system May 19, 2009 MS69: New Developments in Pulse Interactions SIAM Conference on Applications of Dynamical Systems Snowbird, Utah, USA

Size: px
Start display at page:

Download "system May 19, 2009 MS69: New Developments in Pulse Interactions SIAM Conference on Applications of Dynamical Systems Snowbird, Utah, USA"

Transcription

1 CWI, Amsterdam May 9, 29 MS69: New Developments in Pulse s SIAM Conference on Applications of Dynamical Systems Snowbird, Utah, USA Joint work: A. Doelman (CWI/UvA), T.J. Kaper (BU), K. Promislow (MSU)

2 Outline

3 s of localized structures Localized structures are solutions to a PDE that are close to a trivial background state, except in one or more localized spatial regions Weak interaction regime: well-developed mathematical theory Strong interaction regime: no mathematical theory Semi-strong interaction regime:.8 U.6.4 U, V, W V.8 W ξ

4 Paradigm Three component U t = U ξξ + U U 3 ε(αv + βw + γ) τv t = ε V 2 ξξ + U V θw t = D2 ε 2 W ξξ + U W where < ε ;D > ; < τ,θ and O(); α,β,γ R and O() (with respect to ε); and (ξ,t) R R +. Physical background: gas-discharge experiments by Purwins et al. Inspiration: numerical collision experiments by Nishiura et al. Motivation: rich behavior and transparent structure enables rigorous mathematical analysis. Goal: understanding the semi-strong interaction regime.

5 2-front interacting: different initial conditions U 2 ξ x 4.5 t U 5 ξ x 4.5 t

6 Understood, but not today I Stationary 2-pulse solution U,V,W W U V ξ

7 Understood, but not today II Uniformly traveling -pulse solution U 5 ξ time τ,θ O()

8 Understood, but not today III 3-front interacting: different forcing parameter γ U U 4 2 ξ t 3 4 x ξ t

9 Don t understand Complex dynamics U U ξ t ξ 2 2 τ, θ O() t 5

10 Geometric singular perturbation theory Idea: 5 regions I II III IV V Region I: U = + O(ε) Region II: V = V + O(ε), W = W + O(ε) Region III: U = + O(ε) Region IV: V = V + O(ε), W = W + O(ε) Region V: U = + O(ε)

11 Preliminaries Stationary -pulse solution No movement in time: t = 6-dimensional ODE: nonlinear but autonomous u ξ = p p ξ = u + u 3 + ε(αv + βw + γ) v ξ = εq q ξ = ε(v u) w ξ = ε D r r ξ = ε D (w u) Fixed points P ± ε = (±,, ±,, ±,) + O(ε), P ε = (,,,,,) + O(ε)

12 Regions II and IV: fast reduced ε { uξ = p and (v,q,w,r) = (v,q,w,r ) p ξ = u + u 3 Hamiltonian H(u,p) = 2 (u2 + p 2 ) 4 (u4 + ) Phase portrait p (u het, p het ) 2 u «u het(ξ) ± = tanh 2ξ, 2 p het(ξ) ± = «2sech 2 2ξ (u + het, p+ het )

13 Regions I, III, and V: slow reduced (SRS) U = ± (to leading order) v ξξ = ε 2 (v ) = v(ξ) = A i e εξ + B i e εξ ± w ξξ = ε 2 D (w ) = w(ξ) = Ãie ε D ξ + B i e ε D ξ ± Phase portrait U = q, r q, r U = P ε v, w P + ε v, w

14 Stationary -pulse solution ξ Schematic picture U = U = P ε I V II IV III P + ε U, V, W U q, r v, w u, p u, p q, r v, w V W Analysis Fenichel theory Melnikov method: αv + βw + γ = Solve SRS + matching: αe εξ + βe ε D ξ = γ Rigorous

15 result Theorem There exists a stationary -pulse solution if is a ξ (, ) which solves αe εξ + βe ε D ξ = γ. () Moreover, ξ corresponds to the width of the pulse. Corollary Equation () has at most 2 solutions. If sgn(α) = sgn(β), then () has at most solution. If γ > α + β, then () has no solutions. If sgn(α) sgn(β) and αd > β, then there is a saddle-node bifurcation of stationary -pulse solutions..

16 : Evans function Essential spectrum Stable and O() gap to imaginary axis. Discrete spectrum U(ξ,t) = u h (ξ;ε) + u(ξ)e λt, V(ξ,t) = v h (ξ;ε) + v(ξ)e λt, W(ξ,t) = w h (ξ;ε) + w(ξ)e λt, problem: nonautonomous but linear u ξξ + u( 3uh 2 λ) = ε(αv + βw) v ξξ = ε 2 (( + τλ)v u) w ξξ = ε2 D (( + θλ)w u). 2

17 Construction Eigenfunctions: again 5 regions ṽ w u ξ Ψ + (ξ) ṽ w Ψ (ξ) u ξ Region I: u = + O(ε) Region II: ṽ = ṽ + O(ε), w = w + O(ε) Region III: u = + O(ε) Region IV: ṽ = ṽ + O(ε), w = w + O(ε) Region V: u = + O(ε)

18 theorem Analysis Solving the corresponding FRS and SRS + matching Rigorous: Evans function Theorem The stationary -pulse solution with width ξ is stable if and only if αe εξ + β D e ε D ξ >. Corollary The -pulse solution is stable if sgn(α) = sgn(β) = and unstable if sgn(α) = sgn(β) =. One of the branch of the saddle-node bifurcation is stable, the other one is unstable.

