial coefficients and powers of integers Factors of sums ad alteratig sums ivolvig biomial coefficiets ad powers of itegers Victor J. W. Guo 1 ad Jiag Zeg 2 1 Departmet of Mathematics East Chia Normal Uiversity Shaghai 200062 People s Republic

More information

Factors of alternating sums of products of binomial and q-binomial coefficients

Factors of alternating sums of products of binomial and q-binomial coefficients ACTA ARITHMETICA 1271 (2007 Factors of alteratig sums of products of biomial ad q-biomial coefficiets by Victor J W Guo (Shaghai Frédéric Jouhet (Lyo ad Jiag Zeg (Lyo 1 Itroductio I 1998 Cali [4 proved

More information

On the 3 ψ 3 Basic. Bilateral Hypergeometric Series Summation Formulas

On the 3 ψ 3 Basic. Bilateral Hypergeometric Series Summation Formulas International JMath Combin Vol4 (2009), 41-48 On the 3 ψ 3 Basic Bilateral Hypergeometric Series Summation Formulas K RVasuki and GSharath (Department of Studies in Mathematics, University of Mysore, Manasagangotri,

More information

1, if k = 0. . (1 _ qn) (1 _ qn-1) (1 _ qn+1-k) ... _: =----_...:... q--->1 (1- q) (1 - q 2 ) (1- qk) - -- n! k!(n- k)! n """"' n. k.

1, if k = 0. . (1 _ qn) (1 _ qn-1) (1 _ qn+1-k) ... _: =----_...:... q--->1 (1- q) (1 - q 2 ) (1- qk) - -- n! k!(n- k)! n ' n. k. Abstract. We prove the ifiite q-biomial theorem as a cosequece of the fiite q-biomial theorem. 1. THE FINITE q-binomial THEOREM Let x ad q be complex umbers, (they ca be thought of as real umbers if the

More information

A q-analogue of some binomial coefficient identities of Y. Sun

A q-analogue of some binomial coefficient identities of Y. Sun A -aalogue of some biomial coefficiet idetities of Y. Su arxiv:008.469v2 [math.co] 5 Apr 20 Victor J. W. Guo ad Da-Mei Yag 2 Departmet of Mathematics, East Chia Normal Uiversity Shaghai 200062, People

More information

Bijective Proofs of Gould s and Rothe s Identities

Bijective Proofs of Gould s and Rothe s Identities ESI The Erwi Schrödiger Iteratioal Boltzmagasse 9 Istitute for Mathematical Physics A-1090 Wie, Austria Bijective Proofs of Gould s ad Rothe s Idetities Victor J. W. Guo Viea, Preprit ESI 2072 (2008 November

More information

arxiv:math/ v1 [math.nt] 28 Jan 2005

arxiv:math/ v1 [math.nt] 28 Jan 2005 arxiv:math/0501528v1 [math.nt] 28 Jan 2005 TRANSFORMATIONS OF RAMANUJAN S SUMMATION FORMULA AND ITS APPLICATIONS Chandrashekar Adiga 1 and N.Anitha 2 Department of Studies in Mathematics University of

More information

Harmonic Number Identities Via Euler s Transform

Harmonic Number Identities Via Euler s Transform 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 12 2009), Article 09.6.1 Harmoic Number Idetities Via Euler s Trasform Khristo N. Boyadzhiev Departmet of Mathematics Ohio Norther Uiversity Ada, Ohio 45810

More information

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Quadratic Trasformatios of Hypergeometric Fuctio ad Series with Harmoic Numbers Marti Nicholso I this brief ote, we show how to apply Kummer s ad other quadratic trasformatio formulas for Gauss ad geeralized

More information

An enumeration of flags in finite vector spaces

An enumeration of flags in finite vector spaces A eumeratio of flags i fiite vector spaces C Rya Viroot Departmet of Mathematics College of William ad Mary P O Box 8795 Williamsburg VA 23187 viroot@mathwmedu Submitted: Feb 2 2012; Accepted: Ju 27 2012;

More information

Fibonacci numbers and orthogonal polynomials

Fibonacci numbers and orthogonal polynomials Fiboacci umbers ad orthogoal polyomials Christia Berg April 10, 2006 Abstract We prove that the sequece (1/F +2 0 of reciprocals of the Fiboacci umbers is a momet sequece of a certai discrete probability,

More information

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction Acta Math. Uiv. Comeiaae Vol. LXXXVI, 2 (2017), pp. 279 286 279 k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c N. IRMAK ad M. ALP Abstract. The k-geeralized Fiboacci sequece { F (k)

