The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance. Samuel Prentice and Nicholas Roy Presentation by Elaine Short

Size: px
Start display at page:

Download "The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance. Samuel Prentice and Nicholas Roy Presentation by Elaine Short"

Transcription

1 The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance Samuel Prentice and Nicholas Roy Presentation by Elaine Short 1

2 Outline" Motivation Review of PRM and EKF Factoring the Covariance The Algorithm Experimental Validation 2

3 Motivation In the real world, a robotic agent will have uncertainty in its knowledge of its own state. To incorporate this into planning we can use POMDPs, but they are difficult to solve. Instead, use Probabilistic Road Maps, incorporating uncertainty using Extended Kalman Filtering. Now plan in belief space, minimizing cost which includes the uncertainty in the movement. 3

4 PRM Review Probabilistic Road Maps: Choose a bunch of points in the collision-free subset of the search space beacon C free sample Connect those points where there exists a straight line path between them in C!ee. (a) Sampled Distribution Means 4 Find shortest path on the resulting graph beacon C free sample START beacon PRM beacon edge! PRM ellipse node PRM edge START (a) Sampled Distribution Means (c) Resulting Belief Space Graph (d) (b) Edges Added Fig. 1. A basic example of building a belief-space roadmap in an environment with ranging beacons. (a C free are kept. (b) Edges between distributions that lie in C free are added to the graph. (c) Once the START) can be propagated through the graph by simulating the agent s motion and sensor measurements, 4 sequence along edges. The posterior distribution at each node is drawn with 1 σ uncertainty ellipses, and search path to that node. In GOAL this example, we artificially increased the noise in the robot motion to make the environment. Figure (d) reiterates the benefit of incorporating the full belief distribution in planning.

5 KF Review state = g(state, control, noise) measured state = h(state, noise) Robot state represented by a Gaussian (mean and covariance). Cov. of s (state) Control and observations are applied sequentially, are linear transforms on the Gaussian (generally, control will make it wider, and observation will make it narrower). Extended Kalman Filter linearizes the nonlinear control and observation functions. Ω t = Σ 1 t =(G t Σ t 1 G T t + R t ) 1 Ω t = Ω t + H T t Q 1 t H t. M t µ t = g(µ t 1,u t ) Σ t = G t Σ t 1 G T t Ht T Q 1 t H t + V t W t V T t µ t = µ t + K t (h(µ t ) z t ) Σ t = Σ t K t H t Σ t, Jacobian of g w.r.t s (state) Jacobian of g w.r.t w (noise) Cov. of w (noise) Jacobian of w R t V t W t V T t. 5

6 Kalman Filter 6

7 over its n-dimensional mean, then the reachable part of the collision (Figure 1b). We then simulate a sequence of controls The Intuition beacon PRM node PRM edge (b) Edges Added GOAL START beacon PRM edge! ellipse START beacon shortest path b space path! ellipse (c) Resulting Belief Space Graph (d) Advantage of Belief Space Planning Fig. 1. A basic example of building a belief-space roadmap in an environment with ranging beacons. (a) Distribution means are sampled, and the means in C free are kept. (b) Edges between distributions that lie in C free are added to the graph. (c) Once the graph is built, an initial belief (lower right, labelled START) can be propagated through the graph by simulating the agent s motion and sensor measurements, and performing the appropriate filter update steps in sequence along edges. The posterior distribution at each node is drawn with 1 σ uncertainty ellipses, and results from a single-source, minimum uncertainty search path to that node. In this example, we artificially increased the noise in the robot motion to make the positional uncertainty clearly visible throughout the environment. Figure (d) reiterates the benefit of incorporating the full belief distribution in planning. The belief space planner detours from the shortest path through an sensing-rich portion of the environment to remain well-localized. 7

8 Factoring the Covariance The robot has control over its mean, but not the covariance. We would like to efficiently calculate the cost (in terms of the covariance) of each step in the graph. Rather than computer the new covariance for each control step, calculate one transformation matrix from (μ 0, Σ 0 ) to (μ T, Σ T ) 8

9 Factoring the Covariance Ψ t = [ ] B C t [ ] [ ] W X B = Y Z C t t 1 [ ] [ 0 I 0 G T = I M G [ ] St C G R = 0 G T. t easurement update t S M t = RG T ] t [ I ] 0 M I [ ] B C t 1 Problem: this is susceptible to rounding errors Solution: use Hamiltonian method [ ] of composition, with new operator star t [ ] S t = S C t S M t. This is analogous to taking a bunch of scattering media (like lenses) and stacking them, then describing the result with a single equation. 9

