wien2wannier and woptic: From Wannier Functions to Optical Conductivity

Size: px
Start display at page:

Download "wien2wannier and woptic: From Wannier Functions to Optical Conductivity"

Transcription

1 wien2wannier and woptic: From Wannier Functions to Optical Conductivity Elias Assmann Institute of Solid State Physics, Vienna University of Technology AToMS-2014, Bariloche, Aug 4

2 Outline brief introduction to maximally localized Wannier functions some applications of Wannier functions woptic: conductivity σ(ω), thermopower S from LDA+DMFT Big Thanks to: Original code authors As well as Karsten Held Peter Blaha Philipp Wissgott Waltzing Atoms Jan Kuneš Institute of Physics, Prague Starting Grant Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

3 From Bloch to Wannier w R = V (2π) 3 dk e ikr ψ k BZ Transform k R; r is spectator Properties: periodicity w R (r) w 0 (r R) orthonormality w nr w mr = δ nm δ RR from Marzari et al. Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

4 Gauge freedom But ψ k carries arbitrary phase φ(k) w R = V (2π) 3 dk e i(φ(k) kr) ψ k BZ strongly non-unique (shape, localization) choose φ(k) for maximum localization of w R from Marzari et al. Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

5 Maximally localized WF (Marzari-Vanderbilt) [Marzari et al., RMP (2012)] In the multiband case, e iφ(k) unitary matrix w nr = e BZdk ikr U (k) mn ψ mk m Total spread Ω := n r 2 n = Ω[U] + Ω I MLWF procedure: minimize Ω[U] (Wannier90) input: M (k,b) mn = ψ mk e ir(k+b) ψ nk optional input: A (k) mn = ψ mk g nk output: U (k) nm, ( H (R) nm,... ) gauge dependent gauge independent wien2wannier Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

6 Maximally localized WF (Marzari-Vanderbilt) [Marzari et al., RMP (2012)] In the multiband case, e iφ(k) unitary matrix w nr = e BZdk ikr U (k) mn ψ mk m Total spread Ω := n r 2 n = Ω[U] + Ω I MLWF procedure: minimize Ω[U] (Wannier90) input: M (k,b) mn = ψ mk e ir(k+b) ψ nk optional input: A (k) mn = ψ mk g nk output: U (k) nm, ( H (R) nm,... ) gauge dependent gauge independent wien2wannier Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

7 wien2wannier [Kuneš et al., Comp. Phys. Commun. (2010)] MLWF from full-potential LAPW code WIEN2k interface to Wannier90 A (k) mn, M (k,b) mn initial projections: atom-centered basis functions, rotations real-space plots (wplot) XCrySDen, VESTA available from wien2k.at unsupported to be included in WIEN2k 14.1 distribution Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

8 Applications of MLWF analysis of chemical bonding electric polarization and orbital magnetization BerryPI [Ahmed et al., Comp. Phys. Commun. (2013)] Wannier interpolation K K H(k) K F H(R) K 1 Wannier functions as basis functions tight-binding model H(k) = U + (k) ε(k) U(k) realistic dynamical mean-field theory (DMFT) F 1 H(k) K Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

9 Choice of Wannier subspace [Kuneš et al., Comp. Phys. Commun. (2010)] SrVO 3 : V-e g V-t 2g O-p 3-band projection V-centered t 2g orbital Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

10 Choice of Wannier subspace [Kuneš et al., Comp. Phys. Commun. (2010)] SrVO 3 : V-e g V-t 2g O-p 3-band projection 14-band projection V-centered t 2g orbital Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

11 U, U, J for t 2g Wannier orbitals [Ribic, EA, et al., arxiv: ] Local Coulomb interaction in cubic symmetry: U U J intra-orbital repulsion inter-orbital repulsion Hund s exchange [Held, Adv. Phys (2007)] U = U + 2J Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