More information

Simple proofs of Bressoud s and Schur s polynomial versions of the. Rogers-Ramanujan identities. Johann Cigler

Simple proofs of Bressoud s and Schur s polynomial versions of the. Rogers-Ramanujan identities. Johann Cigler Simple proofs of Bressoud s ad Schur s polyomial versios of the Rogers-Ramaua idetities Joha Cigler Faultät für Mathemati Uiversität Wie A-090 Wie, Nordbergstraße 5 Joha Cigler@uivieacat Abstract We give

More information

A CONTINUED FRACTION EXPANSION FOR A q-tangent FUNCTION

A CONTINUED FRACTION EXPANSION FOR A q-tangent FUNCTION Sémiaire Lotharigie de Combiatoire 45 001, Article B45b A CONTINUED FRACTION EXPANSION FOR A q-tangent FUNCTION MARKUS FULMEK Abstract. We prove a cotiued fractio expasio for a certai q taget fuctio that

More information

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients Proof of a cojecture of Amdeberha ad Moll o a divisibility property of biomial coefficiets Qua-Hui Yag School of Mathematics ad Statistics Najig Uiversity of Iformatio Sciece ad Techology Najig, PR Chia

More information

Applicable Analysis and Discrete Mathematics available online at ON JENSEN S AND RELATED COMBINATORIAL IDENTITIES

Applicable Analysis and Discrete Mathematics available online at   ON JENSEN S AND RELATED COMBINATORIAL IDENTITIES Applicable Aalysis ad Discrete Mathematics available olie at http://pefmathetfrs Appl Aal Discrete Math 5 2011, 201 211 doi:102298/aadm110717017g ON JENSEN S AND RELATED COMBINATORIAL IDENTITIES Victor

More information

Some p-adic congruences for p q -Catalan numbers

Some p-adic congruences for p q -Catalan numbers Some p-adic cogrueces for p q -Catala umbers Floria Luca Istituto de Matemáticas Uiversidad Nacioal Autóoma de México C.P. 58089, Morelia, Michoacá, México fluca@matmor.uam.mx Paul Thomas Youg Departmet

More information

(p, q)-type BETA FUNCTIONS OF SECOND KIND

(p, q)-type BETA FUNCTIONS OF SECOND KIND Adv. Oper. Theory 6, o., 34 46 http://doi.org/.34/aot.69. ISSN: 538-5X electroic http://aot-math.org p, q-type BETA FUNCTIONS OF SECOND KIND ALI ARAL ad VIJAY GUPTA Commuicated by A. Kamisa Abstract. I

More information

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers 3 47 6 3 Joural of Iteger Sequeces Vol. 9 06 Article 6.. Iterestig Series Associated with Cetral Biomial Coefficiets Catala Numbers ad Harmoic Numbers Hogwei Che Departmet of Mathematics Christopher Newport

More information

MAJORIZATION PROBLEMS FOR SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING

MAJORIZATION PROBLEMS FOR SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING Iteratioal Joural of Civil Egieerig ad Techology (IJCIET) Volume 9, Issue, November 08, pp. 97 0, Article ID: IJCIET_09 6 Available olie at http://www.ia aeme.com/ijciet/issues.asp?jtypeijciet&vtype 9&IType

More information

On some properties of digamma and polygamma functions

On some properties of digamma and polygamma functions J. Math. Aal. Appl. 328 2007 452 465 www.elsevier.com/locate/jmaa O some properties of digamma ad polygamma fuctios Necdet Batir Departmet of Mathematics, Faculty of Arts ad Scieces, Yuzucu Yil Uiversity,

More information

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009)

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009) Joural of Ramaua Mathematical Society, Vol. 4, No. (009) 199-09. IWASAWA λ-invariants AND Γ-TRANSFORMS Aupam Saikia 1 ad Rupam Barma Abstract. I this paper we study a relatio betwee the λ-ivariats of a

More information

TRACES OF HADAMARD AND KRONECKER PRODUCTS OF MATRICES. 1. Introduction

TRACES OF HADAMARD AND KRONECKER PRODUCTS OF MATRICES. 1. Introduction Math Appl 6 2017, 143 150 DOI: 1013164/ma201709 TRACES OF HADAMARD AND KRONECKER PRODUCTS OF MATRICES PANKAJ KUMAR DAS ad LALIT K VASHISHT Abstract We preset some iequality/equality for traces of Hadamard

