Review: Angular Momentum. Physics 201, Lecture 20

Size: px
Start display at page:

Download "Review: Angular Momentum. Physics 201, Lecture 20"

Transcription

1 q Physics 01, Lecture 0 Today s Topics More on Angular Momentum and Conservation of Angular Momentum Demos and Exercises q Elasticity (Section 1.4. ) Deformation Elastic Modulus (Young s, Shear, Bulk) q Next Tuesday: Static Equilibirium (Section 1.1-3) q Hope you ve previewed Chapter 11. Review: Angular Momentum q A particle s angular momentum relative to a chosen origin is defined as L rxp L is a vector. Angular momentum is always defined w.r.t an origin*. For a system with multiple particles, L=ΣL j. For an object rotating about a fixed object: L=Iω d L / dt = Στ recall: P=mv L f = L i if no torque Review: Angular Momentum of A Rotating Object q For a rigid object about a fixed axis, its angular momentum is defined as: L= Iω For the same ω, the larger the I, the larger the L L is a vector, it has a direction. The direction of angular momentum can be determined by the Right Hand Rule Exercise: Momentum Conservation Jumping On Merry-Go-Round q A freely spinning Merry-Go-Round of mass m mgr and radius R mgr has an initial angular speed ω i. After a child of mass m c jumps on it at the edge as shown, what is the new ω? Solution: free spinning = no torque L f =L i L i = I mgr ω i = ½ m mgr R mgr ω i L f = (I mgr + I child )ω f =(½ m mgr R mgr + m c R mgr ) ω f à ω f = ½ m mgr R mgr / (½ m mgr R mgr + m c R mgr ) ω i = ½ m mgr / (½ m mgr + m c ) ω i Right Hand Rule 1

2 Angular Momentum And Rotational Kinetic Energy q Recall: KE rot = ½ I ω q That is: and L = I ω Rotational Kinetic Energy KE rot = 1 Iω = 1 (Iω) I = L I Demos and Quizzes (Next Few Slides) A figure skater dances on ice with various poses. Which pose has larger moments of inertia? For same angular momentum, the larger the moment of inertia, the smaller the KE rot This or This or Same? Which Pose Has More Angular Momentum? Which Pose Spins Faster? L i = L f I i ω i = I f ω f ie. SAME (very little torque by ice ) i.e. ω i < ω f

3 Which Pose Has Larger Kinetic Energy? Demo and Discussion Turning the bike wheel L i = L f I i > I f KE rot_i < KE rot_f KE rot = L I Helicopters/Drones (Why Two+ Rotors?) Gyroscope For Navigation 3

4 Gyroscope And Precession q A top with spinning angular velocity ω at an inclination θ would precession around the z axis at frequency : ω p = Mgh/(Iωcosθ) (derivation out of scope of the course) q This type of motion is called precession and ω p is the precessional frequency. mg gives a torque θ h Read After class conceptual only Physical Objects q Physical Objects they can do Particles: No size, no shape. (hence do not rotate.) circular motion Extended objects: CM+Size+Shape though Rigid objects: Translation + Rotation, non deformable Deformable objects: Regular solids:» Shape/size change under stress» Eventually break down when stress gets large Liquids:» Do not have fixed shape» Size (volume) can change under stress. v When ω is very very large, ω p 0, i.e the axis is spontenuously fixed. q Today: Deformable objects under small stress (elastic limit) à good for navigation Deformation and Elasticity Young s Modulus For Tensile Stress q Regular deformable objects under stress Small stress deformation in linear (elastic) fashion Larger stress deformation in non-linear fashion Even larger stress break down q Small deformation (strain under small stress): q When an object is stressed in the direction of its length, its length will change with strength of the stress definitions: Tensile stress = F/A Tensile strain = ΔL/L Young s Modulus (Y): Strain = Stress / (Elastic modulus) Ø There are three general types of stress/strain: Y tensile stress tensile strain = F / A ΔL /L slope tensile shear bulk 4

5 Shear Modulus q When an object is subject to a shear stress, a shear strain can occur. shear strain Bulk Modulus q When any object is subject to a uniform stress in all direction (called pressure, or volume stress), its volume can change q Shear Modulus (S): S shear stress shear strain = F / A Δx /h q Bulk Modulus (B): volume stress B volume strain = ΔF / A ΔV /V = ΔP ΔV /V Pressure: P=F/A Typical Elastic Moduli Special Announcement My office hours for today have been moved to 11am-1pm (from -4pm as scheduled). 5

Physics 201, Review 3

Physics 201, Review 3 Physics 0, Reiew Important Notes: This reiew does not replace your own preparation efforts Exercises used in this reiew do not form a test problem pool. Please practice more with end of chapter problems.

