system CWI, Amsterdam May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit

Size: px
Start display at page:

Download "system CWI, Amsterdam May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit"

Transcription

1 CWI, Amsterdam May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit Joint work: A. Doelman (CWI/UvA), T.J. Kaper (BU), K. Promislow (MSU)

2 Outline

3 Outline

4 Paradigm U t = U ξξ + U U 3 ε(αv + βw + γ) τv t = 1 ε V 2 ξξ + U V θw t = D2 ε W 2 ξξ + U W - 0 < ε 1; τ, θ > 0; D > 1; α, β, γ R; all parameters are O(1) - ξ R, and (U, V, W ) are bounded - 3 coupled reaction-diffusion equations; coupling is weak - Singular perturbed, slow-fast nature - Bi-stable

5 Paradigm U t = U ξξ + U U 3 ε(αv + βw + γ) τv t = 1 ε V 2 ξξ + U V θw t = D2 ε W 2 ξξ + U W - 0 < ε 1; τ, θ > 0; D > 1; α, β, γ R; all parameters are O(1) - ξ R, and (U, V, W ) are bounded - 3 coupled reaction-diffusion equations; coupling is weak - Singular perturbed, slow-fast nature - Bi-stable C.P. Schenk, M. Or-Guil, M. Bode, H.-G. Purwins Interacting Pulses in Three-Component Reaction-Diffusion Systems on Two-Dimensional Domains. PRL, 78 (1997). Y. Nishiura, T. Teramoto, K. Ueda Scattering and separators in dissipative s. PRE, 67 (2003).

6 Stationary 1-pulse

7 Stationary 2-pulse

8 Traveling 1-pulse

9 Rich dynamics

10 2-front dynamics

11 3-front dynamics

12 3-front dynamics

13 4-front dynamics

14 Outline

15 Solutions Theorem For ε small enough, the PDE possesses a stationary 1-pulse solution if there exists an A (0, 1) which solves The 1-pulse is stable if αa 2 + βa 2 D = γ. αa 2 + β D A 2 D > 0. Moreover, the width of the pulse is Γ = 2 log A. ε

16 Solutions Theorem For ε small enough, the PDE possesses a stationary 2-pulse solution if there exists 0 < A 1 < A 2 < 1 which solve ( 0 = α(a 1 A 2) 2 + β(a 1/D 1 A 1/D 2 ) 2, 2γ = α(a 2 2 A 2 1) 2αA 1A β(a 2/D 2 A 2/D 1 ) 2βA 1/D 1 A 1/D 2. The 2-pulse is stable if λ 2,3,4 (α, β, D, γ, A 1, A 2 ) < 0. Moreover, both pulses have the same width Γ = 1 ε log A 2 A 1.

17 Eigenvalues Eigenvalues λ 2,3,4

18 Outline

19 1-Front dynamics Theorem A 1-front solution is stable and its front evolves according to PDE vs ODE Γ t = 3 2 2εγ

20 2-Front dynamics 2-Front dynamics The two fronts Γ 1 < Γ 2 of a 2-front solution evolve according to (Γ 1 ) t = 3 2 2ε ( γ αe ε(γ 2 Γ 1) βe ε D (Γ2 Γ1)), (Γ 2 ) t = 3 2 2ε ( γ αe ε(γ 2 Γ 1) βe ε D (Γ2 Γ1)). : Introduce 2 co-moving frames. Determine jump conditions by solving in the fast fields. Determine boundary conditions by solving in the slow fields. KEY Speed no leading order influence in the slow fields.

21 Rigorous Theorem There exist a moving 2-front solution which can be decomposed into Φ 2f (ξ, t) = Φ Γ(t) (ξ) + Z(ξ, t). The two fronts Γ i (t) evolve according to the formally derived ODE, while the remainder Z(ξ, t) stays O(ε)-small.

22 Rigorous Theorem There exist a moving 2-front solution which can be decomposed into Φ 2f (ξ, t) = Φ Γ(t) (ξ) + Z(ξ, t). The two fronts Γ i (t) evolve according to the formally derived ODE, while the remainder Z(ξ, t) stays O(ε)-small. Φ Γ (ξ) = U 0(ξ; Γ) G 2 U 0 (ξ; Γ) G 3 U 0 (ξ; Γ), where ( 2 ) ( 2 ) U 0 (ξ, Γ) = 1 + tanh 2 (ξ Γ 1) tanh 2 (ξ Γ 2), G 2 (ξ) = 1 2 ε exp ( ε ξ ), G 3(ξ) = 1 ε 2 D exp ( ε D ξ ).

