PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Size: px
Start display at page:

Download "PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc."

Transcription

1 PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 12 Lecture RANDALL D. KNIGHT

2 Chapter 12 Rotation of a Rigid Body IN THIS CHAPTER, you will learn to understand and apply the physics of rotation. Slide 12-2

3 Chapter 12 Preview Slide 12-3

4 Chapter 12 Preview Slide 12-4

5 Chapter 12 Preview Slide 12-5

6 Chapter 12 Preview Slide 12-6

7 Chapter 12 Preview Slide 12-7

8 Chapter 12 Preview Slide 12-8

9 Chapter 12 Reading Questions Slide 12-9

10 Reading Question 12.1 When floating in space with no external forces acting on it, an object tends to rotate about its A. Axle. B. Center of mass. C. Edge. D. Geometrical center. E. Pivot point. Slide 12-10

11 Reading Question 12.1 When floating in space with no external forces acting on it, an object tends to rotate about its A. Axle. B. Center of mass. C. Edge. D. Geometrical center. E. Pivot point. Slide 12-11

12 Reading Question 12.2 A rotating object has some rotational kinetic energy. If its angular speed is doubled, but nothing else changes, the rotational kinetic energy A. Increases by a factor of 4. B. Doubles. C. Does not change. D. Halves. E. Decreases by a factor of 4. Slide 12-12

13 Reading Question 12.2 A rotating object has some rotational kinetic energy. If its angular speed is doubled, but nothing else changes, the rotational kinetic energy A. Increases by a factor of 4. B. Doubles. C. Does not change. D. Halves. E. Decreases by a factor of 4. Slide 12-13

14 Reading Question 12.3 A single particle has a mass, m, and it is at a distance, r, away from the origin. The moment of inertia of this particle about the origin is A. mr B. m 2 r C. m 2 r 2 D. m 2 r 4 E. mr 2 Slide 12-14

15 Reading Question 12.3 A single particle has a mass, m, and it is at a distance, r, away from the origin. The moment of inertia of this particle about the origin is A. mr B. m 2 r C. m 2 r 2 D. m 2 r 4 E. mr 2 Slide 12-15

16 Reading Question 12.4 When discussing torque, the line of action is A. The line connecting the pivot with the point where the force acts. B. The line along which the force acts. C. The line that passes through the center of mass. D. The line along which motion occurs. E. The axis around which the object rotates. Slide 12-16

17 Reading Question 12.4 When discussing torque, the line of action is A. The line connecting the pivot with the point where the force acts. B. The line along which the force acts. C. The line that passes through the center of mass. D. The line along which motion occurs. E. The axis around which the object rotates. Slide 12-17

18 Reading Question 12.5 A new way of multiplying two vectors is introduced in this chapter. What is it called? A. The dot product. B. The scalar product. C. The tensor product. D. The cross product. E. The angular product. Slide 12-18

19 Reading Question 12.5 A new way of multiplying two vectors is introduced in this chapter. What is it called? A. The dot product. B. The scalar product. C. The tensor product. D. The cross product. E. The angular product. Slide 12-19

20 Reading Question 12.6 Moment of inertia is A. The rotational equivalent of mass. B. The point at which all forces appear to act. C. The time at which inertia occurs. D. An alternative term for moment arm. Slide 12-20

21 Reading Question 12.6 Moment of inertia is A. The rotational equivalent of mass. B. The point at which all forces appear to act. C. The time at which inertia occurs. D. An alternative term for moment arm. Slide 12-21

22 Reading Question 12.7 A rigid body is in equilibrium if A. B. τ net = 0 C. Neither A nor B D. Either A or B E. Both A and B Slide 12-22

23 Reading Question 12.7 A rigid body is in equilibrium if A. B. τ net = 0 C. Neither A nor B D. Either A or B E. Both A and B Slide 12-23

24 Chapter 12 Content, Examples, and QuickCheck Questions Slide 12-24

25 The Rigid-Body Model Slide 12-25

26 Three Basic Types of Motion of a Rigid Body Slide 12-26

27 Rotational Motion Review Recall that angular velocity is If the rotation is speeding up or slowing down, its angular acceleration is All points on a rotating rigid body have the same ω and the same α. Slide 12-27