More information

Physics 141 Rotational Motion 2 Page 1. Rotational Motion 2

Physics 141 Rotational Motion 2 Page 1. Rotational Motion 2 Physics 141 Rotational Motion 2 Page 1 Rotational Motion 2 Right handers, go over there, left handers over here. The rest of you, come with me.! Yogi Berra Torque Motion of a rigid body, like motion of

More information

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1 PHYSICS 220 Lecture 15 Angular Momentum Textbook Sections 9.3 9.6 Lecture 15 Purdue University, Physics 220 1 Last Lecture Overview Torque = Force that causes rotation τ = F r sin θ Work done by torque

More information

Physics 201, Lecture 18

Physics 201, Lecture 18 q q Physics 01, Lecture 18 Rotational Dynamics Torque Exercises and Applications Rolling Motion Today s Topics Review Angular Velocity And Angular Acceleration q Angular Velocity (ω) describes how fast

More information

α = p = m v L = I ω Review: Torque Physics 201, Lecture 21 Review: Rotational Dynamics a = Στ = I α

α = p = m v L = I ω Review: Torque Physics 201, Lecture 21 Review: Rotational Dynamics a = Στ = I α Physics 1, Lecture 1 Today s Topics q Static Equilibrium of Rigid Objects(Ch. 1.1-3) Review: Rotational and Translational Motion Conditions for Translational and Rotational Equilibrium Demos and Exercises

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

1 Lecture 5. Linear Momentum and Collisions Elastic Properties of Solids

1 Lecture 5. Linear Momentum and Collisions Elastic Properties of Solids 1 Lecture 5 Linear Momentum and Collisions Elastic Properties of Solids 2 Linear Momentum and Collisions 3 Linear Momentum Is defined to be equal to the mass of an object times its velocity. P = m θ Momentum

More information

A solid disk and a ring roll down an incline. The ring is slower than the disk if

A solid disk and a ring roll down an incline. The ring is slower than the disk if A solid disk and a ring roll down an incline. The ring is slower than the disk if A. mring= mdisk, where m is the mass. B. rring = rdisk, where r is the radius. C. mring = mdisk and rring = rdisk. D.The

More information

Physics 201, Lecture 21

Physics 201, Lecture 21 Physics 201, Lecture 21 Today s Topics q Static Equilibrium of Rigid Objects(Ch. 12.1-3) Review: Rotational and Translational Motion Conditions for Translational and Rotational Equilibrium Demos and Exercises

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Motion Of An Extended Object. Physics 201, Lecture 17. Translational Motion And Rotational Motion. Motion of Rigid Object: Translation + Rotation

Motion Of An Extended Object. Physics 201, Lecture 17. Translational Motion And Rotational Motion. Motion of Rigid Object: Translation + Rotation Physics 01, Lecture 17 Today s Topics q Rotation of Rigid Object About A Fixed Axis (Chap. 10.1-10.4) n Motion of Extend Object n Rotational Kinematics: n Angular Velocity n Angular Acceleration q Kinetic

More information

Physics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1

Physics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1 Physics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1 Physics 141. Lecture 18. Course Information. Topics to be discussed today: A

More information

Stability of rotating objects

Stability of rotating objects PHY131H1F - Hour 28 Today: We finish up Chapter 9! 9.5 Rotational Kinetic Energy (skip 9.6 on Tides and Earth s day) Stability of rotating objects If the rider's balance shifts a bit, the bike + rider

More information

Physics 218 Lecture 23

Physics 218 Lecture 23 Physics 218 Lecture 23 Dr. David Toback Physics 218, Lecture XXIII 1 Checklist for Today Things due Monday Chapter 14 in WebCT Things that were due yesterday Chapter 15 problems as Recitation Prep Things