19 Saddle-node bifurcation α > > β γ γ SN α + β A SN A

20 interaction Stationary Solution Initial Condition Γ Question Given the -parameters and an initial condition, can we predict how the structure evolves in time?

21 2- Dynamics Theorem The distance Γ between two fronts of a -pulse solution evolves according to Γ t = 3 2ε ( αe ε Γ + βe ε D Γ γ ). (2) Fixed points of (2) are precisely the solutions to the existence condition (). The fronts Γ(t) asymptote to a stationary -pulse solution with width Γ iff the -pulse solution is stable and there is no unstable stationary -pulse solution determined by Γ 2 with Γ() < Γ 2 < Γ or Γ() > Γ 2 > Γ.

22 ODE and PDE I Γ Γ 2 Γ t 25 U 2 ξ x 4.5 t U 5 ξ x 4.5 t

23 ODE and PDE II

24 General N-front dynamics Lemma Stationary N-front solutions do not exist for N odd. Uniformly travelling N-front solutions do not exist for N even.

25 Sketch of proof I Formally: Easy, introduce 2 co-moving frames and distinguish again 5 different regions = ODE analysis. Rigorous: Hard, real PDE analysis. Proof is based on a Renormalization group method.

26 s for τ,θ large - Problems with the essential spectrum Spatial inhomogeneities - Work in progress with K.-I. Ueda & Y. Nishiura Two space dimensions - Rubicon research at Brown University

27 Sketch of proof II ξ Skeleton solution Φ Γ (ξ) Φ Γ (ξ) := U (ξ;γ) G V U (ξ;γ) G W U (ξ;γ) U, V, W U V W U (ξ,γ) = + tanh ( 2 2(ξ Γ ) ) tanh ( 2 2(ξ Γ2 ) ), where Γ i is the location of the i-th front ( Γ = Γ 2 Γ ). G V = 2 εe ε ξ ; the Green s function associated to = ε 2 V ξξ + U V.

28 Sketch of proof III Decomposition: Φ 2 = Φ Γ + Z (Assumption in initial condition!) Going to show: Φ 2 evolves according to (2) Z χ = O(ε) Z t + Φ Γ Γ Γ t = R + L Γ Z + N(Z), where R =residual, L =linear part, N =nonlinear part. Freeze time t = t : Z t + Φ Γ Γ Γ t = R + L Γ Z + (L Γ L Γ )Z + N(Z) Define π Γ as the projection on the space spanned by the the eigenfunctions of L Γ associated to the small eigenvalues; π Γ = I π Γ.

29 Sketch of proof IV Projection by π Γ yields/confirms the ODE for Γ t (since Z can assumed to be perpendicular to π Γ : π Γ Z = ). Projection by π Γ shows that Z χ stays O(ε) small for a finite time t (this is due to the secular growth ). t = O(log ε) (Hard work) Renormalize: freeze a new time: t = t + t such that Z(t ) χ = O(ε). Repeat above procedure

30 Φ Z(t) Φ 2 Z(t2) π Γ π Γ 2 Z(t) Φ Γ Γ π Γ Γ(t + t) Γ Γ(t + t)γ 2 Γ

Group Method. December 16, Oberwolfach workshop Dynamics of Patterns

Group Method. December 16, Oberwolfach workshop Dynamics of Patterns CWI, Amsterdam heijster@cwi.nl December 6, 28 Oberwolfach workshop Dynamics of Patterns Joint work: A. Doelman (CWI/UvA), T.J. Kaper (BU), K. Promislow (MSU) Outline 2 3 4 Interactions of localized structures

More information

system CWI, Amsterdam May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit

system CWI, Amsterdam May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit CWI, Amsterdam heijster@cwi.nl May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit Joint work: A. Doelman (CWI/UvA), T.J. Kaper (BU), K. Promislow (MSU) Outline 1 2 3 4 Outline 1 2 3 4 Paradigm U

More information

MS: Nonlinear Wave Propagation in Singular Perturbed Systems

MS: Nonlinear Wave Propagation in Singular Perturbed Systems MS: Nonlinear Wave Propagation in Singular Perturbed Systems P. van Heijster: Existence & stability of 2D localized structures in a 3-component model. Y. Nishiura: Rotational motion of traveling spots

More information

Stationary radial spots in a planar threecomponent reaction-diffusion system

Stationary radial spots in a planar threecomponent reaction-diffusion system Stationary radial spots in a planar threecomponent reaction-diffusion system Peter van Heijster http://www.dam.brown.edu/people/heijster SIAM Conference on Nonlinear Waves and Coherent Structures MS: Recent

More information

Front Interactions in a Three-Component System

Front Interactions in a Three-Component System SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 9, No., pp. 9 33 c Society for Industrial and Applied Mathematics Front Interactions in a Three-Component System P. van Heijster, A. Doelman, T. J. Kaper, and K.