28 Rotational Motion Review Rotational kinematics for constant angular acceleration The signs of angular velocity and angular acceleration. Slide 12-28

29 QuickCheck 12.1 Two coins rotate on a turntable. Coin B is twice as far from the axis as coin A. A. The angular velocity of A is twice that of B. B. The angular velocity of A equals that of B. C. The angular velocity of A is half that of B. Slide 12-29

30 QuickCheck 12.1 Two coins rotate on a turntable. Coin B is twice as far from the axis as coin A. A. The angular velocity of A is twice that of B. B. The angular velocity of A equals that of B. C. The angular velocity of A is half that of B. Slide 12-30

31 QuickCheck 12.2 The fan blade is speeding up. What are the signs of ω and α? A. ω is positive and α is positive. B. ω is positive and α is negative. C. ω is negative and α is positive. D. ω is negative and α is negative. Slide 12-31

32 QuickCheck 12.2 The fan blade is speeding up. What are the signs of ω and α? A. ω is positive and α is positive. B. ω is positive and α is negative. C. ω is negative and α is positive. D. ω is negative and α is negative. Slide 12-32

33 Rotation About the Center of Mass An unconstrained object (i.e., one not on an axle) on which there is no net force rotates about a point called the center of mass. The center of mass remains motionless while every other point in the object undergoes circular motion around it. Slide 12-33

34 Finding the Center of Mass Consider an object made of particles. Particle i has mass m i. The center-of-mass is at Calculating center of mass is much like calculating your grade-point average. Particles of higher mass count more than particles of lower mass. Slide 12-34

35 Example 12.1 The Center of Mass of a Barbell Slide 12-35

36 Example 12.1 The Center of Mass of a Barbell Slide 12-36

37 Example 12.1 The Center of Mass of a Barbell Slide 12-37

38 Example 12.1 The Center of Mass of a Barbell Slide 12-38

39 Finding the Center of Mass by Integration Divide a solid object into many small cells of mass Δm. As Δm 0 and is replaced by dm, the sums become Before these can be integrated: dm must be replaced by expressions using dx and dy. Integration limits must be established. Slide 12-39

40 Example 12.2 The Center of Mass of a Rod Slide 12-40

41 Example 12.2 The Center of Mass of a Rod Slide 12-41

42 Example 12.2 The Center of Mass of a Rod Slide 12-42

43 QuickCheck 12.3 A baseball bat is cut in half at its center of mass. Which end is heavier? A. The handle end (left end) B. The hitting end (right end) C. The two ends weigh the same. Slide 12-43

44 QuickCheck 12.3 A baseball bat is cut in half at its center of mass. Which end is heavier? A. The handle end (left end) B. The hitting end (right end) C. The two ends weigh the same. Slide 12-44

45 Rotational Energy A rotating object has kinetic energy because all particles in the object are in motion. The kinetic energy due to rotation is called rotational kinetic energy. Adding up the individual kinetic energies, and using v i = r i ω: Slide 12-45

46 Rotational Energy Define the object s moment of inertia: Then the rotational kinetic energy is simply The units of moment of inertia are kg m 2. Moment of inertia depends on the axis of rotation. Mass farther from the rotation axis contributes more to the moment of inertia than mass nearer the axis. This is not a new form of energy, merely the familiar kinetic energy of motion written in a new way. Slide 12-46

47 Calculating the Moment of Inertia As we did for center of mass, divide a solid object into many small cells of mass Δm and let Δ m 0. The moment of inertia sum becomes where r is the distance from the rotation axis. The procedure is much like calculating the center of mass. One rarely needs to do this integral because moments of inertia of common shapes are tabulated. Slide 12-47

48 Moments of Inertia Slide 12-48

49 Consequences of Moment of Inertia Easier to spin up Harder to spin up Slide 12-49

50 QuickCheck 12.4 Which dumbbell has the larger moment of inertia about the midpoint of the rod? The connecting rod is massless. A. Dumbbell A. B. Dumbbell B. C. Their moments of inertia are the same. Slide 12-50

51 QuickCheck 12.4 Which dumbbell has the larger moment of inertia about the midpoint of the rod? The connecting rod is massless. A. Dumbbell A. B. Dumbbell B. C. Their moments of inertia are the same. Distance from the axis is more important than mass. Slide 12-51