More information

On Some Transformations of A 2 Formula And Their Applications

On Some Transformations of A 2 Formula And Their Applications On Some Transformations of A 2 Formula And Their Applications Journal of Applied Mathematics and Computation (JAMC), 2018, 2(10), 456-465 http://www.hillpublisher.org/journal/jamc ISSN Online:2576-0645

More information

Research Article On a New Summation Formula for

Research Article On a New Summation Formula for International Mathematics and Mathematical Sciences Volume 2011, Article ID 132081, 7 pages doi:10.1155/2011/132081 Research Article On a New Summation Formula for 2ψ 2 Basic Bilateral Hypergeometric Series

More information

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES LE MATEMATICHE Vol. LXXIII 208 Fasc. I, pp. 3 24 doi: 0.448/208.73.. EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES THOMAS ERNST We preset idetities of various kids for

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

arxiv: v1 [math.nt] 28 Apr 2014

arxiv: v1 [math.nt] 28 Apr 2014 Proof of a supercogruece cojectured by Z.-H. Su Victor J. W. Guo Departmet of Mathematics, Shaghai Key Laboratory of PMMP, East Chia Normal Uiversity, 500 Dogchua Rd., Shaghai 0041, People s Republic of

More information

ON POINTWISE BINOMIAL APPROXIMATION

ON POINTWISE BINOMIAL APPROXIMATION Iteratioal Joural of Pure ad Applied Mathematics Volume 71 No. 1 2011, 57-66 ON POINTWISE BINOMIAL APPROXIMATION BY w-functions K. Teerapabolar 1, P. Wogkasem 2 Departmet of Mathematics Faculty of Sciece

More information

Mi-Hwa Ko and Tae-Sung Kim

Mi-Hwa Ko and Tae-Sung Kim J. Korea Math. Soc. 42 2005), No. 5, pp. 949 957 ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF NEGATIVELY ORTHANT DEPENDENT RANDOM VARIABLES Mi-Hwa Ko ad Tae-Sug Kim Abstract. For weighted sum of a sequece

More information

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca Idia J Pure Appl Math 45): 75-89 February 204 c Idia Natioal Sciece Academy A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS Mircea Merca Departmet of Mathematics Uiversity

More information

Some integrals related to the Basel problem

Some integrals related to the Basel problem November, 6 Some itegrals related to the Basel problem Khristo N Boyadzhiev Departmet of Mathematics ad Statistics, Ohio Norther Uiversity, Ada, OH 458, USA k-boyadzhiev@ouedu Abstract We evaluate several

More information

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION Iteratioal Joural of Pure ad Applied Mathematics Volume 103 No 3 2015, 537-545 ISSN: 1311-8080 (prited versio); ISSN: 1314-3395 (o-lie versio) url: http://wwwijpameu doi: http://dxdoiorg/1012732/ijpamv103i314

More information

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile. s: /

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile.  s: / THE GELIN-CESÀRO IDENTITY IN SOME THIRD-ORDER JACOBSTHAL SEQUENCES arxiv:1810.08863v1 [math.co] 20 Oct 2018 GAMALIEL CERDA-MORALES 1 1 Istituto de Matemáticas Potificia Uiversidad Católica de Valparaíso

More information

EVALUATION OF A CUBIC EULER SUM RAMYA DUTTA. H n

EVALUATION OF A CUBIC EULER SUM RAMYA DUTTA. H n Joural of Classical Aalysis Volume 9, Number 6, 5 59 doi:.753/jca-9-5 EVALUATION OF A CUBIC EULER SUM RAMYA DUTTA Abstract. I this paper we calculate the cubic series 3 H ad two related Euler Sums of weight

More information

Formulas for the Approximation of the Complete Elliptic Integrals

Formulas for the Approximation of the Complete Elliptic Integrals Iteratioal Mathematical Forum, Vol. 7, 01, o. 55, 719-75 Formulas for the Approximatio of the Complete Elliptic Itegrals N. Bagis Aristotele Uiversity of Thessaloiki Thessaloiki, Greece ikosbagis@hotmail.gr

More information

arxiv: v1 [math.co] 6 Jun 2018

arxiv: v1 [math.co] 6 Jun 2018 Proofs of two cojectures o Catala triagle umbers Victor J. W. Guo ad Xiuguo Lia arxiv:1806.02685v1 [math.co 6 Ju 2018 School of Mathematical Scieces, Huaiyi Normal Uiversity, Huai a 223300, Jiagsu, People