More information

Coexistence of stable spots and fronts in a three-component FitzHugh Nagumo system

Coexistence of stable spots and fronts in a three-component FitzHugh Nagumo system RIMS Kôkyûroku Bessatsu Bx (01x, 000 000 Coexistence of stable spots and fronts in a three-component FitzHugh Nagumo system Dedicated, with gratitude and deep respect, to Professor Yasumasa Nishiura on

More information

NONLINEAR ASYMPTOTIC STABILITY OF THE SEMI-STRONG PULSE DYNAMICS IN A REGULARIZED GIERER-MEINHARDT MODEL

NONLINEAR ASYMPTOTIC STABILITY OF THE SEMI-STRONG PULSE DYNAMICS IN A REGULARIZED GIERER-MEINHARDT MODEL NONLINEAR ASYMPTOTIC STABILITY OF THE SEMI-STRONG PULSE DYNAMICS IN A REGULARIZED GIERER-MEINHARDT MODEL ARJEN DOELMAN, TASSO J. KAPER, AND KEITH PROMISLOW Abstract. We use renormalization group RG techniques

More information

The Dynamics of Reaction-Diffusion Patterns

The Dynamics of Reaction-Diffusion Patterns The Dynamics of Reaction-Diffusion Patterns Arjen Doelman (Leiden) (Rob Gardner, Tasso Kaper, Yasumasa Nishiura, Keith Promislow, Bjorn Sandstede) STRUCTURE OF THE TALK - Motivation - Topics that won t

More information

Travelling waves in a singularly perturbed sine-gordon equation

Travelling waves in a singularly perturbed sine-gordon equation Physica D 18 3 4 7 Travelling waves in a singularly perturbed sine-gordon equation Gianne Derks a, Arjen Doelman b, Stephan A. van Gils c,, Timco Visser c a Department of Mathematics and Statistics, University

More information

Front Speeds, Cut-Offs, and Desingularization: A Brief Case Study

Front Speeds, Cut-Offs, and Desingularization: A Brief Case Study Contemporary Mathematics Front Speeds, Cut-Offs, and Desingularization: A Brief Case Study Nikola Popović Abstract. The study of propagation phenomena in reaction-diffusion systems is a central topic in

More information

arxiv: v1 [math.ap] 8 Feb 2018

arxiv: v1 [math.ap] 8 Feb 2018 The dynamics of disappearing pulses in a singularly perturbed reaction-diffusion system with parameters that vary in time and space Robbin Bastiaansen and Arjen Doelman July 7, 18 arxiv:18.737v1 [math.ap]

More information

of the Schnakenberg model

of the Schnakenberg model Pulse motion in the semi-strong limit of the Schnakenberg model Newton Institute 2005 Jens Rademacher, Weierstraß Institut Berlin joint work with Michael Ward (UBC) Angelfish 2, 6, 12 months old [Kondo,

More information

1. Introduction. In this paper, we continue our study of slowly modulated two-pulse solutions in the one-dimensional Gray Scott model: V t = D 2 V

1. Introduction. In this paper, we continue our study of slowly modulated two-pulse solutions in the one-dimensional Gray Scott model: V t = D 2 V SIAM J. APPL. MATH. Vol. 61, No. 6, pp. 2036 2062 c 2001 Society for Industrial and Applied Mathematics SLOWLY MODULATED TWO-PULSE SOLUTIONS IN THE GRAY SCOTT MODEL II: GEOMETRIC THEORY, BIFURCATIONS,

More information

Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model

Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model Letter Forma, 15, 281 289, 2000 Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model Yasumasa NISHIURA 1 * and Daishin UEYAMA 2 1 Laboratory of Nonlinear Studies and Computations,

More information

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Margaret Beck Joint work with Anna Ghazaryan, University of Kansas and Björn Sandstede, Brown University September

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao

A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao Department of Mathematics, The Ohio State University; Department of Mathematics and Computer Science, Claremont McKenna College Workshop

More information

Spike-adding canard explosion of bursting oscillations

Spike-adding canard explosion of bursting oscillations Spike-adding canard explosion of bursting oscillations Paul Carter Mathematical Institute Leiden University Abstract This paper examines a spike-adding bifurcation phenomenon whereby small amplitude canard

More information

Complex Behavior in Coupled Nonlinear Waveguides. Roy Goodman, New Jersey Institute of Technology

Complex Behavior in Coupled Nonlinear Waveguides. Roy Goodman, New Jersey Institute of Technology Complex Behavior in Coupled Nonlinear Waveguides Roy Goodman, New Jersey Institute of Technology Nonlinear Schrödinger/Gross-Pitaevskii Equation i t = r + V (r) ± Two contexts for today: Propagation of

More information

Stability of Patterns

Stability of Patterns Stability of Patterns Steve Schecter Mathematics Department North Carolina State University 1 2 Overview Motivation Systems of viscous conservation laws and their variants are partial differential equations

More information

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems. Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