10 In other words... ] S 1:T = [ ] G1:T R 1:T M 1:T G T 1:T = S 1 S 2 S T [ ΣT ] = [ ] I Σ0 S 0 I 1:T. To get from point a to point b, use the star operation to compose the matrices for all the time steps necessary to get from a to b. Then a new starting condition can be applied using the star composition of the starting condition and the previously calculated composed transformation matrix. 10

11 The Algorithm Algorithm 1 The Belief Roadmap Build Process. Require: Map C over mean robot poses 1: Sample mean poses {µ i } from C free using a standard PRM sampling strategy to build belief graph node set {n i } such that n i [µ] =µ i 2: Create edge set {e ij } between nodes (n i,n j ) if the straight-line path between (n i [µ],n j [µ]) is collision-free 3: Build one-step transfer functions {ζ ij } e ij {e ij } 4: return Belief graph G = {{n i }, {e ij }, {ζ ij }} 11

12 The Algorithm(s) Algorithm 2 The Belief Roadmap Search Process. Require: Start belief (µ 0, Σ 0 ),goallocationµ goal and belief graph G Ensure: Path p from µ 0 to µ goal with minimum goal covariance Σ goal. 1: Append G with nodes {n 0,n goal }, edges {{e 0,j }, {e i,goal }}, and one-step transfer functions {{ζ 0,j }, {ζ i,goal }} 2: Augment node structure with best path p= and covariance Σ=, suchthatn i ={µ, Σ,p} 3: Create search queue with initial position and covariance Q n 0 ={µ 0, Σ 0, } 4: while Q is not empty do 5: Pop n Q 6: if n = n goal then 7: Continue 8: end if 9: for all n such that e n,n and not n n[p] do 10: Compute one-step update Ψ = ζ n,n ] Ψ, whereψ = [ n[σ] I 1 11: Σ Ψ 11 Ψ 21 12: if tr(σ ) <tr(n [Σ]) then 13: n {n [µ], Σ,n[p] {n }} 14: Push n Q 15: end if 16: end for 17: end while 18: return n goal [p] Algorithm 3 The Min-Max Belief Roadmap (minmax-brm) algorithm. Require: Start belief (µ 0, Σ 0 ),goallocationµ goal and belief graph G Ensure: Path p from µ 0 to µ goal with minimum maximum covariance. 1: G = {{n i }, {e ij }, {S ij }} BUILD BRM GRAPH (B µ ) 2: Append G with nodes {n 0,n goal }, edges {{e 0,j }, {e i,goal }}, and one-step descriptors {{S 0,j }, {S i,goal }} 3: Augment node structure with best path p = and maximum covariance Σ p max = along path p, suchthat n i = {µ, Σ,p,Σ p max} 4: Create search queue with initial position and covariance Q n 0 = {µ 0, Σ 0,, } 5: while Q is not empty do 6: Pop n Q 7: if n = n goal then 8: Continue 9: end if 10: for all n such that e n,n and n n[p] do 11: Compute one-step update Ψ = ζ n,n ] Ψ, whereψ = [ n[σ] I 1 12: Σ Ψ 11 Ψ 21 13: if max(tr(σ ),tr(n[σ p max])) <tr(n [Σ p max]) then 14: n {n [µ], Σ, {n[p],n },max(σ,n[σ p max])} 15: Push n Q 16: end if 17: end for 18: end while 19: return n goal [p] 12

13 Experimental Validation 12 True Distance vs. Range Bias Error in LOS Scenario Ultra-wide bandwidth radio beacons Can be modeled with Gaussian noise In simulation, robot navigating through a small, obstacle-free environment with sensors distributed along a randomized trajectory in the space. Bias Error: Mean and Standard Deviation (m) UWB Ranges Received True Distance (m) 13

14 Results 10 Sensor Model Uncertainty vs. Positional Error at Goal Location 9 Maximum Sensor Range vs. Positional Error at Goal Location 9 BRM Planner 8 Positional Error at Goal Location (m) PRM Planner Positional Error at Goal Location (m) BRM Planner PRM Planner Sensor Noise Standard Deviation (m) Maximum Sensor Range (m) 14