More information

Conservation of Angular Momentum

Conservation of Angular Momentum Lecture 23 Chapter 12 Physics I Conservation of Angular Momentum Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational dynamics

More information

Recap. Transitions from one state into another are initiated by heating/cooling the material. Density is mass per volume: Pressure is force per area:

Recap. Transitions from one state into another are initiated by heating/cooling the material. Density is mass per volume: Pressure is force per area: Recap There are 4 aggregates states of matter: - Solid: Strong interatomic bonds, particles cannot move freely. - Liquid: Weaker bonds, particles move more freely - Gas: No interatomic bonds, particles

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 19 Page 1 of 36 12. Equilibrium and Elasticity How do objects behave under applied external forces? Under

More information

Rotation Quiz II, review part A

Rotation Quiz II, review part A Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the

More information

-- Angular momentum. -- Equilibrium. Final Exam. During class (1-3:55 pm) on 6/27, Mon Room: 412 FMH (classroom)

-- Angular momentum. -- Equilibrium. Final Exam. During class (1-3:55 pm) on 6/27, Mon Room: 412 FMH (classroom) inal Exam During class (1-3:55 pm) on 6/27, Mon Room: 412 MH (classroom) Bring scientific calculators No smart phone calculators l are allowed. Exam covers everything learned in this course. tomorrow s

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Assignment 8 Textbook (Giancoli, 6 th edition), Chapter 7-8: Due on Thursday, November 13, 2008 - Problem 28 - page 189 of the textbook - Problem 40 - page 190 of the textbook

More information

Equilibrium. the linear momentum,, of the center of mass is constant

Equilibrium. the linear momentum,, of the center of mass is constant Equilibrium is the state of an object where: Equilibrium the linear momentum,, of the center of mass is constant Feb. 19, 2018 the angular momentum,, about the its center of mass, or any other point, is

More information

Chapter 10: Dynamics of Rotational Motion

Chapter 10: Dynamics of Rotational Motion Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Moment of Inertia Angular momentum 13-2 1 Current assignments Prelecture due Tuesday after Thanksgiving HW#13 due next Wednesday, 11/24 Turn in written assignment

More information

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12 PHY131H1S - Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular Momentum Pre-class reading quiz on Chapter 12 1 Last

More information

Kinetic Energy of Rolling

Kinetic Energy of Rolling Kinetic Energy of Rolling A solid disk and a hoop (with the same mass and radius) are released from rest and roll down a ramp from a height h. Which one is moving faster at the bottom of the ramp? A. they

More information

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015 Physics 2210 Fall 2015 smartphysics 19-20 Conservation of Angular Momentum 11/20/2015 Poll 11-18-03 In the two cases shown above identical ladders are leaning against frictionless walls and are not sliding.

More information

Unit 8 Notetaking Guide Torque and Rotational Motion

Unit 8 Notetaking Guide Torque and Rotational Motion Unit 8 Notetaking Guide Torque and Rotational Motion Rotational Motion Until now, we have been concerned mainly with translational motion. We discussed the kinematics and dynamics of translational motion

More information

2/28/2006 Statics ( F.Robilliard) 1

2/28/2006 Statics ( F.Robilliard) 1 2/28/2006 Statics (.Robilliard) 1 Extended Bodies: In our discussion so far, we have considered essentially only point masses, under the action of forces. We now broaden our considerations to extended

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Physics 121, March 25, Rotational Motion and Angular Momentum. Department of Physics and Astronomy, University of Rochester

Physics 121, March 25, Rotational Motion and Angular Momentum. Department of Physics and Astronomy, University of Rochester Physics 121, March 25, 2008. Rotational Motion and Angular Momentum. Physics 121. March 25, 2008. Course Information Topics to be discussed today: Review of Rotational Motion Rolling Motion Angular Momentum

More information

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium:

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium: About Midterm Exam 3 When and where Thurs April 21 th, 5:45-7:00 pm Rooms: Same as Exam I and II, See course webpage. Your TA will give a brief review during the discussion session. Coverage: Chapts 9

More information

Momentum. The way to catch a knuckleball is to wait until it stops rolling and then pick it up. -Bob Uecker

Momentum. The way to catch a knuckleball is to wait until it stops rolling and then pick it up. -Bob Uecker Chapter 11 -, Chapter 11 -, Angular The way to catch a knuckleball is to wait until it stops rolling and then pick it up. -Bob Uecker David J. Starling Penn State Hazleton PHYS 211 Chapter 11 -, motion

More information

Exam II Difficult Problems

Exam II Difficult Problems Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released

More information

Gyroscopes and statics

Gyroscopes and statics Gyroscopes and statics Announcements: Welcome back from Spring Break! CAPA due Friday at 10pm We will finish Chapter 11 in H+R on angular momentum and start Chapter 12 on stability. Friday we will begin

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

TORQUE. Chapter 10 pages College Physics OpenStax Rice University AP College board Approved.