12 U, U, J for t 2g Wannier orbitals [Ribic, EA, et al., arxiv: ] Local Coulomb interaction in cubic symmetry: U U J intra-orbital repulsion inter-orbital repulsion Hund s exchange U = U + 2J for atomic orbitals in crystal: hybridization 3 independent parameters U U 2J SrVO 3 BaOsO 3 (3d) (5d) Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

13 U, U 0, J for t2g Wannier orbitals [Ribic, EA, et al., arxiv: ] Local Coulomb interaction in cubic symmetry: U intra-orbital repulsion U 0 inter-orbital repulsion J Hund s exchange U = U 0 + 2J for atomic orbitals in crystal: hybridization U U0 2J 3 independent parameters SrVO3 (3d) BaOsO3 (5d) BaOsO3 t2g + p Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

14 woptic ω [ev] adaptive k-integration optical conductivity σ(k, ω) σk (ω) [10 6 Ω 1 ev 1 ] including local self-energy Σ(ω) (DMFT) thermopower full matrix elements ψ ψ from WIEN2k W L Γ X W K 2 ω [ev] 0 2 (Aluminum) [J. Sofo] Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

15 Tetrahedral mesh management tetrahedron T has integration error estimate ɛ T refine T if ɛ T Θ max T ɛ T harshness Θ [0, 1] enforce regularity at most one hanging node for stable convergence enforce shape stability no heavily-distorted octahedra avoid large integration errors X X L Γ W K L Γ W K Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

16 Tetrahedral mesh management tetrahedron T has integration error estimate ɛ T refine T if ɛ T Θ max T ɛ T harshness Θ [0, 1] enforce regularity at most one hanging node for stable convergence enforce shape stability no heavily-distorted octahedra avoid large integration errors Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

17 Tetrahedral mesh management tetrahedron T has integration error estimate ɛ T refine T if ɛ T Θ max T ɛ T harshness Θ [0, 1] enforce regularity at most one hanging node for stable convergence enforce shape stability no heavily-distorted octahedra avoid large integration errors [Ong, SIAM J. Sci. Comput. (1994); Endres & Krysl, Int. J. Numer. Meth. Engng. (2004)] Kuhn triangulation Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

18 Some results for Na x CoO 2 [Wissgott et al., PRB (2010)] Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

19 Some results for Na x CoO 2 [Wissgott et al., PRB (2010)] Thank you for your attention Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 12

20 Bloch waves Bloch s theorem Ĥ = 2 + V(r) with V(r + R) V(r) has solutions Ĥ ψ nk = ε n (k) ψ nk with ψ nk (r) = e ikr u nk (r); u n,k (r + R) u n,k (r) and ε n (k + K) ε n (k) (Simultaneous eigenbasis of Ĥ and translation operators T R ) Usual basis for solid-state calculations But for many applications, a localized basis is preferable Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 8

21 r-localization and k-smoothness sin x + 1 sin 3x sin 9x 3 9 w R = V (2π) 3 dk e i(φ(k) kr) ψ k BZ sin x sin x sin 3x + + sin 49x 49 1 sin 3x + + sin 249x 249 Idea: choose φ(k) for maximum localization of w R Fourier series converges faster for smoother functions: f C p f n const n p [Wikipedia, Gibbs phenomenon ] Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 8

22 From bands to WF isolated band isolated group of bands entangled bands E(k) k k k w k = e iφ(k) ψ k w nk = U (k) mn ψ mk w nk = U (k) in V(k) mi ψ mk Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 8

23 Disentanglement Cu (fcc): What to do when #bands > #WF? Ansatz: Select optimally smooth subspace rectangular matrix V k (#bands(k) #WF)! Ω I = Ω I [V] minimize ΩI [V] from Marzari et al. 5 d-like WF, 2 interstitial s-like WF Ω = Ω[U] + Ω I [V] woptic not implemented with disentanglement Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 8

24 Anatomy of a calculation WIEN2k optic Kohn-Sham states momentum matrix ψ nk (r), ε n (k) ψ nk ψ mk woptic BZ integration σ(ω), σ(0), S wien2wannier k-space overlaps M (k,b) mn = ψ m,k ψ n,k+b Wannier90 max. loc. WF w nr (r) DMFT self-energy Σ(ω) Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 8