23 Ansatz Φ Γ (ξ)

24 χ-norm χ-norm U 3 3 χ = u i χ = ( χu i L 1 + ξ u i L 1), i=1 i=1 with χ(ξ) = 1 2 exp ( ξ ) (positive, mass 1, exponentially decaying) Properties u L u χ, G u χ C u χ, u 2 χ 2 u 2 χ.

25 Proof Initializing Freeze basepoint: Γ = Γ 0 Decompose: Φ 2f (ξ, t) = Φ Γ(t) (ξ) + Z(ξ, t), such that Z(ξ, t) X Γ 0 for all t < t Z(ξ, t) χ ε for all t < t PDE: Z t + Φ Γ Γ Γ t = R(Φ Γ ) + L Γ 0Z + (L Γ L Γ 0)Z + N(Z)

26 Proof Initializing Freeze basepoint: Γ = Γ 0 Decompose: Φ 2f (ξ, t) = Φ Γ(t) (ξ) + Z(ξ, t), such that Z(ξ, t) X Γ 0 for all t < t Z(ξ, t) χ ε for all t < t PDE: Z t + Φ Γ Γ Γ t = R(Φ Γ ) + L Γ 0Z + (L Γ L Γ 0)Z + N(Z) R(Φ Γ ) = L Γ = ( ) (U0) ξξ + U 0 (U 0) 3 ε (α(g 2 U 0) + β(g 3 U 0) + γ) 0 0 ξ U2 0 (Γ) ( εα ) εβ τ τ ε 2 2 ξ 1 0 ( ) 1 1 D θ 0 2 θ ε 2 2 ξ 1 N(Z) = ( 3Φ 1 Z 2 1 Z ) t

27 Projecting I Projecting on X c Γ 0 π Γ 0Z t = 0 and π Γ 0L Γ 0Z = 0 ( PDE: π ΦΓ Γ 0 Γ Γ t) = πγ 0 (R + LZ + N(Z)) Dynamics of Γ: (Γ 1 ) t = 1 ψ 1 (R [ LZ] 1 + [N(Z)] 1, ψ 1 ) L 2(1 + O(ε)) L 2 (Γ 2 ) t = 1 ψ 2 (R [ LZ] 1 + [N(Z)] 1, ψ 2 ) L 2(1 + O(ε)) L 2 where ψ 1,2 (ξ) = 2 1 2sech 2 ( 1 2 2(ξ Γ1,2 ) )

28 Projecting II Projecting on X Γ 0 π Γ 0Z t = Z t and π Γ 0L Γ 0Z = L Γ 0Z ( PDE: Z t = L Γ 0Z + π Γ 0 R Φ Γ Γ Γ t + LZ + N(Z) ) Variation of Constants: Z t Z(ξ, t) = S(t)Z 0 + S(t s) π Γ 0 R Φ «Γ Γt + LZ + N(Z) ds Γ 0 where S is the semigroup generated by L Γ 0.

29 Projecting III Bounds S(t)F χ Ce νt F χ if F X Γ 0 ( π Γ 0 R Φ Γ Γ Γ t) χ = O(ε) LZ χ C Γ Γ 0 Z χ N(Z) χ C { Z 1 2 χ + Z 1 3 χ} C Z 2 χ Remainder Z(ξ, t) Z(ξ, t) χ C { e νt Z(ξ, 0) χ + ε } = εc for t [ ) 1 0, log ε 4ν

30 Step Sketch

31 Iteration At t = t : Choose new basepoint Γ 1 Decompose: Φ 2f (ξ, t) = Φ Γ(t) (ξ) + Z(ξ, t), such that Z(ξ, t) X Γ 1 for all t t < 2t Γ 1 Γ(t ) C 1 Γ(t ) Γ 0 Z(ξ, t ) χ New basepoint doesn t increase the asymptotic magnitude of the remainder: Z 1 χ = O(ε) Repeat previous analysis to prove Z(ξ, t) χ = O(ε) for 0 t < 2t Final Result Z(ξ, t) χ εc for all t ( 3 (Γ 1 ) t = 2 2ε γ αe ε(γ 2 Γ 1) βe ε (Γ2 Γ1)) D ( (Γ 2 ) t = 3 2 2ε γ αe ε(γ 2 Γ 1) βe ε (Γ2 Γ1)) D