More information

Large Stable Pulse Solutions in Reaction-diffusion Equations

Large Stable Pulse Solutions in Reaction-diffusion Equations Large Stable Pulse Solutions in Reaction-diusion Equations ARJEN DOELMAN, ROBERT A. GARDNER & TASSO J. KAPER ABSTRACT. In this paper we study the existence and stability o asymptotically large stationary

More information

Nonlinear Modulational Instability of Dispersive PDE Models

Nonlinear Modulational Instability of Dispersive PDE Models Nonlinear Modulational Instability of Dispersive PDE Models Jiayin Jin, Shasha Liao, and Zhiwu Lin Georgia Tech ICERM workshop on water waves, 4/28/2017 Jiayin Jin, Shasha Liao, and Zhiwu Lin Georgia Tech

More information

FRITS VEERMAN, ARJEN DOELMAN

FRITS VEERMAN, ARJEN DOELMAN PULSES IN A GIERER-MEINHARDT EQUATION WITH A SLOW NONLINEARITY FRITS VEERMAN, ARJEN DOELMAN Abstract. In this paper, we study in detail the existence and stability o localized pulses in a Gierer- Meinhardt

More information

Perturbation theory for the defocusing nonlinear Schrödinger equation

Perturbation theory for the defocusing nonlinear Schrödinger equation Perturbation theory for the defocusing nonlinear Schrödinger equation Theodoros P. Horikis University of Ioannina In collaboration with: M. J. Ablowitz, S. D. Nixon and D. J. Frantzeskakis Outline What

More information

arxiv: v1 [math.ap] 5 Feb 2015

arxiv: v1 [math.ap] 5 Feb 2015 Spectra and stability of spatially periodic pulse patterns: Evans function factorization via Riccati transformation Björn de Rijk brijk@math.leidenuniv.nl Jens Rademacher rademach@math.uni-bremen.de Arjen

More information

Vortex knots dynamics and momenta of a tangle:

Vortex knots dynamics and momenta of a tangle: Lecture 2 Vortex knots dynamics and momenta of a tangle: - Localized Induction Approximation (LIA) and Non-Linear Schrödinger (NLS) equation - Integrable vortex dynamics and LIA hierarchy - Torus knot

More information

The Evans function and the stability of travelling waves

The Evans function and the stability of travelling waves The Evans function and the stability of travelling waves Jitse Niesen (University of Leeds) Collaborators: Veerle Ledoux (Ghent) Simon Malham (Heriot Watt) Vera Thümmler (Bielefeld) PANDA meeting, University

More information

Traveling stripes in the Klausmeier model of vegetation pattern formation

Traveling stripes in the Klausmeier model of vegetation pattern formation Traveling stripes in the Klausmeier model of vegetation pattern formation Paul Carter Arjen Doelman Abstract The Klausmeier equation is a widely studied reaction-diffusion-advection model of vegetation

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle  holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/45233 holds various files of this Leiden University dissertation. Author: Rijk, B. de Title: Periodic pulse solutions to slowly nonlinear reaction-diffusion

More information

Uniformly accurate averaging numerical schemes for oscillatory evolution equations

Uniformly accurate averaging numerical schemes for oscillatory evolution equations Uniformly accurate averaging numerical schemes for oscillatory evolution equations Philippe Chartier University of Rennes, INRIA Joint work with M. Lemou (University of Rennes-CNRS), F. Méhats (University

More information

ODE Final exam - Solutions

ODE Final exam - Solutions ODE Final exam - Solutions May 3, 018 1 Computational questions (30 For all the following ODE s with given initial condition, find the expression of the solution as a function of the time variable t You

More information

Nonlinear Autonomous Systems of Differential

Nonlinear Autonomous Systems of Differential Chapter 4 Nonlinear Autonomous Systems of Differential Equations 4.0 The Phase Plane: Linear Systems 4.0.1 Introduction Consider a system of the form x = A(x), (4.0.1) where A is independent of t. Such

More information

Stochastic differential equations in neuroscience

Stochastic differential equations in neuroscience Stochastic differential equations in neuroscience Nils Berglund MAPMO, Orléans (CNRS, UMR 6628) http://www.univ-orleans.fr/mapmo/membres/berglund/ Barbara Gentz, Universität Bielefeld Damien Landon, MAPMO-Orléans

More information

Geometric theory for multi-bump, self-similar, blowup solutions of the cubic nonlinear Schrödinger equation

Geometric theory for multi-bump, self-similar, blowup solutions of the cubic nonlinear Schrödinger equation INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 16 (3) 99 961 NONLINERITY PII: S951-7715(3)5873- Geometric theory for multi-bump, self-similar, blowup solutions of the cubic nonlinear Schrödinger equation

More information

MULTI-BUMP, BLOW-UP, SELF-SIMILAR SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION. 1. Introduction. The complex Ginzburg-Landau equation (CGL),

MULTI-BUMP, BLOW-UP, SELF-SIMILAR SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION. 1. Introduction. The complex Ginzburg-Landau equation (CGL), MULTI-BUMP, BLOW-UP, SELF-SIMILAR SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS Abstract. In this article we construct, both asymptotically and numerically,