25 Transport properties with WIEN2k BoltzTrap semi-classical (Boltzmann) band velocities ε(k)/ k instead of momentum matrix elements ψ ψ BoltzWann similar, with Wannier functions woptic quantum-mechanical linear response (Kubo) adaptive BZ integration inclusion of local self-energy Σ(ω) more information: WIEN2k.at reg. users unsupported wien2wannier woptic preprint Wissgott et al., PRB (2012) Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 8

26 Calculating optical conductivity and thermopower Very schematically: linear response (Kubo formula): Ĥ = Ĥ0 + λ(t) B Â (t) = Â 0 i h t dt λ(t ) [A(t), B(t ) ] 0 + σ, S: current operators Ψ + Ψ ( Ψ + ) Ψ [ĵ(r, χ ret el el (r r, t t ) θ(t t ) t), ĵ(r, t ) ] 0 [ĵ(r, χ ret el heat (r r, t t ) θ(t t ) t), Q(r, t ) ] 0 el. current operator heat-current operator Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 8

27 Interpolation and random-phase problem DMFT in Wannier basis self-energy Σ i (ω) spectral function A(k, ω) in evaluation of χs: { } tr v(k) A(k) v(k) A(k) Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 8

28 Interpolation and random-phase problem DMFT in Wannier basis self-energy Σ i (ω) spectral function A(k, ω) in evaluation of χs: { } tr v(k) A(k) v(k) A(k) from DMFT momentum matrix w nk w mk ; from WIEN2k ψ nk carries random phase φ n (k), which propagates to v but not A problem with w w (v wx A xy v yz A zw ) and w ψ (v wi A ii v ix A xw ) terms interpolate v(k) v( k) Elias Assmann (TU Vienna) wien2wannier and woptic Bariloche / 8

woptic: Transport Properties with Wannier Functions and Adaptive k-integration

woptic: Transport Properties with Wannier Functions and Adaptive k-integration woptic: Transport Properties with Wannier Functions and Adaptive k-integration Elias Assmann Institute of Solid State Physics, Vienna University of Technology Split, 2013-09-29 About this presentation

More information

Wannier functions. Macroscopic polarization (Berry phase) and related properties. Effective band structure of alloys

Wannier functions. Macroscopic polarization (Berry phase) and related properties. Effective band structure of alloys Wannier functions Macroscopic polarization (Berry phase) and related properties Effective band structure of alloys P.Blaha (from Oleg Rubel, McMaster Univ, Canada) Wannier functions + + Wannier90: A Tool

More information

Optical Properties with Wien2k

Optical Properties with Wien2k Optical Properties with Wien2k Elias Assmann Vienna University of Technology, Institute for Solid State Physics WIEN2013@PSU, Aug 13 Menu 1 Theory Screening in a solid Calculating ϵ: Random-Phase Approximation

More information

Realistic Materials Simulations Using Dynamical Mean Field Theory

Realistic Materials Simulations Using Dynamical Mean Field Theory Realistic Materials Simulations sing Dynamical Mean Field Theory Elias Assmann AG Held, Institut für Festkörperphysik, T Wien VSC ser Workshop, Feb 28 2012 Elias Assmann (IFP T Wien) LDA+DMFT VSC Workshop

More information

Topological Physics in Band Insulators IV

Topological Physics in Band Insulators IV Topological Physics in Band Insulators IV Gene Mele University of Pennsylvania Wannier representation and band projectors Modern view: Gapped electronic states are equivalent Kohn (1964): insulator is

More information

GaAs -- MLWF. Special thanks to Elias Assmann (TU Graz) for the generous help in preparation of this tutorial

GaAs -- MLWF. Special thanks to Elias Assmann (TU Graz) for the generous help in preparation of this tutorial GaAs -- MLWF + + Special thanks to Elias Assmann (TU Graz) for the generous help in preparation of this tutorial YouTube video: https://youtu.be/r4c1yhdh3ge 1. Wien2k SCF Create a tutorial directory, e.g.