15 Search Tim 10 1 Experiment Search Time (s) Search Time vs. Search Tree Depth Search with Standard EKF Updates Search with One Step EKF Updates Search Tree Depth Search Time (s) Search Tree Depth (a) Time vs. Tree Depth Search Time vs. Path Length GOAL Fig. 7 ( 70 (lowe the r in co positi ellips accu unce Search with Standard EKF Updates for l 10 0 Search with One Step EKF Updates route regio 10 1 BRM 10 2 Fi beacon ning START PRM path BRM path from! ellipse 10 3 throu Path Length (m) posit Fig. 7. Example trajectories for a mobile robot in an indoor environment ( 70m across) with ranging beacons. The robot navigates from START local (lower left) to GOAL (top). (b) Time The vs. BRM Pathfinds Length a path in close proximity to varie the ranging beacons, balancing the shorter route computed by the PRM in configuration space against a lower cost path in information space. The of th Fig. 6. Algorithmic Performance. (a) Time to Plan vs. Tree Depth (b) Time positional uncertainty over the two paths is shown as the bold covariance path to Plan vs. Path Length. Note that these graphs are semi-log graphs, indicating ellipses. two orders of magnitude increase in speed. bloc direc for localization. The BRM planner detours from the direct grow areroute obtained chosen when by comparing the shortestthe path search planner times forwith sensor-rich respect 15 In co to regions the length of theof environment. the resulting Whereas path, the shown shortest in Figure path planner 6(b), local

16 Sample Trajectories START GOAL beacon PRM path BRM path! ellipse Fig. 7. Example trajectories for a mobile robot in an indoor environment ( 70m across) with ranging beacons. The robot navigates from START (lower left) to GOAL (top). The BRM finds a path in close proximity to the ranging beacons, balancing the shorter route computed by the PRM in configuration space against a lower cost path in information space. The positional uncertainty over the two paths is shown as the bold covariance (b) BRM: Lowest Expected Uncertainty Path ellipses. Fig. 8. Example paths for a mobile robot navigating across MIT campus. The solid line in each case is the robot path, the small dots are the range beacons being used for localization, and the dark ellipses are the covariances for localization. The BRM planner detours from the direct (a) PRM: Shortest Path Kaelb nin Art Kaila the pro Kalm filt AS Kavra (19 dim Ro Koen nin ter Pro LaVa pla 378 Lozan spa 108 Missi 16 roa IEE tio

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Gaussian Filters Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile

More information

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010 Probabilistic Fundamentals in Robotics Gaussian Filters Basilio Bona DAUIN Politecnico di Torino July 2010 Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile robot

More information

L11. EKF SLAM: PART I. NA568 Mobile Robotics: Methods & Algorithms

L11. EKF SLAM: PART I. NA568 Mobile Robotics: Methods & Algorithms L11. EKF SLAM: PART I NA568 Mobile Robotics: Methods & Algorithms Today s Topic EKF Feature-Based SLAM State Representation Process / Observation Models Landmark Initialization Robot-Landmark Correlation

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs. Lorenzo Nardi and Cyrill Stachniss

Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs. Lorenzo Nardi and Cyrill Stachniss Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs Lorenzo Nardi and Cyrill Stachniss Navigation under uncertainty C B C B A A 2 `B` is the most likely position C B C B A A 3

More information

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e.

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e. Kalman Filter Localization Bayes Filter Reminder Prediction Correction Gaussians p(x) ~ N(µ,σ 2 ) : Properties of Gaussians Univariate p(x) = 1 1 2πσ e 2 (x µ) 2 σ 2 µ Univariate -σ σ Multivariate µ Multivariate

More information

Localization aware sampling and connection strategies for incremental motion planning under uncertainty

Localization aware sampling and connection strategies for incremental motion planning under uncertainty Autonomous Robots manuscript No. (will be inserted by the editor) Localization aware sampling and connection strategies for incremental motion planning under uncertainty Vinay Pilania Kamal Gupta Received:

More information

Title: Robust Path Planning in GPS-Denied Environments Using the Gaussian Augmented Markov Decision Process

Title: Robust Path Planning in GPS-Denied Environments Using the Gaussian Augmented Markov Decision Process Title: Robust Path Planning in GPS-Denied Environments Using the Gaussian Augmented Markov Decision Process Authors: Peter Lommel (Corresponding author) 366 Technology Drive Minneapolis, MN 55418 phlommel@alum.mit.edu

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

Robot Localization and Kalman Filters

Robot Localization and Kalman Filters Robot Localization and Kalman Filters Rudy Negenborn rudy@negenborn.net August 26, 2003 Outline Robot Localization Probabilistic Localization Kalman Filters Kalman Localization Kalman Localization with

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Extended Kalman Filter Dr. Kostas Alexis (CSE) These slides relied on the lectures from C. Stachniss, J. Sturm and the book Probabilistic Robotics from Thurn et al.