52 The Parallel-Axis Theorem You do sometimes need to know the moment of inertia about an axis in an unusual position. You can find it if you know the moment of inertia about a parallel axis through the center of mass. Slide 12-52

53 Example 12.4 The Speed of a Rotating Rod Slide 12-53

54 Example 12.4 The Speed of a Rotating Rod Slide 12-54

55 Example 12.4 The Speed of a Rotating Rod Slide 12-55

56 Example 12.4 The Speed of a Rotating Rod Slide 12-56

57 QuickCheck 12.5 The four forces shown have the same strength. Which force would be most effective in opening the door? A. Force F 1 B. Force F 2 C. Force F 3 D. Force F 4 E. Either F 1 or F 3 Slide 12-57

58 QuickCheck 12.5 The four forces shown have the same strength. Which force would be most effective in opening the door? A. Force F 1 B. Force F 2 C. Force F 3 D. Force F 4 E. Either F 1 or F 3 Your intuition likely led you to choose F 1. The reason is that F 1 exerts the largest torque about the hinge. Slide 12-58

59 Torque Torque measures the effectiveness of the force at causing an object to rotate about a pivot. Torque is the rotational equivalent of force. On a bicycle, your foot exerts a torque that rotates the crank. Slide 12-59

60 Torque The effectiveness of a force at causing a rotation is called torque. Torque is the rotational equivalent of force. We say that a torque is exerted about the pivot point. Slide 12-60

61 Torque Mathematically, we define torque τ (Greek tau) as SI units of torque are N m. English units are footpounds. The ability of a force to cause a rotation depends on 1. the magnitude F of the force. 2. the distance r from the point of application to the pivot. 3. the angle at which the force is applied. Slide 12-61

62 Torque Torque has a sign. Slide 12-62

63 Moment Arm In practice, torque is often calculated using the moment arm or lever arm. The torque is τ = df. But this is only the absolute value. You have to provide the sign of τ, based on which direction the object would rotate. What is the sign of τ here? Slide 12-63

64 QuickCheck 12.6 Which third force on the wheel, applied at point P, will make the net torque zero? Slide 12-64

65 QuickCheck 12.6 Which third force on the wheel, applied at point P, will make the net torque zero? Slide 12-65

66 Example 12.8 Applying a Torque Slide 12-66

67 Example 12.8 Applying a Torque Slide 12-67

68 Example 12.8 Applying a Torque Slide 12-68

69 Example 12.8 Applying a Torque Slide 12-69

70 Net Torque The figure shows the forces acting on the crankset of a bicycle. axle exerts a force on the axle to balance the other forces and keep. The net torque about the axle is the sum of the torques due to the applied forces: Slide 12-70

71 Gravitational Torque The torque due to gravity is found by treating the object as if all its mass is concentrated at the center of mass. Slide 12-71

72 Rotational Dynamics What does a torque do? For linear motion, a net force causes an object to accelerate. For rotation, a net torque causes an object to have angular acceleration. In the absence of a net torque (τ net = 0), the object either does not rotate (ω = 0) or rotates with constant angular velocity (ω = constant). Slide 12-72

73 Analogies Between Linear and Rotational Dynamics Slide 12-73

74 QuickCheck 12.7 A student gives a quick push to a puck that can rotate in a horizontal circle on a frictionless table. After the push has ended, the puck s angular speed A. Steadily increases. B. Increases for awhile, then holds steady. C. Holds steady. D. Decreases for awhile, then holds steady. E. Steadily decreases. Slide 12-74

75 QuickCheck 12.7 A student gives a quick push to a puck that can rotate in a horizontal circle on a frictionless table. After the push has ended, the puck s angular speed A. Steadily increases. B. Increases for awhile, then holds steady. C. Holds steady. D. Decreases for awhile, then holds steady. E. Steadily decreases. A torque changes the angular velocity. With no torque, the angular velocity stays the same. This is Newton s first law for rotation. Slide 12-75

76 Problem-Solving Strategy: Rotational Dynamics Problems Slide 12-76

77 Example Starting an Airplane Engine Slide 12-77

78 Example Starting an Airplane Engine Slide 12-78

79 Example Starting an Airplane Engine Slide 12-79

80 Constraints Due to Ropes and Pulleys A rope passes over a pulley and is connected to an object in linear motion. The rope does not slip as the pulley rotates. Tangential velocity and acceleration of the rim of the pulley must match the motion of the object: Slide 12-80