More information

The electronic structure of materials 2 - DFT

The electronic structure of materials 2 - DFT Quantum mechanics 2 - Lecture 9 December 19, 2012 1 Density functional theory (DFT) 2 Literature Contents 1 Density functional theory (DFT) 2 Literature Historical background The beginnings: L. de Broglie

More information

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov ES'12, WFU, June 8, 212 The present work was done in collaboration with David Vanderbilt Outline:

More information

Numerical construction of Wannier functions

Numerical construction of Wannier functions July 12, 2017 Internship Tutor: A. Levitt School Tutor: É. Cancès 1/27 Introduction Context: Describe electrical properties of crystals (insulator, conductor, semi-conductor). Applications in electronics

More information

Wannier functions, Modern theory of polarization 1 / 51

Wannier functions, Modern theory of polarization 1 / 51 Wannier functions, Modern theory of polarization 1 / 51 Literature: 1 R. D. King-Smith and David Vanderbilt, Phys. Rev. B 47, 12847. 2 Nicola Marzari and David Vanderbilt, Phys. Rev. B 56, 12847. 3 Raffaele

More information

IFP. AG Toschi & AG Held

IFP. AG Toschi & AG Held Theory @ IFP Dr. Georg Rohringer AG Toschi & AG Held Thomas Schäfer Elias Assmann Dr. Jan Tomczak Patrik Gunacker Liang Si Dr. Marco Battiato Recent/Current PAs Monika Stipsitz, Patrik Gunacker, Rainer

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Basics of DFT applications to solids and surfaces

Basics of DFT applications to solids and surfaces Basics of DFT applications to solids and surfaces Peter Kratzer Physics Department, University Duisburg-Essen, Duisburg, Germany E-mail: Peter.Kratzer@uni-duisburg-essen.de Periodicity in real space and

More information

Homogeneous Electric and Magnetic Fields in Periodic Systems

Homogeneous Electric and Magnetic Fields in Periodic Systems Electric and Magnetic Fields in Periodic Systems Josef W. idepartment of Chemistry and Institute for Research in Materials Dalhousie University Halifax, Nova Scotia June 2012 1/24 Acknowledgments NSERC,

More information

WIEN2WANNIER 1.0 User s Guide

WIEN2WANNIER 1.0 User s Guide WIEN2WANNIER 1.0 User s Guide From linearized augmented plane waves to maximally localized Wannier functions. JAN KUNEŠ PHILIPP WISSGOTT ELIAS ASSMANN May 13, 2014 Contents 1 Introduction 2 2 Quickstart

More information

Many-body effects in iron pnictides and chalcogenides

Many-body effects in iron pnictides and chalcogenides Many-body effects in iron pnictides and chalcogenides separability of non-local and dynamical correlation effects Jan M. Tomczak Vienna University of Technology jan.tomczak@tuwien.ac.at Emergent Quantum

More information

arxiv: v1 [physics.comp-ph] 25 Jan 2018

arxiv: v1 [physics.comp-ph] 25 Jan 2018 VARIATIONAL FORMULATION FOR WANNIER FUNCTIONS WITH ENTANGLED BAND STRUCTURE ANIL DAMLE, ANTOINE LEVITT, AND LIN LIN arxiv:1801.08572v1 [physics.comp-ph] 25 Jan 2018 Abstract. Wannier functions provide

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Compressed representation of Kohn-Sham orbitals via selected columns of the density matrix

Compressed representation of Kohn-Sham orbitals via selected columns of the density matrix Lin Lin Compressed Kohn-Sham Orbitals 1 Compressed representation of Kohn-Sham orbitals via selected columns of the density matrix Lin Lin Department of Mathematics, UC Berkeley; Computational Research