More information

Turning points and traveling waves in FitzHugh-Nagumo type equations

Turning points and traveling waves in FitzHugh-Nagumo type equations Turning points and traveling waves in FitzHugh-Nagumo type equations Weishi Liu and Erik Van Vleck Department of Mathematics University of Kansas, Lawrence, KS 66045 E-mail: wliu@math.ku.edu, evanvleck@math.ku.edu

More information

dt = A x, x(0) = C. (1) where A is an n n matrix of constants, with n distinct eigenvalues. The solution formula is

dt = A x, x(0) = C. (1) where A is an n n matrix of constants, with n distinct eigenvalues. The solution formula is 5.4. Stability of first-order linear system Motivation: A solution needs to be stable in order to be useful in practice. The U.S. missile defense system is not yet stable. Consider d x = A x, x(0) = C.

More information

7 Planar systems of linear ODE

7 Planar systems of linear ODE 7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

More information

Existence and Stability of Traveling Pulses in a Reaction-Diffusion-Mechanics System

Existence and Stability of Traveling Pulses in a Reaction-Diffusion-Mechanics System Existence and Stability of Traveling Pulses in a Reaction-Diffusion-Mechanics System Matt Holzer, Arjen Doelman, Tasso J. Kaper July 5, 2012 Abstract In this article, we analyze traveling waves in a reaction-diffusion-mechanics

More information

Compacton-like solutions in some nonlocal hydrodynamic-type models

Compacton-like solutions in some nonlocal hydrodynamic-type models Compacton-like solutions in some nonlocal hydrodynamic-type models Vsevolod Vladimirov AGH University of Science and technology, Faculty of Applied Mathematics Protaras, October 26, 2008 WMS AGH Compactons

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

1 Introduction Self-replicating spots and pulses have been observed in excitable reaction-diusion systems [22, 17, 24, 23, 16, 9, 2, 3, 4, 25, 21, 19,

1 Introduction Self-replicating spots and pulses have been observed in excitable reaction-diusion systems [22, 17, 24, 23, 16, 9, 2, 3, 4, 25, 21, 19, Slowly-modulated two pulse solutions and pulse splitting bifurcations Arjen Doelman Korteweg-deVries Instituut Universiteit van Amsterdam Plantage Muidergracht 24 1018TV Amsterdam, The Netherlands Wiktor

More information

Figure 1: Ca2+ wave in a Xenopus oocyte following fertilization. Time goes from top left to bottom right. From Fall et al., 2002.

Figure 1: Ca2+ wave in a Xenopus oocyte following fertilization. Time goes from top left to bottom right. From Fall et al., 2002. 1 Traveling Fronts Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 2 When mature Xenopus oocytes (frog

More information

8.1 Bifurcations of Equilibria

8.1 Bifurcations of Equilibria 1 81 Bifurcations of Equilibria Bifurcation theory studies qualitative changes in solutions as a parameter varies In general one could study the bifurcation theory of ODEs PDEs integro-differential equations

More information

Nosé-Hoover Thermostats

Nosé-Hoover Thermostats Nosé- Nosé- Texas A & M, UT Austin, St. Olaf College October 29, 2013 Physical Model Nosé- q Figure: Simple Oscillator p Physical Model Continued Heat Bath T p Nosé- q Figure: Simple Oscillator in a heat

More information

Axisymmetric ring solutions of the 2D Gray Scott model and their destabilization into spots

Axisymmetric ring solutions of the 2D Gray Scott model and their destabilization into spots Physica D 19 (004) 33 6 xisymmetric ring solutions of the D Gray Scott model and their destabilization into spots David S. Morgan a, Tasso J. Kaper b, a Nonlinear Dynamical Systems Section, US Naval Research

More information

Dynamics of a mass-spring-pendulum system with vastly different frequencies

Dynamics of a mass-spring-pendulum system with vastly different frequencies Dynamics of a mass-spring-pendulum system with vastly different frequencies Hiba Sheheitli, hs497@cornell.edu Richard H. Rand, rhr2@cornell.edu Cornell University, Ithaca, NY, USA Abstract. We investigate

More information

A stability criterion for the non-linear wave equation with spatial inhomogeneity

A stability criterion for the non-linear wave equation with spatial inhomogeneity A stability criterion for the non-linear wave equation with spatial inhomogeneity Christopher J.K. Knight, Gianne Derks July 9, 2014 Abstract In this paper the non-linear wave equation with a spatial inhomogeneity

More information

ENGI Linear Approximation (2) Page Linear Approximation to a System of Non-Linear ODEs (2)

ENGI Linear Approximation (2) Page Linear Approximation to a System of Non-Linear ODEs (2) ENGI 940 4.06 - Linear Approximation () Page 4. 4.06 Linear Approximation to a System of Non-Linear ODEs () From sections 4.0 and 4.0, the non-linear system dx dy = x = P( x, y), = y = Q( x, y) () with

More information

Coherent structures near the boundary between excitable and oscillatory media

Coherent structures near the boundary between excitable and oscillatory media Coherent structures near the boundary between excitable and oscillatory media Jeremy Bellay University of Minnesota Department of Computer Science 200 Union St. S.E. Minneapolis, MN 55455, USA Arnd Scheel