81 The Constant-Torque Model Slide 12-81

82 Static Equilibrium A rigid body is in static equilibrium if there is no net force and no net torque. An important branch of engineering called statics analyzes buildings, dams, bridges, and other structures in total static equilibrium. For a rigid body in total equilibrium, there is no net torque about any point. Slide 12-82

83 The Static Equilbrium Model Slide 12-83

84 Example Will the Ladder Slip? Slide 12-84

85 Example Will the Ladder Slip? Slide 12-85

86 Example Will the Ladder Slip? Slide 12-86

87 Example Will the Ladder Slip? Slide 12-87

88 Balance and Stability Stability depends on the position of the center of mass. Slide 12-88

89 Balance and Stability This dancer balances en pointe by having her center of mass directly over her toes, her base of support. Slide 12-89

90 QuickCheck 12.8 Which object is in static equilibrium? Slide 12-90

91 QuickCheck 12.8 Which object is in static equilibrium? Slide 12-91

92 QuickCheck 12.9 What does the scale read? A. 500 N B N C N D N Answering this requires reasoning, not calculating. Slide 12-92

93 QuickCheck 12.9 What does the scale read? A. 500 N B N C N D N Slide 12-93

94 Rolling Without Slipping Rolling is a combination of rotation and translation. For an object that rolls without slipping, the translation of the center of mass is related to the angular velocity by Slide 12-94

95 Rolling Without Slipping Taking the time derivative of position of a particle i in a rolling object: The velocity of the particle is the velocity of the center of mass of the whole object plus the velocity of particle i relative to the center of mass. Slide 12-95

96 Rolling Without Slipping The figure below shows how the velocity vectors at the top, center, and bottom of a rolling wheel are found. v top = 2v cm v bottom = 0 The point on the bottom of a rolling object is instantaneously at rest. Slide 12-96

97 QuickCheck A wheel rolls without slipping. Which is the correct velocity vector for point P on the wheel? Slide 12-97

98 QuickCheck A wheel rolls without slipping. Which is the correct velocity vector for point P on the wheel? Slide 12-98

99 Kinetic Energy of Rolling The kinetic energy of a rolling object is In other words, the rolling motion of a rigid body can be described as a translation of the center of mass (with kinetic energy K cm ) plus a rotation about the center of mass (with kinetic energy K rot ). Slide 12-99

100 The Vector Description of Rotational Motion One-dimensional motion uses a scalar velocity v and force F. A more general understanding of motion requires vectors and. Similarly, a more general description of rotational motion requires us to replace the scalars ω and τ with the vector quantities and. Doing so will lead us to the concept of angular momentum. Slide

101 The Angular Velocity Vector The magnitude of the angular velocity vector is ω. The angular velocity vector points along the axis of rotation in the direction given by the right-hand rule as illustrated. Slide

102 The Cross Product of Two Vectors The dot product is one way to multiply two vectors, giving a scalar. A different way to multiple two vectors, giving a vector, is called the cross product. If vectors and have angle α between them, their cross product is the vector: Slide

103 The Right-Hand Rule The cross product is perpendicular to the plane of and. The right-hand rule for the direction comes in several forms. Try them all to see which works best for you. Note that. Instead,. Slide

104 Example Calculating a Cross Product Slide

105 The Torque Vector We earlier defined torque τ = rfsinϕ. r and F are the magnitudes of vectors, so this is a really a cross product: A tire wrench exerts a torque on the lug nuts. Slide

106 Angular Momentum of a Particle A particle of mass m is moving. The particle s momentum vector makes an angle β with the position vector. We define the particle s angular momentum vector relative to the origin to be Slide

107 Angular Momentum of a Particle Why this definition? If you take the time derivative of and use the definition of the torque vector (see book for details), you find Torque causes a particle s angular momentum to change. This is the rotational equivalent of and is a general statement of Newton s second law for rotation. Slide

108 Angular Momentum of a Rigid Body For a rigid body, we can add the angular momenta of all the particles forming the object. If the object rotates on a fixed axle, or about an axis of symmetry then it can be shown that And it s still the case that Slide