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

State Estimation and Motion Tracking for Spatially Diverse VLC Networks

State Estimation and Motion Tracking for Spatially Diverse VLC Networks State Estimation and Motion Tracking for Spatially Diverse VLC Networks GLOBECOM Optical Wireless Communications Workshop December 3, 2012 Anaheim, CA Michael Rahaim mrahaim@bu.edu Gregary Prince gbprince@bu.edu

More information

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017 EKF and SLAM McGill COMP 765 Sept 18 th, 2017 Outline News and information Instructions for paper presentations Continue on Kalman filter: EKF and extension to mapping Example of a real mapping system:

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada SLAM Techniques and Algorithms Jack Collier Defence Research and Development Canada Recherche et développement pour la défense Canada Canada Goals What will we learn Gain an appreciation for what SLAM

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München Motivation Bayes filter is a useful tool for state

More information

Probabilistic Fundamentals in Robotics

Probabilistic Fundamentals in Robotics Probabilistic Fundamentals in Robotics Probabilistic Models of Mobile Robots Robot localization Basilio Bona DAUIN Politecnico di Torino June 2011 Course Outline Basic mathematical framework Probabilistic

More information

Robot Localisation. Henrik I. Christensen. January 12, 2007

Robot Localisation. Henrik I. Christensen. January 12, 2007 Robot Henrik I. Robotics and Intelligent Machines @ GT College of Computing Georgia Institute of Technology Atlanta, GA hic@cc.gatech.edu January 12, 2007 The Robot Structure Outline 1 2 3 4 Sum of 5 6

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots Manipulators P obotics Configuration of robot specified by 6 numbers 6 degrees of freedom (DOF) 6 is the minimum number required to position end-effector arbitrarily. For dynamical systems, add velocity

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

the robot in its current estimated position and orientation (also include a point at the reference point of the robot)

the robot in its current estimated position and orientation (also include a point at the reference point of the robot) CSCI 4190 Introduction to Robotic Algorithms, Spring 006 Assignment : out February 13, due February 3 and March Localization and the extended Kalman filter In this assignment, you will write a program

More information

Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics

Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics Recap: State Estimation using Kalman Filter Project state and error

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

Vision for Mobile Robot Navigation: A Survey

Vision for Mobile Robot Navigation: A Survey Vision for Mobile Robot Navigation: A Survey (February 2002) Guilherme N. DeSouza & Avinash C. Kak presentation by: Job Zondag 27 February 2009 Outline: Types of Navigation Absolute localization (Structured)

More information

COS Lecture 16 Autonomous Robot Navigation

COS Lecture 16 Autonomous Robot Navigation COS 495 - Lecture 16 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Sensing Networking Leonidas Guibas Stanford University Computation CS428 Sensor systems are about sensing, after all... System State Continuous and Discrete Variables The quantities

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

2D Image Processing (Extended) Kalman and particle filter

2D Image Processing (Extended) Kalman and particle filter 2D Image Processing (Extended) Kalman and particle filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

Navigation. Global Pathing. The Idea. Diagram I: Overall Navigation

Navigation. Global Pathing. The Idea. Diagram I: Overall Navigation Navigation Diagram I: Overall Navigation Global Pathing The Idea (focus on 2D coordinates Takes advantage of prior info: navigation space/ dimensions target destination location Risks: Map Resolution too

More information

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010 Probabilistic Fundamentals in Robotics Probabilistic Models of Mobile Robots Robotic mapping Basilio Bona DAUIN Politecnico di Torino July 2010 Course Outline Basic mathematical framework Probabilistic

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010 Probabilistic Fundamentals in Robotics Probabilistic Models of Mobile Robots Robot localization Basilio Bona DAUIN Politecnico di Torino July 2010 Course Outline Basic mathematical framework Probabilistic

More information

A Study of Covariances within Basic and Extended Kalman Filters

A Study of Covariances within Basic and Extended Kalman Filters A Study of Covariances within Basic and Extended Kalman Filters David Wheeler Kyle Ingersoll December 2, 2013 Abstract This paper explores the role of covariance in the context of Kalman filters. The underlying