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Tight-Binding Model of Electronic Structures

Tight-Binding Model of Electronic Structures Tight-Binding Model of Electronic Structures Consider a collection of N atoms. The electronic structure of this system refers to its electronic wave function and the description of how it is related to

More information

Understanding the Tc trends in high Tc superconductors. Kazuhiko Kuroki

Understanding the Tc trends in high Tc superconductors. Kazuhiko Kuroki NQS2014 2014.11.24-28 Yukawa Inst. Understanding the Tc trends in high Tc superconductors Dept. of Physics, Osaka University Kazuhiko Kuroki Collaborators cuprates : H. Sakakibara(RIKEN), K. Suzuki(Osaka),

More information

MD simulation: output

MD simulation: output Properties MD simulation: output Trajectory of atoms positions: e. g. diffusion, mass transport velocities: e. g. v-v autocorrelation spectrum Energies temperature displacement fluctuations Mean square

More information

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set Chapter 3 The (L)APW+lo Method 3.1 Choosing A Basis Set The Kohn-Sham equations (Eq. (2.17)) provide a formulation of how to practically find a solution to the Hohenberg-Kohn functional (Eq. (2.15)). Nevertheless

More information

Application of interface to Wannier90 : anomalous Nernst effect Fumiyuki Ishii Kanazawa Univ. Collaborator: Y. P. Mizuta, H.

Application of interface to Wannier90 : anomalous Nernst effect Fumiyuki Ishii Kanazawa Univ. Collaborator: Y. P. Mizuta, H. Application of interface to Wannier90 : anomalous Nernst effect Fumiyuki Ishii Kanazawa Univ. Collaborator: Y. P. Mizuta, H. Sawahata, 스키루미온 Outline 1. Interface to Wannier90 2. Anomalous Nernst effect

More information

Tight binding models from band representations

Tight binding models from band representations Tight binding models from band representations Jennifer Cano Stony Brook University and Flatiron Institute for Computational Quantum Physics Part 0: Review of band representations BANDREP http://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl

More information

First principle calculations of plutonium and plutonium compounds: part 1

First principle calculations of plutonium and plutonium compounds: part 1 First principle calculations of plutonium and plutonium compounds: part 1 A. B. Shick Institute of Physics ASCR, Prague, CZ Outline: u Lecture 1: Methods of Correlated band theory DFT and DFT+U u Lecture

More information

Recurrences in Quantum Walks

Recurrences in Quantum Walks Recurrences in Quantum Walks M. Štefaňák (1), I. Jex (1), T. Kiss (2) (1) Department of Physics, FJFI ČVUT in Prague, Czech Republic (2) Department of Nonlinear and Quantum Optics, RISSPO, Hungarian Academy

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

Maximally localized Wannier functions: Theory and applications

Maximally localized Wannier functions: Theory and applications Maximally localized Wannier functions: Theory and applications Nicola Marzari Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland

More information

Lecture 4: Basic elements of band theory

Lecture 4: Basic elements of band theory Phys 769 Selected Topics in Condensed Matter Physics Summer 010 Lecture 4: Basic elements of band theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 Introduction Most matter, in particular most insulating

More information

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture Electronic structure of correlated electron systems G.A.Sawatzky UBC Lecture 6 011 Influence of polarizability on the crystal structure Ionic compounds are often cubic to maximize the Madelung energy i.e.

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT

Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT Kiril Tsemekhman (a), Eric Bylaska (b), Hannes Jonsson (a,c) (a) Department of Chemistry,

More information

Proof that the maximally localized Wannier functions are real

Proof that the maximally localized Wannier functions are real 1 Proof that the maximally localized Wannier functions are real Sangryol Ri, Suil Ri Institute of Physics, Academy of Sciences, Unjong District, Pyongyang, DPR Korea Abstract The maximally localized Wannier

More information

Berry phase, Chern number

Berry phase, Chern number Berry phase, Chern number November 17, 2015 November 17, 2015 1 / 22 Literature: 1 J. K. Asbóth, L. Oroszlány, and A. Pályi, arxiv:1509.02295 2 D. Xiao, M-Ch Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959.