109 Analogies Between Linear and Angular Momentum and Energy Slide

110 Conservation of Angular Momentum An isolated system that experiences no net torque has and thus the angular momentum vector constant: is a Slide

111 Conservation of Angular Momentum As an ice skater spins, external torque is small, so her angular momentum is almost constant. By drawing in her arms, the skater reduces her moment of inertia I. To conserve angular momentum, her angular speed ω must increase. Slide

112 Example Two Interacting Disks Slide

113 Example Two Interacting Disks Slide

114 Example Two Interacting Disks Slide

115 Example Two Interacting Disks Slide

116 Example Two Interacting Disks Slide

117 QuickCheck Two buckets spin around in a horizontal circle on frictionless bearings. Suddenly, it starts to rain. As a result, A. The buckets speed up because the potential energy of the rain is transformed into kinetic energy. B. The buckets continue to rotate at constant angular velocity because the rain is falling vertically while the buckets move in a horizontal plane. C. The buckets slow down because the angular momentum of the bucket + rain system is conserved. D. The buckets continue to rotate at constant angular velocity because the total mechanical energy of the bucket + rain system is conserved. E. None of the above. Slide

118 QuickCheck Two buckets spin around in a horizontal circle on frictionless bearings. Suddenly, it starts to rain. As a result, A. The buckets speed up because the potential energy of the rain is transformed into kinetic energy. B. The buckets continue to rotate at constant angular velocity because the rain is falling vertically while the buckets move in a horizontal plane. C. The buckets slow down because the angular momentum of the bucket + rain system is conserved. D. The buckets continue to rotate at constant angular velocity because the total mechanical energy of the bucket + rain system is conserved. E. None of the above. Slide

119 Advanced Topic: Precession of a Gyroscope Consider a horizontal gyroscope, with the disk spinning in a vertical plane, that is supported at only one end of its axle, as shown. You would expect it to simply fall over but it doesn t. Instead, the axle remains horizontal, parallel to the ground, while the entire gyroscope slowly rotates in a horizontal plane. This steady change in the orientation of the rotation axis is called precession, and we say that the gyroscope precesses about its point of support. The precession frequency Ω is much less that the disk s rotation frequency ω. Slide

120 Gravity on a Nonspinning Gyroscope Shown is a nonspinning gyroscope. When it is released, the net torque is entirely gravitational torque. Initially, the angular momentum is zero. Gravity acts to increase the angular momentum gradually in the direction of the torque, which is the -direction. This causes the gyroscope to rotate around x and fall. Slide

121 Gravity on a Spinning Gyroscope Shown is a gyroscope initially spinning around the z-axis. Initially, gravity acts to increase the angular momentum slightly in the direction of the torque, which is the -direction. This causes the gyroscopes angular momentum to shift slightly in the horizontal plane. The gravitational torque vector is always perpendicular to the axle, so dl is always perpendicular to L. Slide

122 Advanced Topic: Precession of a Gyroscope The precession frequency of a gyroscope, in rad/s, is Here M is the mass of the gyroscope, I is its moment of inertia, and d is the horizontal distance of the center of mass from the support point. The angular velocity of the spinning gyroscope is assumed to be much larger than the precession frequency: ω >> Ω Slide

123 Example A Precessing Gyroscope Slide

124 Example A Precessing Gyroscope Slide

125 Example A Precessing Gyroscope Slide

126 Chapter 12 Summary Slides Slide

127 General Principles Slide

128 General Principles Slide

129 Important Concepts Slide

130 Important Concepts Slide

131 Important Concepts Slide

132 Important Concepts Slide

133 Applications Slide

134 Applications Slide

135 Applications Slide

Rotational Dynamics. A wrench floats weightlessly in space. It is subjected to two forces of equal and opposite magnitude: Will the wrench accelerate?