More information

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( )

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( ) #7. ( pts) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, λ 5 λ 7 t t ce The general solution is then : 5 7 c c c x( 0) c c 9 9 c+ c c t 5t 7 e + e A sketch of

More information

HOPF DANCES NEAR THE TIPS OF BUSSE BALLOONS. Arjen Doelman. (Communicated by the associate editor name)

HOPF DANCES NEAR THE TIPS OF BUSSE BALLOONS. Arjen Doelman. (Communicated by the associate editor name) Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX HOPF DANCES NEAR THE TIPS OF BUSSE BALLOONS Arjen Doelman Mathematisch Instituut, Universiteit

More information

THE ASYMPTOTIC CRITICAL WAVE SPEED IN A FAMILY OF SCALAR REACTION-DIFFUSION EQUATIONS

THE ASYMPTOTIC CRITICAL WAVE SPEED IN A FAMILY OF SCALAR REACTION-DIFFUSION EQUATIONS THE ASYMPTOTIC CRITICAL WAVE SPEED IN A FAMILY OF SCALAR REACTION-DIFFUSION EQUATIONS FREDDY DUMORTIER, NIKOLA POPOVIĆ, AND TASSO J. KAPER Abstract. We study traveling wave solutions for the class of scalar

More information

THE CRITICAL WAVE SPEED FOR THE FISHER-KOLMOGOROV-PETROWSKII-PISCOUNOV EQUATION WITH CUT-OFF

THE CRITICAL WAVE SPEED FOR THE FISHER-KOLMOGOROV-PETROWSKII-PISCOUNOV EQUATION WITH CUT-OFF THE CRITICAL WAVE SPEED FOR THE FISHER-KOLMOGOROV-PETROWSKII-PISCOUNOV EQUATION WITH CUT-OFF FREDDY DUMORTIER, NIKOLA POPOVIĆ, AND TASSO J. KAPER Abstract. The Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP)

More information

Exponentially small splitting of separatrices of the pendulum: two different examples. Marcel Guardia, Carme Olivé, Tere M-Seara

Exponentially small splitting of separatrices of the pendulum: two different examples. Marcel Guardia, Carme Olivé, Tere M-Seara Exponentially small splitting of separatrices of the pendulum: two different examples Marcel Guardia, Carme Olivé, Tere M-Seara 1 A fast periodic perturbation of the pendulum We consider a non-autonomous

More information

arxiv: v1 [nlin.ps] 13 Feb 2011

arxiv: v1 [nlin.ps] 13 Feb 2011 Pinned fluxons in a Josephson junction with a finite-length inhomogeneity Gianne Derks, Arjen Doelman Christopher J.K. Knight, Hadi Susanto October 29, 2018 Abstract arxiv:1102.3417v1 [nlin.ps] 13 Feb

More information

Math 575-Lecture 26. KdV equation. Derivation of KdV

Math 575-Lecture 26. KdV equation. Derivation of KdV Math 575-Lecture 26 KdV equation We look at the KdV equations and the so-called integrable systems. The KdV equation can be written as u t + 3 2 uu x + 1 6 u xxx = 0. The constants 3/2 and 1/6 are not

More information

Dynamics of weakly interacting front and back waves in three-component systems

Dynamics of weakly interacting front and back waves in three-component systems Toyama Math. J. Vol. 3(27), 1-34 Dynamics of weakly interacting front and back waves in three-component systems Hideo Ikeda Abstract. Weak interaction of stable travelling front and back solutions is considered

More information

Calculus and Differential Equations II

Calculus and Differential Equations II MATH 250 B Second order autonomous linear systems We are mostly interested with 2 2 first order autonomous systems of the form { x = a x + b y y = c x + d y where x and y are functions of t and a, b, c,

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents The 6th TIMS-OCAMI-WASEDA Joint International Workshop on Integrable Systems and Mathematical Physics March 22-26, 2014 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN

More information

The Stability and Dynamics of a Spike in the One-Dimensional Keller-Segel model

The Stability and Dynamics of a Spike in the One-Dimensional Keller-Segel model Preprint 1 The Stability and Dynamics of a Spike in the One-Dimensional Keller-Segel model K. KANG, T. KOLOKOLNIKOV and. J. WARD Kyungkeun Kang, Department of athematics, University of British Columbia,

More information

On low speed travelling waves of the Kuramoto-Sivashinsky equation.