More information

CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions

CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions December 14, 2016 Questions Throughout the following questions we will assume that x t is the state vector at time t, z t is the

More information

Multiscale Adaptive Sensor Systems

Multiscale Adaptive Sensor Systems Multiscale Adaptive Sensor Systems Silvia Ferrari Sibley School of Mechanical and Aerospace Engineering Cornell University ONR Maritime Sensing D&I Review Naval Surface Warfare Center, Carderock 9-11 August

More information

Joint GPS and Vision Estimation Using an Adaptive Filter

Joint GPS and Vision Estimation Using an Adaptive Filter 1 Joint GPS and Vision Estimation Using an Adaptive Filter Shubhendra Vikram Singh Chauhan and Grace Xingxin Gao, University of Illinois at Urbana-Champaign Shubhendra Vikram Singh Chauhan received his

More information

Introduction to Mobile Robotics Bayes Filter Kalman Filter

Introduction to Mobile Robotics Bayes Filter Kalman Filter Introduction to Mobile Robotics Bayes Filter Kalman Filter Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras 1 Bayes Filter Reminder 1. Algorithm Bayes_filter( Bel(x),d ):

More information

IcLQG: Combining local and global optimization for control in information space

IcLQG: Combining local and global optimization for control in information space IcLQG: Combining local and global optimization for control in information space The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: State Estimation Dr. Kostas Alexis (CSE) World state (or system state) Belief state: Our belief/estimate of the world state World state: Real state of

More information

Sampling-based Nonholonomic Motion Planning in Belief Space via Dynamic Feedback Linearization-based FIRM

Sampling-based Nonholonomic Motion Planning in Belief Space via Dynamic Feedback Linearization-based FIRM 1 Sampling-based Nonholonomic Motion Planning in Belief Space via Dynamic Feedback Linearization-based FIRM Ali-akbar Agha-mohammadi, Suman Chakravorty, Nancy M. Amato Abstract In roadmap-based methods,

More information

Information Exchange in Multi-rover SLAM

Information Exchange in Multi-rover SLAM nformation Exchange in Multi-rover SLAM Brandon M Jones and Lang Tong School of Electrical and Computer Engineering Cornell University, thaca, NY 53 {bmj3,lt35}@cornelledu Abstract We investigate simultaneous

More information

Scalable Sparsification for Efficient Decision Making Under Uncertainty in High Dimensional State Spaces

Scalable Sparsification for Efficient Decision Making Under Uncertainty in High Dimensional State Spaces Scalable Sparsification for Efficient Decision Making Under Uncertainty in High Dimensional State Spaces IROS 2017 KHEN ELIMELECH ROBOTICS AND AUTONOMOUS SYSTEMS PROGRAM VADIM INDELMAN DEPARTMENT OF AEROSPACE

More information

Lego NXT: Navigation and localization using infrared distance sensors and Extended Kalman Filter. Miguel Pinto, A. Paulo Moreira, Aníbal Matos

Lego NXT: Navigation and localization using infrared distance sensors and Extended Kalman Filter. Miguel Pinto, A. Paulo Moreira, Aníbal Matos Lego NXT: Navigation and localization using infrared distance sensors and Extended Kalman Filter Miguel Pinto, A. Paulo Moreira, Aníbal Matos 1 Resume LegoFeup Localization Real and simulated scenarios

More information

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu ESTIMATOR STABILITY ANALYSIS IN SLAM Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu Institut de Robtica i Informtica Industrial, UPC-CSIC Llorens Artigas 4-6, Barcelona, 88 Spain {tvidal, cetto,

More information

Conditions for Suboptimal Filter Stability in SLAM

Conditions for Suboptimal Filter Stability in SLAM Conditions for Suboptimal Filter Stability in SLAM Teresa Vidal-Calleja, Juan Andrade-Cetto and Alberto Sanfeliu Institut de Robòtica i Informàtica Industrial, UPC-CSIC Llorens Artigas -, Barcelona, Spain

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

Data Fusion Kalman Filtering Self Localization

Data Fusion Kalman Filtering Self Localization Data Fusion Kalman Filtering Self Localization Armando Jorge Sousa http://www.fe.up.pt/asousa asousa@fe.up.pt Faculty of Engineering, University of Porto, Portugal Department of Electrical and Computer

More information

The Kalman Filter ImPr Talk

The Kalman Filter ImPr Talk The Kalman Filter ImPr Talk Ged Ridgway Centre for Medical Image Computing November, 2006 Outline What is the Kalman Filter? State Space Models Kalman Filter Overview Bayesian Updating of Estimates Kalman

More information

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Uncertainty representation Localization Chapter 5 (textbook) What is the course about?