Rotational Dynamics. A wrench floats weightlessly in space. It is subjected to two forces of equal and opposite magnitude: Will the wrench accelerate? Rotational Dynamics A wrench floats weightlessly in space. It is subjected to two forces of equal and opposite magnitude: Will the wrench accelerate? A. yes B. no C. kind of? Rotational Dynamics 10.1-3

More information

5/6/2018. Rolling Without Slipping. Rolling Without Slipping. QuickCheck 12.10

5/6/2018. Rolling Without Slipping. Rolling Without Slipping. QuickCheck 12.10 Rolling Without Slipping Rolling is a combination of rotation and translation. For an object that rolls without slipping, the translation of the center of mass is related to the angular velocity by Slide

More information

Chapter 12. Rotation of a Rigid Body

Chapter 12. Rotation of a Rigid Body Chapter 12. Rotation of a Rigid Body Not all motion can be described as that of a particle. Rotation requires the idea of an extended object. This diver is moving toward the water along a parabolic trajectory,

More information

PHY131H1F - Class 18. Torque of a quick push

PHY131H1F - Class 18. Torque of a quick push Today: Today, Chapter 11: PHY131H1F - Class 18 Angular velocity and Angular acceleration vectors Torque and the Vector Cross Product Angular Momentum Conservation of Angular Momentum Gyroscopes and Precession

More information

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 10:00 PM The fundamental idea of Newtonian dynamics is that "things happen for a reason;" to be more specific, there is no need to explain rest

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

More information

Kinetic Energy of Rolling

Kinetic Energy of Rolling Kinetic Energy of Rolling A solid disk and a hoop (with the same mass and radius) are released from rest and roll down a ramp from a height h. Which one is moving faster at the bottom of the ramp? A. they

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

AP Physics 1 Rotational Motion Practice Test

AP Physics 1 Rotational Motion Practice Test AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able

More information

Chapter 10: Dynamics of Rotational Motion

Chapter 10: Dynamics of Rotational Motion Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

Chapter 11 Rotational Dynamics and Static Equilibrium. Copyright 2010 Pearson Education, Inc.

Chapter 11 Rotational Dynamics and Static Equilibrium. Copyright 2010 Pearson Education, Inc. Chapter 11 Rotational Dynamics and Static Equilibrium Units of Chapter 11 Torque Torque and Angular Acceleration Zero Torque and Static Equilibrium Center of Mass and Balance Dynamic Applications of Torque

More information

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12 PHY131H1S - Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular Momentum Pre-class reading quiz on Chapter 12 1 Last

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Chapter 8 Rotational Motion and Equilibrium

Chapter 8 Rotational Motion and Equilibrium Chapter 8 Rotational Motion and Equilibrium 8.1 Rigid Bodies, Translations, and Rotations A rigid body is an object or a system of particles in which the distances between particles are fixed (remain constant).

More information

Chapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:

Chapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience: CHAPTER 8 3. If a net torque is applied to an object, that object will experience: a. a constant angular speed b. an angular acceleration c. a constant moment of inertia d. an increasing moment of inertia

More information

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass? NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass

More information

Chapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction

Chapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction Chapter 8 Rotational Motion and Equilibrium Name 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction 1. The distance between a turning axis and the

More information

Torque. Introduction. Torque. PHY torque - J. Hedberg

Torque. Introduction. Torque. PHY torque - J. Hedberg Torque PHY 207 - torque - J. Hedberg - 2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 12: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational 2 / / 1/ 2 m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv 2 /

More information

Chapter 10. Rotation

Chapter 10. Rotation Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGraw-PHY 45 Chap_10Ha-Rotation-Revised

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

III. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 2-8 with rotatiing objects. Eqs. of motion. Energy.

III. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 2-8 with rotatiing objects. Eqs. of motion. Energy. Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Toward Exam 3 Eqs. of motion o To study angular

More information

Lecture 20 Chapter 12 Angular Momentum Course website:

Lecture 20 Chapter 12 Angular Momentum Course website: Lecture 20 Chapter 12 Angular Momentum Another Law? Am I in a Law school? Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational

More information

Concept Question: Normal Force

Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

Rotational Motion About a Fixed Axis

Rotational Motion About a Fixed Axis Rotational Motion About a Fixed Axis Vocabulary rigid body axis of rotation radian average angular velocity instantaneous angular average angular Instantaneous angular frequency velocity acceleration acceleration

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 9 Rotational Dynamics Interactive Lecture Questions 9.1.1. You are using a wrench in an attempt to loosen a nut by applying a force as