More information

Shivley s Polynomials of Two Variables

Shivley s Polynomials of Two Variables It. Joural of Math. Aalysis, Vol. 6, 01, o. 36, 1757-176 Shivley s Polyomials of Two Variables R. K. Jaa, I. A. Salehbhai ad A. K. Shukla Departmet of Mathematics Sardar Vallabhbhai Natioal Istitute of

More information

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions J. Math. Aal. Appl. 297 2004 186 193 www.elsevier.com/locate/jmaa Some families of geeratig fuctios for the multiple orthogoal polyomials associated with modified Bessel K-fuctios M.A. Özarsla, A. Altı

More information

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers 3 47 6 3 Joural of Iteger Sequeces, Vol. 5 (0), Article..7 Series with Cetral Biomial Coefficiets, Catala Numbers, ad Harmoic Numbers Khristo N. Boyadzhiev Departmet of Mathematics ad Statistics Ohio Norther

More information

Some remarks for codes and lattices over imaginary quadratic

Some remarks for codes and lattices over imaginary quadratic Some remarks for codes ad lattices over imagiary quadratic fields Toy Shaska Oaklad Uiversity, Rochester, MI, USA. Caleb Shor Wester New Eglad Uiversity, Sprigfield, MA, USA. shaska@oaklad.edu Abstract

More information

On Net-Regular Signed Graphs

On Net-Regular Signed Graphs Iteratioal J.Math. Combi. Vol.1(2016), 57-64 O Net-Regular Siged Graphs Nuta G.Nayak Departmet of Mathematics ad Statistics S. S. Dempo College of Commerce ad Ecoomics, Goa, Idia E-mail: ayakuta@yahoo.com

More information

A Further Refinement of Van Der Corput s Inequality

A Further Refinement of Van Der Corput s Inequality IOSR Joural of Mathematics (IOSR-JM) e-issn: 78-578, p-issn:9-75x Volume 0, Issue Ver V (Mar-Apr 04), PP 7- wwwiosrjouralsorg A Further Refiemet of Va Der Corput s Iequality Amusa I S Mogbademu A A Baiyeri

More information

ON CONVERGENCE OF BASIC HYPERGEOMETRIC SERIES. 1. Introduction Basic hypergeometric series (cf. [GR]) with the base q is defined by

ON CONVERGENCE OF BASIC HYPERGEOMETRIC SERIES. 1. Introduction Basic hypergeometric series (cf. [GR]) with the base q is defined by ON CONVERGENCE OF BASIC HYPERGEOMETRIC SERIES TOSHIO OSHIMA Abstract. We examie the covergece of q-hypergeometric series whe q =. We give a coditio so that the radius of the covergece is positive ad get

More information

UPPER ESTIMATE FOR GENERAL COMPLEX BASKAKOV SZÁSZ OPERATOR. 1. Introduction

UPPER ESTIMATE FOR GENERAL COMPLEX BASKAKOV SZÁSZ OPERATOR. 1. Introduction Joural of Classical Aalysis Volume 7, Number 1 2015, 17 23 doi:10.7153/jca-07-02 UPPER ESTIMATE FOR GENERAL COMPLEX BASKAKOV SZÁSZ OPERATOR VIJAY GUPTA AND GANCHO TACHEV Abstract. I the preset article,

More information

A symbolic approach to multiple zeta values at the negative integers

A symbolic approach to multiple zeta values at the negative integers A symbolic approach to multiple zeta values at the egative itegers Victor H. Moll a, Li Jiu a Christophe Vigat a,b a Departmet of Mathematics, Tulae Uiversity, New Orleas, USA Correspodig author b LSS/Supelec,

More information

Some identities involving Fibonacci, Lucas polynomials and their applications

Some identities involving Fibonacci, Lucas polynomials and their applications Bull. Math. Soc. Sci. Math. Roumaie Tome 55103 No. 1, 2012, 95 103 Some idetities ivolvig Fiboacci, Lucas polyomials ad their applicatios by Wag Tigtig ad Zhag Wepeg Abstract The mai purpose of this paper

More information

SOME NEW IDENTITIES INVOLVING π,

SOME NEW IDENTITIES INVOLVING π, SOME NEW IDENTITIES INVOLVING π, HENG HUAT CHAN π AND π. Itroductio The umber π, as we all ow, is defied to be the legth of a circle of diameter. The first few estimates of π were 3 Egypt aroud 9 B.C.,