On low speed travelling waves of the Kuramoto-Sivashinsky equation. On low speed travelling waves of the Kuramoto-Sivashinsky equation. Jeroen S.W. Lamb Joint with Jürgen Knobloch (Ilmenau, Germany) Marco-Antonio Teixeira (Campinas, Brazil) Kevin Webster (Imperial College

More information

WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY

WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY J.M. TUWANKOTTA Abstract. In this paper we present an analysis of a system of coupled oscillators suggested

More information

Numerical Approximation of Phase Field Models

Numerical Approximation of Phase Field Models Numerical Approximation of Phase Field Models Lecture 2: Allen Cahn and Cahn Hilliard Equations with Smooth Potentials Robert Nürnberg Department of Mathematics Imperial College London TUM Summer School

More information

Phase portraits in two dimensions

Phase portraits in two dimensions Phase portraits in two dimensions 8.3, Spring, 999 It [ is convenient to represent the solutions to an autonomous system x = f( x) (where x x = ) by means of a phase portrait. The x, y plane is called

More information

Uncommon (in)stability properties in the numerical method of characteristic applied to hyperbolic equations

Uncommon (in)stability properties in the numerical method of characteristic applied to hyperbolic equations University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2016 Uncommon (in)stability properties in the numerical method of characteristic applied to hyperbolic

More information

Slow Modulation & Large-Time Dynamics Near Periodic Waves

Slow Modulation & Large-Time Dynamics Near Periodic Waves Slow Modulation & Large-Time Dynamics Near Periodic Waves Miguel Rodrigues IRMAR Université Rennes 1 France SIAG-APDE Prize Lecture Jointly with Mathew Johnson (Kansas), Pascal Noble (INSA Toulouse), Kevin

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

ADIABATIC STABILITY UNDER SEMI-STRONG INTERACTIONS: THE WEAKLY DAMPED REGIME

ADIABATIC STABILITY UNDER SEMI-STRONG INTERACTIONS: THE WEAKLY DAMPED REGIME ADIABATIC STABILITY UNDER SEMI-STRONG INTERACTIONS: THE WEAKLY DAMPED REGIME THOMAS BELLSKY, ARJEN DOELMAN, TASSO J KAPER, AND KEITH PROMISLOW Abstract We rigorously derive multi-pulse interaction laws

More information

Traveling waves of a kinetic transport model for the KPP-Fisher equation

Traveling waves of a kinetic transport model for the KPP-Fisher equation Traveling waves of a kinetic transport model for the KPP-Fisher equation Christian Schmeiser Universität Wien and RICAM homepage.univie.ac.at/christian.schmeiser/ Joint work with C. Cuesta (Bilbao), S.

More information

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos Stephen Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition With 250 Figures 4jj Springer I Series Preface v L I Preface to the Second Edition vii Introduction 1 1 Equilibrium

More information

Nonlinear eigenvalue problems for higher order model equations

Nonlinear eigenvalue problems for higher order model equations Nonlinear eigenvalue problems for higher order model equations L.A. Peletier Mathematical Institute, Leiden University PB 951, 3 RA Leiden, The Netherlands e-mail: peletier@math.leidenuniv.nl 1 Introduction

More information

Dynamics of Two Coupled van der Pol Oscillators with Delay Coupling Revisited

Dynamics of Two Coupled van der Pol Oscillators with Delay Coupling Revisited Dynamics of Two Coupled van der Pol Oscillators with Delay Coupling Revisited arxiv:1705.03100v1 [math.ds] 8 May 017 Mark Gluzman Center for Applied Mathematics Cornell University and Richard Rand Dept.

More information

Matrix stabilization using differential equations.

Matrix stabilization using differential equations. Matrix stabilization using differential equations. Nicola Guglielmi Universitá dell Aquila and Gran Sasso Science Institute, Italia NUMOC-2017 Roma, 19 23 June, 2017 Inspired by a joint work with Christian

More information

Combustion fronts in porous media with two layers

Combustion fronts in porous media with two layers Combustion fronts in porous media with two layers layer 1 layer 2 Steve Schecter North Carolina State University (USA) Jesus Carlos da Mota Universidade Federal de Goiás (Brazil) 1 Overview Subject: Propagation

More information

Traveling Waves and Steady States of S-K-T Competition Model

Traveling Waves and Steady States of S-K-T Competition Model Traveling Waves and Steady States of S-K-T Competition Model with Cross diffusion Capital Normal University, Beijing, China (joint work with Wei-Ming Ni, Qian Xu, Xuefeng Wang and Yanxia Wu) 2015 KAIST

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: January 14, 2019, at 08 30 12 30 Johanneberg Kristian

More information

AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS

AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS POINCARÉ-MELNIKOV-ARNOLD METHOD FOR TWIST MAPS AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS 1. Introduction A general theory for perturbations of an integrable planar map with a separatrix to a hyperbolic fixed

More information

ODE, part 2. Dynamical systems, differential equations

ODE, part 2. Dynamical systems, differential equations ODE, part 2 Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2011 Dynamical systems, differential equations Consider a system of n first order equations du dt = f(u, t),

More information

STABILITY ANALYSIS OF π-kinks IN A 0-π JOSEPHSON JUNCTION

STABILITY ANALYSIS OF π-kinks IN A 0-π JOSEPHSON JUNCTION STABILITY ANALYSIS OF π-kinks IN A -π JOSEPHSON JUNCTION G. DERKS, A. DOELMAN, S.A. VAN GILS, AND H. SUSANTO Abstract. We consider a spatially non-autonomous discrete sine-gordon equation with constant

More information

Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada

Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada Spectrum of the linearized NLS problem Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada Collaboration: Marina Chugunova (McMaster, Canada) Scipio Cuccagna (Modena and Reggio Emilia,

More information

Evans function review

Evans function review Evans function review Part I: History, construction, properties and applications Strathclyde, April 18th 2005 Simon J.A. Malham http://www.ma.hw.ac.uk/ simonm/talks/ Acknowledgments T.J. Bridges, C.K.R.T.