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » Recap of HK theorems and KS equations» The physical meaning of the XC energy» Solution of a one-particle Schroedinger equation» Pseudo Potentials»

More information

Calculations of de Haas van Alphen frequencies: an ab initio approach. Simon Blackburn, Michel Côté Université de Montréal, Canada

Calculations of de Haas van Alphen frequencies: an ab initio approach. Simon Blackburn, Michel Côté Université de Montréal, Canada Calculations of de Haas van Alphen frequencies: an ab initio approach Simon Blackburn, Michel Côté Université de Montréal, Canada 1 Plan Reminder of the theory MLWF Code explanation Iron pnictides superconductors

More information

Maximally localized Wannier functions for periodic Schrödinger operators: the MV functional and the geometry of the Bloch bundle

Maximally localized Wannier functions for periodic Schrödinger operators: the MV functional and the geometry of the Bloch bundle Maximally localized Wannier functions for periodic Schrödinger operators: the MV functional and the geometry of the Bloch bundle Gianluca Panati Università di Roma La Sapienza 4ème Rencontre du GDR Dynamique

More information

Electronic Structure Methodology 1

Electronic Structure Methodology 1 Electronic Structure Methodology 1 Chris J. Pickard Lecture Two Working with Density Functional Theory In the last lecture we learnt how to write the total energy as a functional of the density n(r): E

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

Development of atomic theory

Development of atomic theory Development of atomic theory The chapter presents the fundamentals needed to explain and atomic & molecular structures in qualitative or semiquantitative terms. Li B B C N O F Ne Sc Ti V Cr Mn Fe Co Ni

More information

Quantum Spin Liquids and Majorana Metals

Quantum Spin Liquids and Majorana Metals Quantum Spin Liquids and Majorana Metals Maria Hermanns University of Cologne M.H., S. Trebst, PRB 89, 235102 (2014) M.H., K. O Brien, S. Trebst, PRL 114, 157202 (2015) M.H., S. Trebst, A. Rosch, arxiv:1506.01379

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials

Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials Excited state properties p within WIEN2k Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials Beyond the ground state Basics about light scattering

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

VASP: running on HPC resources. University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

VASP: running on HPC resources. University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria VASP: running on HPC resources University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria The Many-Body Schrödinger equation 0 @ 1 2 X i i + X i Ĥ (r 1,...,r

More information

Orbital magnetization in insulators with broken time-reversal symmetry. David Vanderbilt Rutgers University

Orbital magnetization in insulators with broken time-reversal symmetry. David Vanderbilt Rutgers University Orbital magnetization in insulators with broken time-reversal symmetry David Vanderbilt Rutgers University Collaboration Collaboration Timo Thonhauser (Rutgers) David Vanderbilt (Rutgers) Davide Ceresoli

More information

Recurrences and Full-revivals in Quantum Walks

Recurrences and Full-revivals in Quantum Walks Recurrences and Full-revivals in Quantum Walks M. Štefaňák (1), I. Jex (1), T. Kiss (2) (1) Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 17 Jan 1998

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 17 Jan 1998 Electronic polarization in the ultrasoft pseudopotential formalism arxiv:cond-mat/9801177v1 [cond-mat.mtrl-sci] 17 Jan 1998 David anderbilt Department of Physics and Astronomy, Rutgers University, Piscataway,

More information

arxiv: v1 [cond-mat.str-el] 18 Jul 2007

arxiv: v1 [cond-mat.str-el] 18 Jul 2007 arxiv:0707.2704v1 [cond-mat.str-el] 18 Jul 2007 Determination of the Mott insulating transition by the multi-reference density functional theory 1. Introduction K. Kusakabe Graduate School of Engineering