More information

Tauberian theorems for the product of Borel and Hölder summability methods

Tauberian theorems for the product of Borel and Hölder summability methods A. Ştiiţ. Uiv. Al. I. Cuza Iaşi. Mat. (N.S.) Tomul LXIII, 2017, f. 1 Tauberia theorems for the product of Borel ad Hölder summability methods İbrahim Çaak Received: Received: 17.X.2012 / Revised: 5.XI.2012

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

On a general q-identity

On a general q-identity O a geeral -idetity Aimi Xu Istitute of Mathematics Zheiag Wali Uiversity Nigbo 3500, Chia xuaimi009@hotmailcom; xuaimi@zwueduc Submitted: Dec 2, 203; Accepted: Apr 24, 204; Published: May 9, 204 Mathematics

More information

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS Folia Mathematica Vol. 5, No., pp. 4 6 Acta Uiversitatis Lodziesis c 008 for Uiversity of Lódź Press SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS ROMAN WITU LA, DAMIAN S

More information

SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE (1 + 1/n) n

SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE (1 + 1/n) n SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE + / NECDET BATIR Abstract. Several ew ad sharp iequalities ivolvig the costat e ad the sequece + / are proved.. INTRODUCTION The costat e or

More information

Fixed Point Theorems for Expansive Mappings in G-metric Spaces

Fixed Point Theorems for Expansive Mappings in G-metric Spaces Turkish Joural of Aalysis ad Number Theory, 7, Vol. 5, No., 57-6 Available olie at http://pubs.sciepub.com/tjat/5//3 Sciece ad Educatio Publishig DOI:.69/tjat-5--3 Fixed Poit Theorems for Expasive Mappigs

More information

Vienna, Austria α n (1 x 2 ) n (x)

Vienna, Austria  α n (1 x 2 ) n (x) ON TURÁN S INEQUALITY FOR LEGENDRE POLYNOMIALS HORST ALZER a, STEFAN GERHOLD b, MANUEL KAUERS c2, ALEXANDRU LUPAŞ d a Morsbacher Str. 0, 5545 Waldbröl, Germay alzerhorst@freeet.de b Christia Doppler Laboratory

More information

Unimodality of generalized Gaussian coefficients.

Unimodality of generalized Gaussian coefficients. Uimodality of geeralized Gaussia coefficiets. Aatol N. Kirillov Steklov Mathematical Istitute, Fotaka 7, St.Petersburg, 191011, Russia Jauary 1991 Abstract A combiatorial proof [ of] the uimodality of

More information

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function Filomat 31:14 2017), 4507 4513 https://doi.org/10.2298/fil1714507l Published by Faculty of Scieces ad Mathematics, Uiversity of Niš, Serbia Available at: http://www.pmf.i.ac.rs/filomat Some Extesios of

More information

HARMONIC SERIES WITH POLYGAMMA FUNCTIONS OVIDIU FURDUI. 1. Introduction and the main results

HARMONIC SERIES WITH POLYGAMMA FUNCTIONS OVIDIU FURDUI. 1. Introduction and the main results Joural of Classical Aalysis Volume 8, Number 06, 3 30 doi:0.753/jca-08- HARMONIC SERIES WITH POLYGAMMA FUNCTIONS OVIDIU FURDUI Abstract. The paper is about evaluatig i closed form the followig classes

More information

ON THE DIOPHANTINE EQUATION

ON THE DIOPHANTINE EQUATION Fudametal Joural of Mathematics ad Mathematical Scieces Vol., Issue 1, 01, Pages -1 This paper is available olie at http://www.frdit.com/ Published olie July, 01 ON THE DIOPHANTINE EQUATION SARITA 1, HARI

More information

Journal of Mathematical Analysis and Applications 250, doi: jmaa , available online at http:

Journal of Mathematical Analysis and Applications 250, doi: jmaa , available online at http: Joural of Mathematical Aalysis ad Applicatios 5, 886 doi:6jmaa766, available olie at http:wwwidealibrarycom o Fuctioal Equalities ad Some Mea Values Shoshaa Abramovich Departmet of Mathematics, Uiersity

More information

S. S. Dragomir and Y. J. Cho. I. Introduction In 1956, J. Aczél has proved the following interesting inequality ([2, p. 57], [3, p.