More information

Department of Mathematics IIT Guwahati

Department of Mathematics IIT Guwahati Stability of Linear Systems in R 2 Department of Mathematics IIT Guwahati A system of first order differential equations is called autonomous if the system can be written in the form dx 1 dt = g 1(x 1,

More information

One Dimensional Dynamical Systems

One Dimensional Dynamical Systems 16 CHAPTER 2 One Dimensional Dynamical Systems We begin by analyzing some dynamical systems with one-dimensional phase spaces, and in particular their bifurcations. All equations in this Chapter are scalar

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

Modulation and water waves

Modulation and water waves Summer School on Water Waves................Newton Institute August 2014 Part 1 Thomas J. Bridges, University of Surrey Modulation of uniform flows and KdV h 0 u 0 00000000000000000000000000000 11111111111111111111111111111

More information

Section 5.4 (Systems of Linear Differential Equation); 9.5 Eigenvalues and Eigenvectors, cont d

Section 5.4 (Systems of Linear Differential Equation); 9.5 Eigenvalues and Eigenvectors, cont d Section 5.4 (Systems of Linear Differential Equation); 9.5 Eigenvalues and Eigenvectors, cont d July 6, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This

More information

A review of stability and dynamical behaviors of differential equations:

A review of stability and dynamical behaviors of differential equations: A review of stability and dynamical behaviors of differential equations: scalar ODE: u t = f(u), system of ODEs: u t = f(u, v), v t = g(u, v), reaction-diffusion equation: u t = D u + f(u), x Ω, with boundary

More information

In these chapter 2A notes write vectors in boldface to reduce the ambiguity of the notation.

In these chapter 2A notes write vectors in boldface to reduce the ambiguity of the notation. 1 2 Linear Systems In these chapter 2A notes write vectors in boldface to reduce the ambiguity of the notation 21 Matrix ODEs Let and is a scalar A linear function satisfies Linear superposition ) Linear

More information

Dynamics and stochastic limit for phase transition problems. problems with noise. Dimitra Antonopoulou IACM-FORTH

Dynamics and stochastic limit for phase transition problems. problems with noise. Dimitra Antonopoulou IACM-FORTH Dynamics and stochastic limit for phase transition problems with noise IACM-FORTH International Conference on Applied Mathematics, September 16-20, 2013, ACMAC, Heraklion, Greece Table of contents 1 1.1

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Dmitry Pelinovsky 1 and Panos Kevrekidis 2 1 Department of Mathematics, McMaster University, Hamilton, Ontario, Canada

More information

Stability of Stationary Fronts in a Non-linear Wave Equation with Spatial Inhomogeneity.

Stability of Stationary Fronts in a Non-linear Wave Equation with Spatial Inhomogeneity. Stability of Stationary Fronts in a Non-linear Wave Equation with Spatial Inhomogeneity. Christopher J.K. Knight, Gianne Derks, Arjen Doelman Hadi Susanto May 2, 202 Abstract We consider inhomogeneous

More information

Project: Vibration of Diatomic Molecules

Project: Vibration of Diatomic Molecules Project: Vibration of Diatomic Molecules Objective: Find the vibration energies and the corresponding vibrational wavefunctions of diatomic molecules H 2 and I 2 using the Morse potential. equired Numerical

More information

Advanced Mathematical Methods for Scientists and Engineers I

Advanced Mathematical Methods for Scientists and Engineers I Carl M. Bender Steven A. Orszag Advanced Mathematical Methods for Scientists and Engineers I Asymptotic Methods and Perturbation Theory With 148 Figures Springer CONTENTS! Preface xiii PART I FUNDAMENTALS

More information

Pattern formation in reaction-diffusion systems an explicit approach

Pattern formation in reaction-diffusion systems an explicit approach Pattern formation in reaction-diffusion systems an explicit approach Arjen Doelman Mathematisch Instituut, Leiden University, P.O. Box 9512, 2300 RA Leiden, the Netherlands, doelman@math.leidenuniv.nl

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Small-scale instabilities in dynamical systems with sliding. Sieber, J and Kowalczyk, P. MIMS EPrint:

Small-scale instabilities in dynamical systems with sliding. Sieber, J and Kowalczyk, P. MIMS EPrint: Small-scale instabilities in dynamical systems with sliding Sieber, J and Kowalczyk, P 2010 MIMS EPrint: 2010.2 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester

More information

Exponential Stability of the Traveling Fronts for a Pseudo-Para. Pseudo-Parabolic Fisher-KPP Equation

Exponential Stability of the Traveling Fronts for a Pseudo-Para. Pseudo-Parabolic Fisher-KPP Equation Exponential Stability of the Traveling Fronts for a Pseudo-Parabolic Fisher-KPP Equation Based on joint work with Xueli Bai (Center for PDE, East China Normal Univ.) and Yang Cao (Dalian University of

More information