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

Energy bands in two limits

Energy bands in two limits M. A. Gusmão IF-UFRGS 1 FIP10601 Text 4 Energy bands in two limits After presenting a general view of the independent-electron approximation, highlighting the importance and consequences of Bloch s theorem,

More information

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014 Magnetism University of Liège eric.bousquet@ulg.ac.be Abinit School, Lyon, France 16/05/2014 Outline Origin of magnetism: Inside an atom Between 2 atoms Interaction with ligands Interaction through ligands

More information

Pseudopotential generation and test by the ld1.x atomic code: an introduction

Pseudopotential generation and test by the ld1.x atomic code: an introduction and test by the ld1.x atomic code: an introduction SISSA and DEMOCRITOS Trieste (Italy) Outline 1 2 3 Spherical symmetry - I The Kohn and Sham (KS) equation is (in atomic units): [ 1 ] 2 2 + V ext (r)

More information

Computational Nanoscience

Computational Nanoscience Computational Nanoscience Applications for Molecules, Clusters, and Solids KALMÄN VARGA AND JOSEPH A. DRISCOLL Vanderbilt University, Tennessee Щ CAMBRIDGE HP UNIVERSITY PRESS Preface Part I One-dimensional

More information

DFT in practice : Part II. Ersen Mete

DFT in practice : Part II. Ersen Mete pseudopotentials Department of Physics Balıkesir University, Balıkesir - Turkey August 13, 2009 - NanoDFT 09, İzmir Institute of Technology, İzmir Outline Pseudopotentials Basic Ideas Norm-conserving pseudopotentials

More information

userguide WIEN2WANNIER: From linearized augmented plane waves to maximally localized Wannier functions

userguide WIEN2WANNIER: From linearized augmented plane waves to maximally localized Wannier functions userguide WIEN2WANNIER: From linearized augmented plane waves to maximally localized Wannier functions Jan Kuneš, Philipp Wissgott June 18, 2012 Contents 1.1 Introduction..........................................

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions

Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions Dominik Smith Lorenz von Smekal smith@theorie.ikp.physik.tu-darmstadt.de 1. August 2013 IKP TUD / SFB

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Adiabatic particle pumping and anomalous velocity

Adiabatic particle pumping and anomalous velocity Adiabatic particle pumping and anomalous velocity November 17, 2015 November 17, 2015 1 / 31 Literature: 1 J. K. Asbóth, L. Oroszlány, and A. Pályi, arxiv:1509.02295 2 D. Xiao, M-Ch Chang, and Q. Niu,

More information

2 Quantization of the Electromagnetic Field

2 Quantization of the Electromagnetic Field 2 Quantization of the Electromagnetic Field 2.1 Basics Starting point of the quantization of the electromagnetic field are Maxwell s equations in the vacuum (source free): where B = µ 0 H, D = ε 0 E, µ

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Reciprocal Space Magnetic Field: Physical Implications

Reciprocal Space Magnetic Field: Physical Implications Reciprocal Space Magnetic Field: Physical Implications Junren Shi ddd Institute of Physics Chinese Academy of Sciences November 30, 2005 Outline Introduction Implications Conclusion 1 Introduction 2 Physical

More information

Electronic Structure of Crystalline Solids

Electronic Structure of Crystalline Solids Electronic Structure of Crystalline Solids Computing the electronic structure of electrons in solid materials (insulators, conductors, semiconductors, superconductors) is in general a very difficult problem

More information

Nearly Free Electron Gas model - II

Nearly Free Electron Gas model - II Nearly Free Electron Gas model - II Contents 1 Lattice scattering 1 1.1 Bloch waves............................ 2 1.2 Band gap formation........................ 3 1.3 Electron group velocity and effective

More information

Density Functional Theory (DFT)

Density Functional Theory (DFT) Density Functional Theory (DFT) An Introduction by A.I. Al-Sharif Irbid, Aug, 2 nd, 2009 Density Functional Theory Revolutionized our approach to the electronic structure of atoms, molecules and solid