More information

Comparision of Probabilistic Navigation methods for a Swimming Robot

Comparision of Probabilistic Navigation methods for a Swimming Robot Comparision of Probabilistic Navigation methods for a Swimming Robot Anwar Ahmad Quraishi Semester Project, Autumn 2013 Supervisor: Yannic Morel BioRobotics Laboratory Headed by Prof. Aue Jan Ijspeert

More information

SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM. Neal Patwari and Alfred O.

SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM. Neal Patwari and Alfred O. SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM Neal Patwari and Alfred O. Hero III Department of Electrical Engineering & Computer Science University of

More information

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms L06. LINEAR KALMAN FILTERS NA568 Mobile Robotics: Methods & Algorithms 2 PS2 is out! Landmark-based Localization: EKF, UKF, PF Today s Lecture Minimum Mean Square Error (MMSE) Linear Kalman Filter Gaussian

More information

TSRT14: Sensor Fusion Lecture 8

TSRT14: Sensor Fusion Lecture 8 TSRT14: Sensor Fusion Lecture 8 Particle filter theory Marginalized particle filter Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 8 Gustaf Hendeby Spring 2018 1 / 25 Le 8: particle filter theory,

More information

Sensor Fusion: Particle Filter

Sensor Fusion: Particle Filter Sensor Fusion: Particle Filter By: Gordana Stojceska stojcesk@in.tum.de Outline Motivation Applications Fundamentals Tracking People Advantages and disadvantages Summary June 05 JASS '05, St.Petersburg,

More information

RL 14: Simplifications of POMDPs

RL 14: Simplifications of POMDPs RL 14: Simplifications of POMDPs Michael Herrmann University of Edinburgh, School of Informatics 04/03/2016 POMDPs: Points to remember Belief states are probability distributions over states Even if computationally

More information

Simultaneous Localization and Map Building Using Natural features in Outdoor Environments

Simultaneous Localization and Map Building Using Natural features in Outdoor Environments Simultaneous Localization and Map Building Using Natural features in Outdoor Environments Jose Guivant, Eduardo Nebot, Hugh Durrant Whyte Australian Centre for Field Robotics Department of Mechanical and

More information

9 Multi-Model State Estimation

9 Multi-Model State Estimation Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 9 Multi-Model State

More information

Planning by Probabilistic Inference

Planning by Probabilistic Inference Planning by Probabilistic Inference Hagai Attias Microsoft Research 1 Microsoft Way Redmond, WA 98052 Abstract This paper presents and demonstrates a new approach to the problem of planning under uncertainty.

More information

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Robotics 2 Data Association Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Data Association Data association is the process of associating uncertain measurements to known tracks. Problem

More information

Programming Robots in ROS Slides adapted from CMU, Harvard and TU Stuttgart

Programming Robots in ROS Slides adapted from CMU, Harvard and TU Stuttgart Programming Robots in ROS Slides adapted from CMU, Harvard and TU Stuttgart Path Planning Problem Given an initial configuration q_start and a goal configuration q_goal,, we must generate the best continuous

More information

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment Applications Local alignment: Tracking Stereo Global alignment: Camera jitter elimination Image enhancement Panoramic

More information

Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping

Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz What is SLAM? Estimate the pose of a robot and the map of the environment

More information

THIS work is concerned with motion planning in Dynamic,

THIS work is concerned with motion planning in Dynamic, 1 Robot Motion Planning in Dynamic, Uncertain Environments Noel E. Du Toit, Member, IEEE, and Joel W. Burdick, Member, IEEE, Abstract This paper presents a strategy for planning robot motions in dynamic,

More information

TSRT14: Sensor Fusion Lecture 9

TSRT14: Sensor Fusion Lecture 9 TSRT14: Sensor Fusion Lecture 9 Simultaneous localization and mapping (SLAM) Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 9 Gustaf Hendeby Spring 2018 1 / 28 Le 9: simultaneous localization and

More information

SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM. Neal Patwari and Alfred O.

SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM. Neal Patwari and Alfred O. SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM Neal Patwari and Alfred O. Hero III Department of Electrical Engineering & Computer Science University of

More information

Gradient Sampling for Improved Action Selection and Path Synthesis

Gradient Sampling for Improved Action Selection and Path Synthesis Gradient Sampling for Improved Action Selection and Path Synthesis Ian M. Mitchell Department of Computer Science The University of British Columbia November 2016 mitchell@cs.ubc.ca http://www.cs.ubc.ca/~mitchell

More information

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart Robotics Mobile Robotics State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM Marc Toussaint U Stuttgart DARPA Grand

More information

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Background Data Assimilation Iterative process Forecast Analysis Background

More information

Introduction to Mobile Robotics Probabilistic Robotics

Introduction to Mobile Robotics Probabilistic Robotics Introduction to Mobile Robotics Probabilistic Robotics Wolfram Burgard 1 Probabilistic Robotics Key idea: Explicit representation of uncertainty (using the calculus of probability theory) Perception Action

More information

PROBABILISTIC REASONING OVER TIME

PROBABILISTIC REASONING OVER TIME PROBABILISTIC REASONING OVER TIME In which we try to interpret the present, understand the past, and perhaps predict the future, even when very little is crystal clear. Outline Time and uncertainty Inference:

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

Why do we care? Measurements. Handling uncertainty over time: predicting, estimating, recognizing, learning. Dealing with time

Why do we care? Measurements. Handling uncertainty over time: predicting, estimating, recognizing, learning. Dealing with time Handling uncertainty over time: predicting, estimating, recognizing, learning Chris Atkeson 2004 Why do we care? Speech recognition makes use of dependence of words and phonemes across time. Knowing where

More information

Bayesian Methods in Positioning Applications

Bayesian Methods in Positioning Applications Bayesian Methods in Positioning Applications Vedran Dizdarević v.dizdarevic@tugraz.at Graz University of Technology, Austria 24. May 2006 Bayesian Methods in Positioning Applications p.1/21 Outline Problem

More information

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example CS 88: Artificial Intelligence Fall 29 Lecture 9: Hidden Markov Models /3/29 Announcements Written 3 is up! Due on /2 (i.e. under two weeks) Project 4 up very soon! Due on /9 (i.e. a little over two weeks)

More information

EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS. N. Ceccarelli, M. Di Marco, A. Garulli, A.

EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS. N. Ceccarelli, M. Di Marco, A. Garulli, A. EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS N. Ceccarelli, M. Di Marco, A. Garulli, A. Giannitrapani DII - Dipartimento di Ingegneria dell Informazione Università di Siena

More information

Markov localization uses an explicit, discrete representation for the probability of all position in the state space.

Markov localization uses an explicit, discrete representation for the probability of all position in the state space. Markov Kalman Filter Localization Markov localization localization starting from any unknown position recovers from ambiguous situation. However, to update the probability of all positions within the whole

More information

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions.

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions. CS 88: Artificial Intelligence Fall 27 Lecture 2: HMMs /6/27 Markov Models A Markov model is a chain-structured BN Each node is identically distributed (stationarity) Value of X at a given time is called

More information

AUTOMOTIVE ENVIRONMENT SENSORS

AUTOMOTIVE ENVIRONMENT SENSORS AUTOMOTIVE ENVIRONMENT SENSORS Lecture 5. Localization BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Related concepts Concepts related to vehicles moving

More information

CSE 483: Mobile Robotics. Extended Kalman filter for localization(worked out example)

CSE 483: Mobile Robotics. Extended Kalman filter for localization(worked out example) DRAFT a final version will be posted shortly CSE 483: Mobile Robotics Lecture by: Prof. K. Madhava Krishna Lecture # 4 Scribe: Dhaivat Bhatt, Isha Dua Date: 14th November, 216 (Monday) Extended Kalman

More information

Introduction to Mobile Robotics Information Gain-Based Exploration. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras

Introduction to Mobile Robotics Information Gain-Based Exploration. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras Introduction to Mobile Robotics Information Gain-Based Exploration Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras 1 Tasks of Mobile Robots mapping SLAM localization integrated

More information

Distributed estimation in sensor networks

Distributed estimation in sensor networks in sensor networks A. Benavoli Dpt. di Sistemi e Informatica Università di Firenze, Italy. e-mail: benavoli@dsi.unifi.it Outline 1 An introduction to 2 3 An introduction to An introduction to In recent