S. S. Dragomir and Y. J. Cho. I. Introduction In 1956, J. Aczél has proved the following interesting inequality ([2, p. 57], [3, p. ON ACZÉL S INEQUALITY FOR REAL NUMBERS S. S. Dragomir ad Y. J. Cho Abstract. I this ote, we poit out some ew iequalities of Aczel s type for real umbers. I. Itroductio I 1956, J. Aczél has proved the followig

More information

THE N-POINT FUNCTIONS FOR INTERSECTION NUMBERS ON MODULI SPACES OF CURVES

THE N-POINT FUNCTIONS FOR INTERSECTION NUMBERS ON MODULI SPACES OF CURVES THE N-POINT FUNTIONS FOR INTERSETION NUMBERS ON MODULI SPAES OF URVES KEFENG LIU AND HAO XU Abstract. We derive from Witte s KdV equatio a simple formula of the -poit fuctios for itersectio umbers o moduli

More information

Subject: Differential Equations & Mathematical Modeling-III

Subject: Differential Equations & Mathematical Modeling-III Power Series Solutios of Differetial Equatios about Sigular poits Subject: Differetial Equatios & Mathematical Modelig-III Lesso: Power series solutios of differetial equatios about Sigular poits Lesso

More information

General Properties Involving Reciprocals of Binomial Coefficients

General Properties Involving Reciprocals of Binomial Coefficients 3 47 6 3 Joural of Iteger Sequeces, Vol. 9 006, Article 06.4.5 Geeral Properties Ivolvig Reciprocals of Biomial Coefficiets Athoy Sofo School of Computer Sciece ad Mathematics Victoria Uiversity P. O.

More information

A Note on the Kolmogorov-Feller Weak Law of Large Numbers

A Note on the Kolmogorov-Feller Weak Law of Large Numbers Joural of Mathematical Research with Applicatios Mar., 015, Vol. 35, No., pp. 3 8 DOI:10.3770/j.iss:095-651.015.0.013 Http://jmre.dlut.edu.c A Note o the Kolmogorov-Feller Weak Law of Large Numbers Yachu

More information

(p, q)-baskakov-kantorovich Operators

(p, q)-baskakov-kantorovich Operators Appl Math If Sci, No 4, 55-556 6 55 Applied Mathematics & Iformatio Scieces A Iteratioal Joural http://ddoiorg/8576/amis/433 p, q-basaov-katorovich Operators Vijay Gupta Departmet of Mathematics, Netaji

More information

An Interesting q-continued Fractions of Ramanujan

An Interesting q-continued Fractions of Ramanujan Palestine Journal of Mathematics Vol. 4(1 (015, 198 05 Palestine Polytechnic University-PPU 015 An Interesting q-continued Fractions of Ramanujan S. N. Fathima, T. Kathiravan Yudhisthira Jamudulia Communicated

More information

A Note on the Symmetric Powers of the Standard Representation of S n

A Note on the Symmetric Powers of the Standard Representation of S n A Note o the Symmetric Powers of the Stadard Represetatio of S David Savitt 1 Departmet of Mathematics, Harvard Uiversity Cambridge, MA 0138, USA dsavitt@mathharvardedu Richard P Staley Departmet of Mathematics,

More information

q-durrmeyer operators based on Pólya distribution

q-durrmeyer operators based on Pólya distribution Available olie at wwwtjsacom J Noliear Sci Appl 9 206 497 504 Research Article -Durrmeyer operators based o Pólya distributio Vijay Gupta a Themistocles M Rassias b Hoey Sharma c a Departmet of Mathematics

More information

THE TRANSFORMATION MATRIX OF CHEBYSHEV IV BERNSTEIN POLYNOMIAL BASES

THE TRANSFORMATION MATRIX OF CHEBYSHEV IV BERNSTEIN POLYNOMIAL BASES Joural of Mathematical Aalysis ISSN: 17-341, URL: http://iliriascom/ma Volume 7 Issue 4(16, Pages 13-19 THE TRANSFORMATION MATRIX OF CHEBYSHEV IV BERNSTEIN POLYNOMIAL BASES ABEDALLAH RABABAH, AYMAN AL

More information

The r-generalized Fibonacci Numbers and Polynomial Coefficients

The r-generalized Fibonacci Numbers and Polynomial Coefficients It. J. Cotemp. Math. Scieces, Vol. 3, 2008, o. 24, 1157-1163 The r-geeralized Fiboacci Numbers ad Polyomial Coefficiets Matthias Schork Camillo-Sitte-Weg 25 60488 Frakfurt, Germay mschork@member.ams.org,