More information

Magnetism in transition metal oxides by post-dft methods

Magnetism in transition metal oxides by post-dft methods Magnetism in transition metal oxides by post-dft methods Cesare Franchini Faculty of Physics & Center for Computational Materials Science University of Vienna, Austria Workshop on Magnetism in Complex

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Outline PART 1: Fundamentals of Density functional theory (DFT)

More information

Part II. Fundamentals of X-ray Absorption Fine Structure: data analysis

Part II. Fundamentals of X-ray Absorption Fine Structure: data analysis Part II Fundamentals of X-ray Absorption Fine Structure: data analysis Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France Page 1 S. Pascarelli HERCULES 2016 Data Analysis: EXAFS

More information

Wannier Functions in the context of the Dynamical Mean-Field Approach to strongly correlated materials

Wannier Functions in the context of the Dynamical Mean-Field Approach to strongly correlated materials Wannier Functions in the context of the Dynamical Mean-Field Approach to strongly correlated materials Frank Lechermann I. Institute for Theoretical Physics, University of Hamburg, Germany Ab-initio Many-Body

More information

Floquet Topological Insulator:

Floquet Topological Insulator: Floquet Topological Insulator: Understanding Floquet topological insulator in semiconductor quantum wells by Lindner et al. Condensed Matter Journal Club Caltech February 12 2014 Motivation Motivation

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY C.A. Madu and B.N Onwuagba Department of Physics, Federal University of Technology Owerri, Nigeria

More information

Interplay of micromotion and interactions

Interplay of micromotion and interactions Interplay of micromotion and interactions in fractional Floquet Chern insulators Egidijus Anisimovas and André Eckardt Vilnius University and Max-Planck Institut Dresden Quantum Technologies VI Warsaw

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz May 14, 2012 All electrons vs pseudopotentials Classes of Basis-set Condensed phase: Bloch s th and PBC Hamann-Schlüter-Chiang pseudopotentials

More information

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals ECE44 Nanoelectronics Lecture 7 Atomic Orbitals Atoms and atomic orbitals It is instructive to compare the simple model of a spherically symmetrical potential for r R V ( r) for r R and the simplest hydrogen

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information

6. LIGHT SCATTERING 6.1 The first Born approximation

6. LIGHT SCATTERING 6.1 The first Born approximation 6. LIGHT SCATTERING 6.1 The first Born approximation In many situations, light interacts with inhomogeneous systems, in which case the generic light-matter interaction process is referred to as scattering

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/7/e1700704/dc1 Supplementary Materials for Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies Yaxin Zhai,

More information

Principles of Quantum Mechanics

Principles of Quantum Mechanics Principles of Quantum Mechanics - indistinguishability of particles: bosons & fermions bosons: total wavefunction is symmetric upon interchange of particle coordinates (space,spin) fermions: total wavefuncftion

More information

The previous page shows a rather delocalized Wannier function constructed by a direct lattice Fourier transform of the original Bloch functions as

The previous page shows a rather delocalized Wannier function constructed by a direct lattice Fourier transform of the original Bloch functions as The previous page shows a rather delocalized Wannier function constructed by a direct lattice Fourier transform of the original Bloch functions as obtained from band structure computation. The very last

More information

Photonic Wannier Functions: Generation and Usage

Photonic Wannier Functions: Generation and Usage Photonic Wannier Functions: Generation and Usage Kurt Busch Institut für Theoretische Festkörperphysik and DFG-Center for Functional Nanostructures, KIT, Germany photonics.tfp.uni-karlsruhe.de Acknowledgments

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

Universal dielectric breakdown and synaptic behaviour in Mott insulators

Universal dielectric breakdown and synaptic behaviour in Mott insulators Universal dielectric breakdown and synaptic behaviour in Mott insulators Marcelo Rozenberg LPS, CNRS Université Paris-Sud, Orsay IMN (Nantes, France) L. Cario E. Janod B. Corraze P. Stoliar (Nanogune)

More information