More information

Rotation Quiz II, review part A

Rotation Quiz II, review part A Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the

More information

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 11 Physics, 4 th Edition James S. Walker Chapter 11 Rotational Dynamics and Static Equilibrium Units of Chapter 11 Torque Torque and Angular Acceleration Zero Torque and Static

More information

Application of Forces. Chapter Eight. Torque. Force vs. Torque. Torque, cont. Direction of Torque 4/7/2015

Application of Forces. Chapter Eight. Torque. Force vs. Torque. Torque, cont. Direction of Torque 4/7/2015 Raymond A. Serway Chris Vuille Chapter Eight Rotational Equilibrium and Rotational Dynamics Application of Forces The point of application of a force is important This was ignored in treating objects as

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Chapter 9 TORQUE & Rotational Kinematics

Chapter 9 TORQUE & Rotational Kinematics Chapter 9 TORQUE & Rotational Kinematics This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case. This car is in dynamic equilibrium

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about

More information

Suggested Problems. Chapter 1

Suggested Problems. Chapter 1 Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

More information

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about

More information

Unit 8 Notetaking Guide Torque and Rotational Motion

Unit 8 Notetaking Guide Torque and Rotational Motion Unit 8 Notetaking Guide Torque and Rotational Motion Rotational Motion Until now, we have been concerned mainly with translational motion. We discussed the kinematics and dynamics of translational motion

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

AP practice ch 7-8 Multiple Choice

AP practice ch 7-8 Multiple Choice AP practice ch 7-8 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to

More information

Chap10. Rotation of a Rigid Object about a Fixed Axis

Chap10. Rotation of a Rigid Object about a Fixed Axis Chap10. Rotation of a Rigid Object about a Fixed Axis Level : AP Physics Teacher : Kim 10.1 Angular Displacement, Velocity, and Acceleration - A rigid object rotating about a fixed axis through O perpendicular

More information

Rolling, Torque, Angular Momentum

Rolling, Torque, Angular Momentum Chapter 11 Rolling, Torque, Angular Momentum Copyright 11.2 Rolling as Translational and Rotation Combined Motion of Translation : i.e.motion along a straight line Motion of Rotation : rotation about a

More information

Rotational Mechanics Part III Dynamics. Pre AP Physics

Rotational Mechanics Part III Dynamics. Pre AP Physics Rotational Mechanics Part III Dynamics Pre AP Physics We have so far discussed rotational kinematics the description of rotational motion in terms of angle, angular velocity and angular acceleration and

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics 1 Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related 2 Torque The door is free to rotate

More information

Angular Momentum Conservation of Angular Momentum

Angular Momentum Conservation of Angular Momentum Lecture 22 Chapter 12 Physics I Angular Momentum Conservation of Angular Momentum Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Motion in a circle at constant angular speed. ω: angular velocity (rad/s) Rotation Angle The rotation angle is the ratio of arc length to radius of curvature. For a given angle,

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

More information

Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m?

Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 1 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 2 / 133 3 A ball rotates

More information

Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133

Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133 Slide 1 / 133 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 2 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 3 / 133

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Profs. D. Reitze, H. Chan PHYSICS DEPARTMENT PHY 2053 Exam 2 April 2, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics 9.1 The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C and 11/15/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapter 12 in the textbook on? 2 Must an object be rotating to have a moment

More information

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Phys 106 Practice Problems Common Quiz 1 Spring 2003 Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed

More information

Moment of Inertia Race

Moment of Inertia Race Review Two points, A and B, are on a disk that rotates with a uniform speed about an axis. Point A is closer to the axis than point B. Which of the following is NOT true? 1. Point B has the greater tangential

More information

W13D1-1 Reading Quiz and Concept Questions

W13D1-1 Reading Quiz and Concept Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 2009 W13D1-1 Reading Quiz and Concept Questions A person spins a tennis ball on a string in a horizontal circle (so that

More information

Chapter 11 Angular Momentum; General Rotation. Copyright 2009 Pearson Education, Inc.