More information

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION J Korea Math Soc 44 (2007), No 2, pp 487 498 GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION Gi-Sag Cheo ad Moawwad E A El-Miawy Reprited from the Joural of the Korea Mathematical

More information

An almost sure invariance principle for trimmed sums of random vectors

An almost sure invariance principle for trimmed sums of random vectors Proc. Idia Acad. Sci. Math. Sci. Vol. 20, No. 5, November 200, pp. 6 68. Idia Academy of Scieces A almost sure ivariace priciple for trimmed sums of radom vectors KE-ANG FU School of Statistics ad Mathematics,

More information

Commutativity in Permutation Groups

Commutativity in Permutation Groups Commutativity i Permutatio Groups Richard Wito, PhD Abstract I the group Sym(S) of permutatios o a oempty set S, fixed poits ad trasiet poits are defied Prelimiary results o fixed ad trasiet poits are

More information

The Multiplicative Zagreb Indices of Products of Graphs

The Multiplicative Zagreb Indices of Products of Graphs Iteratioal Joural of Mathematics Research. ISSN 0976-5840 Volume 8, Number (06), pp. 6-69 Iteratioal Research Publicatio House http://www.irphouse.com The Multiplicative Zagreb Idices of Products of Graphs

More information

ON A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY CONVOLUTION. G. Shelake, S. Joshi, S. Halim

ON A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY CONVOLUTION. G. Shelake, S. Joshi, S. Halim Acta Uiversitatis Apulesis ISSN: 1582-5329 No. 38/2014 pp. 251-262 ON A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY CONVOLUTION G. Shelake, S. Joshi, S. Halim Abstract. I this paper, we itroduce

More information

A MASTER THEOREM OF SERIES AND AN EVALUATION OF A CUBIC HARMONIC SERIES. 1. Introduction

A MASTER THEOREM OF SERIES AND AN EVALUATION OF A CUBIC HARMONIC SERIES. 1. Introduction Joural of Classical Aalysis Volume 0, umber 07, 97 07 doi:0.753/jca-0-0 A MASTER THEOREM OF SERIES AD A EVALUATIO OF A CUBIC HARMOIC SERIES COREL IOA VĂLEA Abstract. I the actual paper we preset ad prove

More information

On Divisibility concerning Binomial Coefficients

On Divisibility concerning Binomial Coefficients A talk give at the Natioal Chiao Tug Uiversity (Hsichu, Taiwa; August 5, 2010 O Divisibility cocerig Biomial Coefficiets Zhi-Wei Su Najig Uiversity Najig 210093, P. R. Chia zwsu@ju.edu.c http://math.ju.edu.c/

More information

A Simplified Binet Formula for k-generalized Fibonacci Numbers

A Simplified Binet Formula for k-generalized Fibonacci Numbers A Simplified Biet Formula for k-geeralized Fiboacci Numbers Gregory P. B. Dresde Departmet of Mathematics Washigto ad Lee Uiversity Lexigto, VA 440 dresdeg@wlu.edu Zhaohui Du Shaghai, Chia zhao.hui.du@gmail.com

More information

1. Introduction. g(x) = a 2 + a k cos kx (1.1) g(x) = lim. S n (x).

1. Introduction. g(x) = a 2 + a k cos kx (1.1) g(x) = lim. S n (x). Georgia Mathematical Joural Volume 11 (2004, Number 1, 99 104 INTEGRABILITY AND L 1 -CONVERGENCE OF MODIFIED SINE SUMS KULWINDER KAUR, S. S. BHATIA, AND BABU RAM Abstract. New modified sie sums are itroduced

More information

Evaluation of Some Non-trivial Integrals from Finite Products and Sums

Evaluation of Some Non-trivial Integrals from Finite Products and Sums Turkish Joural of Aalysis umber Theory 6 Vol. o. 6 7-76 Available olie at http://pubs.sciepub.com/tjat//6/5 Sciece Educatio Publishig DOI:.69/tjat--6-5 Evaluatio of Some o-trivial Itegrals from Fiite Products

More information

The Sumudu transform and its application to fractional differential equations

The Sumudu transform and its application to fractional differential equations ISSN : 30-97 (Olie) Iteratioal e-joural for Educatio ad Mathematics www.iejem.org vol. 0, No. 05, (Oct. 03), 9-40 The Sumudu trasform ad its alicatio to fractioal differetial equatios I.A. Salehbhai, M.G.