More information

Non-Myopic Target Tracking Strategies for Non-Linear Systems

Non-Myopic Target Tracking Strategies for Non-Linear Systems Non-Myopic Target Tracking Strategies for Non-Linear Systems Zhongshun Zhang and Pratap Tokekar Abstract We study the problem of devising a closed-loop strategy to control the position of a robot that

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

Sensors Fusion for Mobile Robotics localization. M. De Cecco - Robotics Perception and Action

Sensors Fusion for Mobile Robotics localization. M. De Cecco - Robotics Perception and Action Sensors Fusion for Mobile Robotics localization 1 Until now we ve presented the main principles and features of incremental and absolute (environment referred localization systems) could you summarize

More information

Space Surveillance with Star Trackers. Part II: Orbit Estimation

Space Surveillance with Star Trackers. Part II: Orbit Estimation AAS -3 Space Surveillance with Star Trackers. Part II: Orbit Estimation Ossama Abdelkhalik, Daniele Mortari, and John L. Junkins Texas A&M University, College Station, Texas 7783-3 Abstract The problem

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

E190Q Lecture 11 Autonomous Robot Navigation

E190Q Lecture 11 Autonomous Robot Navigation E190Q Lecture 11 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 013 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

SLAM for Ship Hull Inspection using Exactly Sparse Extended Information Filters

SLAM for Ship Hull Inspection using Exactly Sparse Extended Information Filters SLAM for Ship Hull Inspection using Exactly Sparse Extended Information Filters Matthew Walter 1,2, Franz Hover 1, & John Leonard 1,2 Massachusetts Institute of Technology 1 Department of Mechanical Engineering

More information

Probabilistic Feasibility for Nonlinear Systems with Non-Gaussian Uncertainty using RRT

Probabilistic Feasibility for Nonlinear Systems with Non-Gaussian Uncertainty using RRT Probabilistic Feasibility for Nonlinear Systems with Non-Gaussian Uncertainty using RRT Brandon Luders and Jonathan P. How Aerospace Controls Laboratory Massachusetts Institute of Technology, Cambridge,

More information

Introduction to Unscented Kalman Filter

Introduction to Unscented Kalman Filter Introduction to Unscented Kalman Filter 1 Introdution In many scientific fields, we use certain models to describe the dynamics of system, such as mobile robot, vision tracking and so on. The word dynamics

More information

Robotics. Path Planning. Marc Toussaint U Stuttgart

Robotics. Path Planning. Marc Toussaint U Stuttgart Robotics Path Planning Path finding vs. trajectory optimization, local vs. global, Dijkstra, Probabilistic Roadmaps, Rapidly Exploring Random Trees, non-holonomic systems, car system equation, path-finding

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

A Probabilistic Characterization of Shark Movement Using Location Tracking Data

A Probabilistic Characterization of Shark Movement Using Location Tracking Data A Probabilistic Characterization of Shark Movement Using Location Tracking Data Samuel Ackerman, PhD (Advisers: Dr. Marc Sobel, Dr. Richard Heiberger) Temple University Department of Statistical Science

More information

Bayesian Methods / G.D. Hager S. Leonard

Bayesian Methods / G.D. Hager S. Leonard Bayesian Methods Recall Robot Localization Given Sensor readings z 1, z 2,, z t = z 1:t Known control inputs u 0, u 1, u t = u 0:t Known model t+1 t, u t ) with initial 1 u 0 ) Known map z t t ) Compute

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

FUNDAMENTAL FILTERING LIMITATIONS IN LINEAR NON-GAUSSIAN SYSTEMS

FUNDAMENTAL FILTERING LIMITATIONS IN LINEAR NON-GAUSSIAN SYSTEMS FUNDAMENTAL FILTERING LIMITATIONS IN LINEAR NON-GAUSSIAN SYSTEMS Gustaf Hendeby Fredrik Gustafsson Division of Automatic Control Department of Electrical Engineering, Linköpings universitet, SE-58 83 Linköping,

More information

LQG-MP: Optimized Path Planning for Robots with Motion Uncertainty and Imperfect State Information

LQG-MP: Optimized Path Planning for Robots with Motion Uncertainty and Imperfect State Information LQG-MP: Optimized Path Planning for Robots with Motion Uncertainty and Imperfect State Information Jur van den Berg Pieter Abbeel Ken Goldberg Abstract This paper presents LQG-MP (linear-quadratic Gaussian

More information