Chapter 11 Angular Momentum; General Rotation. Copyright 2009 Pearson Education, Inc. Chapter 11 Angular Momentum; General Rotation ! L = I!! Units of Chapter 11 Angular Momentum Objects Rotating About a Fixed Axis Vector Cross Product; Torque as a Vector Angular Momentum of a Particle

More information

University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1

University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1 University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1 Name: Date: 1. For a wheel spinning on an axis through its center, the ratio of the radial acceleration of a point on

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

AP Physics 1- Torque, Rotational Inertia, and Angular Momentum Practice Problems FACT: The center of mass of a system of objects obeys Newton s second law- F = Ma cm. Usually the location of the center

More information

Rolling, Torque, and Angular Momentum

Rolling, Torque, and Angular Momentum AP Physics C Rolling, Torque, and Angular Momentum Introduction: Rolling: In the last unit we studied the rotation of a rigid body about a fixed axis. We will now extend our study to include cases where

More information

Torque. Objectives. Assessment. Assessment. Equations. Physics terms 6/2/14

Torque. Objectives. Assessment. Assessment. Equations. Physics terms 6/2/14 Objectives Calculate torque given the lever arm (perpendicular distance) and the force. Calculate torque in newton meters and in pound feet. Interpret positive and negative signs in the context of torque.

More information

Review for 3 rd Midterm

Review for 3 rd Midterm Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

More information

A. Incorrect! It looks like you forgot to include π in your calculation of angular velocity.

A. Incorrect! It looks like you forgot to include π in your calculation of angular velocity. High School Physics - Problem Drill 10: Rotational Motion and Equilbrium 1. If a bike wheel of radius 50 cm rotates at 300 rpm what is its angular velocity and what is the linear speed of a point on the

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

Phys101 Lectures 19, 20 Rotational Motion

Phys101 Lectures 19, 20 Rotational Motion Phys101 Lectures 19, 20 Rotational Motion Key points: Angular and Linear Quantities Rotational Dynamics; Torque and Moment of Inertia Rotational Kinetic Energy Ref: 10-1,2,3,4,5,6,8,9. Page 1 Angular Quantities

More information

Chapter 11 Motion in a Circle

Chapter 11 Motion in a Circle Lecture Outline Chapter 11 Motion in a Circle Remaining Schedule (tentative) 29 Mar torque 12.1-5 31 Mar torque 12.6-8 5Apr periodic motion 15.1-7 7 Apr fluids 18.1-5 12 Apr fluids 18.6-8 14 Apr EXAM 3

More information

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E -4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

Center of Gravity Pearson Education, Inc.

Center of Gravity Pearson Education, Inc. Center of Gravity = The center of gravity position is at a place where the torque from one end of the object is balanced by the torque of the other end and therefore there is NO rotation. Fulcrum Point

More information

PHYSICS 221 SPRING 2014

PHYSICS 221 SPRING 2014 PHYSICS 221 SPRING 2014 EXAM 2: April 3, 2014 8:15-10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4 1. A 4 kg object moves in a circle of radius 8 m at a constant speed of 2 m/s. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? A)

More information

Two-Dimensional Rotational Kinematics

Two-Dimensional Rotational Kinematics Two-Dimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are non-rigid

More information

AP Physics 1: Rotational Motion & Dynamics: Problem Set

AP Physics 1: Rotational Motion & Dynamics: Problem Set AP Physics 1: Rotational Motion & Dynamics: Problem Set I. Axis of Rotation and Angular Properties 1. How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 2. How many degrees are

More information

Midterm 3 Thursday April 13th

Midterm 3 Thursday April 13th Welcome back to Physics 215 Today s agenda: Angular momentum Rolling without slipping Midterm Review Physics 215 Spring 2017 Lecture 12-2 1 Midterm 3 Thursday April 13th Material covered: Ch 9 Ch 12 Lectures

More information

Angular Momentum L = I ω

Angular Momentum L = I ω Angular Momentum L = Iω If no NET external Torques act on a system then Angular Momentum is Conserved. Linitial = I ω = L final = Iω Angular Momentum L = Iω Angular Momentum L = I ω A Skater spins with

More information

3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s?

3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s? Practice 8A Torque 1. Find the torque produced by a 3.0 N force applied at an angle of 60.0 to a door 0.25 m from the hinge. What is the maximum torque this force could exert? 2. If the torque required

More information

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Lecture PowerPoints. Chapter 11. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 11. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 11 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 IT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical echanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. ASSACHUSETTS INSTITUTE

More information