TORQUE. Chapter 10 pages College Physics OpenStax Rice University AP College board Approved. TORQUE Chapter 10 pages 343-384 College Physics OpenStax Rice University AP College board Approved. 1 SECTION 10.1 PAGE 344; ANGULAR ACCELERATION ω = Δθ Δt Where ω is velocity relative to an angle, Δθ

More information

Basics of rotational motion

Basics of rotational motion Basics of rotational motion Motion of bodies rotating about a given axis, like wheels, blades of a fan and a chair cannot be analyzed by treating them as a point mass or particle. At a given instant of

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

Lecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.

Lecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. Lecture 14 Rotational dynamics Torque Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. Archimedes, 87 1 BC EXAM Tuesday March 6, 018 8:15 PM 9:45 PM Today s Topics:

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

Topic 1: Newtonian Mechanics Energy & Momentum

Topic 1: Newtonian Mechanics Energy & Momentum Work (W) the amount of energy transferred by a force acting through a distance. Scalar but can be positive or negative ΔE = W = F! d = Fdcosθ Units N m or Joules (J) Work, Energy & Power Power (P) the

More information

Midterm 3 Thursday April 13th

Midterm 3 Thursday April 13th Welcome back to Physics 215 Today s agenda: Angular momentum Rolling without slipping Midterm Review Physics 215 Spring 2017 Lecture 12-2 1 Midterm 3 Thursday April 13th Material covered: Ch 9 Ch 12 Lectures

More information

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as:

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved: 8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

More information

Rolling, Torque, Angular Momentum

Rolling, Torque, Angular Momentum Chapter 11 Rolling, Torque, Angular Momentum Copyright 11.2 Rolling as Translational and Rotation Combined Motion of Translation : i.e.motion along a straight line Motion of Rotation : rotation about a

More information

Review for 3 rd Midterm

Review for 3 rd Midterm Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS 11 GeneralPhysics I for the Life Sciences ROTATIONAL MOTION D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T F E B R U A R Y 0 1 4 Questions and Problems

More information

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N Practice Exam #3 1. A barbell is mounted on a nearly frictionless axle through its center. The low-mass rod has a length d = 0.9 m, and each ball has a mass m = 0.5 kg. At this instant, there are two forces

More information

Physics Waves & Oscillations. Mechanics Lesson: Circular Motion. Mechanics Lesson: Circular Motion 1/18/2016. Spring 2016 Semester Matthew Jones

Physics Waves & Oscillations. Mechanics Lesson: Circular Motion. Mechanics Lesson: Circular Motion 1/18/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 5 French, Chapter 3 Spring 2016 Semester Matthew Jones Mechanics Lesson: Circular Motion Linear motion: Mass: Position: Velocity: / Momentum: Acceleration: /

More information

Lecture 7 Chapter 10,11

Lecture 7 Chapter 10,11 Lecture 7 Chapter 10,11 Rotation, Inertia, Rolling, Torque, and Angular momentum Demo Demos Summary of Concepts to Cover from chapter 10 Rotation Rotating cylinder with string wrapped around it: example

More information

Lectures. Today: Rolling and Angular Momentum in ch 12. Complete angular momentum (chapter 12) and begin equilibrium (chapter 13)

Lectures. Today: Rolling and Angular Momentum in ch 12. Complete angular momentum (chapter 12) and begin equilibrium (chapter 13) Lectures Today: Rolling and Angular Momentum in ch 1 Homework 6 due Next time: Complete angular momentum (chapter 1) and begin equilibrium (chapter 13) By Monday, will post at website Sample midterm II