More information

New Inequalities For Convex Sequences With Applications

New Inequalities For Convex Sequences With Applications It. J. Ope Problems Comput. Math., Vol. 5, No. 3, September, 0 ISSN 074-87; Copyright c ICSRS Publicatio, 0 www.i-csrs.org New Iequalities For Covex Sequeces With Applicatios Zielaâbidie Latreuch ad Beharrat

More information

APPROXIMATE FUNCTIONAL INEQUALITIES BY ADDITIVE MAPPINGS

APPROXIMATE FUNCTIONAL INEQUALITIES BY ADDITIVE MAPPINGS Joural of Mathematical Iequalities Volume 6, Number 3 0, 46 47 doi:0.753/jmi-06-43 APPROXIMATE FUNCTIONAL INEQUALITIES BY ADDITIVE MAPPINGS HARK-MAHN KIM, JURI LEE AND EUNYOUNG SON Commuicated by J. Pečarić

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

Periodic solutions for a class of second-order Hamiltonian systems of prescribed energy

Periodic solutions for a class of second-order Hamiltonian systems of prescribed energy Electroic Joural of Qualitative Theory of Differetial Equatios 215, No. 77, 1 1; doi: 1.14232/ejqtde.215.1.77 http://www.math.u-szeged.hu/ejqtde/ Periodic solutios for a class of secod-order Hamiltoia

More information

COMPUTING THE EULER S CONSTANT: A HISTORICAL OVERVIEW OF ALGORITHMS AND RESULTS

COMPUTING THE EULER S CONSTANT: A HISTORICAL OVERVIEW OF ALGORITHMS AND RESULTS COMPUTING THE EULER S CONSTANT: A HISTORICAL OVERVIEW OF ALGORITHMS AND RESULTS GONÇALO MORAIS Abstract. We preted to give a broad overview of the algorithms used to compute the Euler s costat. Four type

More information

Exploring Prime Numbers and Modular Functions I: On the Exponential of Prime Number via Dedekind Eta Function

Exploring Prime Numbers and Modular Functions I: On the Exponential of Prime Number via Dedekind Eta Function Explorig Prime Numbers ad Modular Fuctios I: O the Expoetial of Prime Number via Dedekid Eta Fuctio Edigles Guedes November 03 The LORD opeed the eyes of the blid; the LORD raiseth them that are boid dow;

More information

On common fixed point theorems for weakly compatible mappings in Menger space

On common fixed point theorems for weakly compatible mappings in Menger space Available olie at www.pelagiaresearchlibrary.com Advaces i Applied Sciece Research, 2016, 7(5): 46-53 ISSN: 0976-8610 CODEN (USA): AASRFC O commo fixed poit theorems for weakly compatible mappigs i Meger

More information

On the Variations of Some Well Known Fixed Point Theorem in Metric Spaces

On the Variations of Some Well Known Fixed Point Theorem in Metric Spaces Turkish Joural of Aalysis ad Number Theory, 205, Vol 3, No 2, 70-74 Available olie at http://pubssciepubcom/tjat/3/2/7 Sciece ad Educatio Publishig DOI:0269/tjat-3-2-7 O the Variatios of Some Well Kow

More information

Direct Estimates for Lupaş-Durrmeyer Operators

Direct Estimates for Lupaş-Durrmeyer Operators Filomat 3:1 16, 191 199 DOI 1.98/FIL161191A Published by Faculty of Scieces ad Mathematics, Uiversity of Niš, Serbia Available at: http://www.pmf.i.ac.rs/filomat Direct Estimates for Lupaş-Durrmeyer Operators

More information

SOME TRIBONACCI IDENTITIES

SOME TRIBONACCI IDENTITIES Mathematics Today Vol.7(Dec-011) 1-9 ISSN 0976-38 Abstract: SOME TRIBONACCI IDENTITIES Shah Devbhadra V. Sir P.T.Sarvajaik College of Sciece, Athwalies, Surat 395001. e-mail : drdvshah@yahoo.com The sequece

More information

Fibonacci numbers and orthogonal polynomials

Fibonacci numbers and orthogonal polynomials Fiboacci umbers ad orthogoal polyomials Christia Berg Departmet of Mathematics, Uiversity of Copehage, Uiversitetspare 5, 2100 Købehav Ø, Demar Abstract We prove that the sequece (1/F +2 0 of reciprocals

More information

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES A STUDY ON THE HYPERBOLA x 9 0 S. Vidhyalakshmi, M.A. Gopala & T. Mahalakshmi*, Professor, Departmet of Mathematics, Shrimati Idira Gadhi College, Trichy-60

More information