More information

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1 Physics 131: Lecture Today s Agenda Rolling without slipping Angular Momentum Conservation o Angular Momentum Physics 01: Lecture 19, Pg 1 Rolling Without Slipping Rolling is a combination o rotation and

More information

Physics of Rotation. Physics 109, Introduction To Physics Fall 2017

Physics of Rotation. Physics 109, Introduction To Physics Fall 2017 Physics of Rotation Physics 109, Introduction To Physics Fall 017 Outline Next two lab periods Rolling without slipping Angular Momentum Comparison with Translation New Rotational Terms Rotational and

More information

PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

More information

Lectures Chap. 11. Properties of Materials. Classes of Materials:

Lectures Chap. 11. Properties of Materials. Classes of Materials: Lectures 21-23 Chap. 11 Properties of Materials Classes of Materials: Solids --- fixed shape can be crystals (simple geometrical shape) or amorphous (glasses, plastics) Liquids -- can flow, fill shape

More information

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20

More information

Final Exam. conflicts with the regular time. Two students have confirmed conflicts with me and will take the

Final Exam. conflicts with the regular time. Two students have confirmed conflicts with me and will take the Reiew 3 Final Exam A common final exam time is scheduled d for all sections of Phsics 31 Time: Wednesda December 14, from 8-10 pm. Location for section 00 : BPS 1410 (our regular lecture room). This information

More information

YPP December 2012: Angular Momentum Makes the World Go Round

YPP December 2012: Angular Momentum Makes the World Go Round YPP December 2012: Angular Momentum Makes the World Go Round Laboratory Introduction The purpose of this lab is to study the various aspects of rotation to determine how shape, size, mass, or distribution

More information

Objectives: After completion of this module, you should be able to:

Objectives: After completion of this module, you should be able to: Chapter 12 Objectives: After completion of this module, you should be able to: Demonstrate your understanding of elasticity, elastic limit, stress, strain, and ultimate strength. Write and apply formulas

More information

Physics 131: Lecture 21. Today s Agenda

Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

p = mv L = Iω L =! r x p or, if we use translational parameters:

p = mv L = Iω L =! r x p or, if we use translational parameters: ANGULAR MOMENTUM Torque is the rotational counterpart to force. So whereas when a net force is applied, a body accelerates, when a net torque is applied, a body angularly accelerates. Angular momentum

More information

Lecture 18. In other words, if you double the stress, you double the resulting strain.

Lecture 18. In other words, if you double the stress, you double the resulting strain. Lecture 18 Stress and Strain and Springs Simple Harmonic Motion Cutnell+Johnson: 10.1-10.4,10.7-10.8 Stress and Strain and Springs So far we ve dealt with rigid objects. A rigid object doesn t change shape

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

Review. Checkpoint 2 / Lecture 13. Strike (Day 8)

Review. Checkpoint 2 / Lecture 13. Strike (Day 8) Physics 101: Lecture 14 Parallel Axis Theorem, Rotational Energy, Conservation of Energy Examples, and a Little Torque Review Rotational Kinetic Energy K rot = ½ I w 2 Rotational Inertia I = S m i r i2

More information

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This

More information

Angular Momentum. Objectives CONSERVATION OF ANGULAR MOMENTUM

Angular Momentum. Objectives CONSERVATION OF ANGULAR MOMENTUM Angular Momentum CONSERVATION OF ANGULAR MOMENTUM Objectives Calculate the angular momentum vector for a moving particle Calculate the angular momentum vector for a rotating rigid object where angular

More information

Physics 131: Lecture 22. Today s Agenda

Physics 131: Lecture 22. Today s Agenda Physics 131: Lecture Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 An Unfair Race A frictionless block and a rolling (without slipping) disk are released at

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion Rotational Work and Energy W = Fs = s = rθ Frθ Consider the work done in rotating a wheel with a tangential force, F, by an angle θ. τ = Fr W =τθ Rotational Work and Energy

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

Phys101 Lectures 19, 20 Rotational Motion

Phys101 Lectures 19, 20 Rotational Motion Phys101 Lectures 19, 20 Rotational Motion Key points: Angular and Linear Quantities Rotational Dynamics; Torque and Moment of Inertia Rotational Kinetic Energy Ref: 10-1,2,3,4,5,6,8,9. Page 1 Angular Quantities

More information

Angular Momentum Conservation of Angular Momentum

Angular Momentum Conservation of Angular Momentum Lecture 22 Chapter 12 Physics I Angular Momentum Conservation of Angular Momentum Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During

More information

Physics 131: Lecture 22. Today s Agenda

Physics 131: Lecture 22. Today s Agenda Physics 131: Lecture 22 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 An Unfair Race A frictionless block and a rolling (without slipping) disk are released

More information

Recap: Solid Rotational Motion (Chapter 8) displacement velocity acceleration Newton s 2nd law τ = I.α N.s τ = F. l moment of inertia mass size

Recap: Solid Rotational Motion (Chapter 8) displacement velocity acceleration Newton s 2nd law τ = I.α N.s τ = F. l moment of inertia mass size Recap: Solid Rotational Motion (Chapter 8) We have developed equations to describe rotational displacement θ, rotational velocity ω and rotational acceleration α. We have used these new terms to modify

More information

AP Physics 1 Rotational Motion Practice Test

AP Physics 1 Rotational Motion Practice Test AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 12 Lecture RANDALL D. KNIGHT Chapter 12 Rotation of a Rigid Body IN THIS CHAPTER, you will learn to understand and apply the physics

More information

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Chapter 13 ELASTIC PROPERTIES OF MATERIALS

Chapter 13 ELASTIC PROPERTIES OF MATERIALS Physics Including Human Applications 280 Chapter 13 ELASTIC PROPERTIES OF MATERIALS GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions

More information

Physics 131: Lecture 21. Today s Agenda

Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

Physics 2210 Fall smartphysics Rotational Statics 11/18/2015

Physics 2210 Fall smartphysics Rotational Statics 11/18/2015 Physics 2210 Fall 2015 smartphysics 17-18 Rotational Statics 11/18/2015 τ TT = L T 1 sin 150 = 1 T 2 1L Poll 11-18-01 τ TT = L 2 T 2 sin 150 = 1 4 T 2L 150 150 τ gg = L 2 MM sin +90 = 1 2 MMM +90 MM τ

More information

Physics 220: Classical Mechanics

Physics 220: Classical Mechanics Lecture 10 1/34 Phys 220 Physics 220: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 114) Michael Meier mdmeier@purdue.edu Office: Phys Room 381 Help Room: Phys Room 11 schedule on course webpage

More information

Physics 211 Sample Questions for Exam IV Spring 2013

Physics 211 Sample Questions for Exam IV Spring 2013 Each Exam usually consists of 10 Multiple choice questions which are conceptual in nature. They are often based upon the assigned thought questions from the homework. There are also 4 problems in each

More information

Physics 201 Midterm Exam 3

Physics 201 Midterm Exam 3 Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above. Please write and bubble your Name and Student Id number on

More information

Forces of Rolling. 1) Ifobjectisrollingwith a com =0 (i.e.no netforces), then v com =ωr = constant (smooth roll)

Forces of Rolling. 1) Ifobjectisrollingwith a com =0 (i.e.no netforces), then v com =ωr = constant (smooth roll) Physics 2101 Section 3 March 12 rd : Ch. 10 Announcements: Mid-grades posted in PAW Quiz today I will be at the March APS meeting the week of 15-19 th. Prof. Rich Kurtz will help me. Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101-3/

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

Physics 121, March 27, Angular Momentum, Torque, and Precession. Department of Physics and Astronomy, University of Rochester

Physics 121, March 27, Angular Momentum, Torque, and Precession. Department of Physics and Astronomy, University of Rochester Physics 121, March 27, 2008. Angular Momentum, Torque, and Precession. Physics 121. March 27, 2008. Course Information Quiz Topics to be discussed today: Review of Angular Momentum Conservation of Angular

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

Energy Considerations

Energy Considerations Physics 42200 Waves & Oscillations Lecture 4 French, Chapter 3 Spring 2016 Semester Matthew Jones Energy Considerations The force in Hooke s law is = Potential energy can be used to describe conservative

More information

PHYS 1441 Section 002 Lecture #23

PHYS 1441 Section 002 Lecture #23 PHYS 1441 Section 002 Lecture #23 Monday, April 29, 2013 Conditions for Equilibrium Elastic Properties of Solids Young s Modulus Bulk Modulus Density and Specific Gravity luid and Pressure Today s homework

More information