32 N-front ODE N-front ODE The same theorem can be proven for the dynamics of the N fronts of a N-front solution. For example, the 4-front ODE reads 8 Γ 1(t) = 3 2 2ε γ + α e ε(γ 1 Γ 2 ) + e ε(γ 1 Γ 3 ) e ε(γ 1 Γ 4 ) + β e D ε (Γ 1 Γ 2 ) + e D ε (Γ 1 Γ 3 ) e D ε (Γ 1 Γ 4 ), Γ 2(t) = 3 2 2ε γ + α e ε(γ 1 Γ 2 ) + e ε(γ 2 Γ 3 ) e ε(γ 2 Γ 4 ) >< + β e D ε (Γ 1 Γ 2 ) + e D ε (Γ 2 Γ 3 ) e D ε (Γ 2 Γ 4 ), Γ 3(t) = 3 2 2ε γ + α e ε(γ 1 Γ 3 ) + e ε(γ 2 Γ 3 ) e ε(γ 3 Γ 4 ) + β e D ε (Γ 1 Γ 3 ) + e D ε (Γ 2 Γ 3 ) e D ε (Γ 3 Γ 4 ), 2ε >: Γ 4(t) = β γ + α e D ε (Γ 1 Γ 4 ) + e D ε (Γ 2 Γ 4 ) e D ε (Γ 3 Γ 4 ) e ε(γ 1 Γ 4 ) + e ε(γ 2 Γ 4 ) e ε(γ 3 Γ 4 ).

33 Theorem There exists no stationary N-front solution for N odd. While a traveling N-front solution (all fronts with the same speed) doesn t exists for N even.

34 PDE vs ODE 2-front dynamics

35 PDE vs ODE 3-front dynamics

36 PDE vs ODE 4-front dynamics

37 4-front dynamics Theorem The manifold M 0 := {Γ 4 (t) = Γ 1 (t), Γ 3 (t) = Γ 2 (t)}, is an invariant manifold of the 4-front ODE. The manifold M 0 is linear stable as long as ( ) αa 1 (A 2 A 1 2 ) + βa 1 D 1 A 1 D 2 A 1 D 2 < 0, with A i := e εγ i. Moreover, the fixed points on M 0 coincide with the 2-pulse solutions.

38 Outline

39 Summary Existence and Stability results of several pulse-type solutions Front dynamics of traveling N-front solutions

40 Summary Existence and Stability results of several pulse-type solutions Front dynamics of traveling N-front solutions Future work ODE dynamics RG for τ, θ large Higher dimensional spatial variable Heterogenous background

41 Thank you for your attention!! For a preprint of the existence and stability analysis: doelman/publist.html

Group Method. December 16, Oberwolfach workshop Dynamics of Patterns

Group Method. December 16, Oberwolfach workshop Dynamics of Patterns CWI, Amsterdam heijster@cwi.nl December 6, 28 Oberwolfach workshop Dynamics of Patterns Joint work: A. Doelman (CWI/UvA), T.J. Kaper (BU), K. Promislow (MSU) Outline 2 3 4 Interactions of localized structures

More information

system May 19, 2009 MS69: New Developments in Pulse Interactions SIAM Conference on Applications of Dynamical Systems Snowbird, Utah, USA

system May 19, 2009 MS69: New Developments in Pulse Interactions SIAM Conference on Applications of Dynamical Systems Snowbird, Utah, USA CWI, Amsterdam heijster@cwi.nl May 9, 29 MS69: New Developments in Pulse s SIAM Conference on Applications of Dynamical Systems Snowbird, Utah, USA Joint work: A. Doelman (CWI/UvA), T.J. Kaper (BU), K.

More information

Front Interactions in a Three-Component System

Front Interactions in a Three-Component System SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 9, No., pp. 9 33 c Society for Industrial and Applied Mathematics Front Interactions in a Three-Component System P. van Heijster, A. Doelman, T. J. Kaper, and K.

More information

MS: Nonlinear Wave Propagation in Singular Perturbed Systems

MS: Nonlinear Wave Propagation in Singular Perturbed Systems MS: Nonlinear Wave Propagation in Singular Perturbed Systems P. van Heijster: Existence & stability of 2D localized structures in a 3-component model. Y. Nishiura: Rotational motion of traveling spots

More information

Coexistence of stable spots and fronts in a three-component FitzHugh Nagumo system

Coexistence of stable spots and fronts in a three-component FitzHugh Nagumo system RIMS Kôkyûroku Bessatsu Bx (01x, 000 000 Coexistence of stable spots and fronts in a three-component FitzHugh Nagumo system Dedicated, with gratitude and deep respect, to Professor Yasumasa Nishiura on

More information

Stationary radial spots in a planar threecomponent reaction-diffusion system

Stationary radial spots in a planar threecomponent reaction-diffusion system Stationary radial spots in a planar threecomponent reaction-diffusion system Peter van Heijster http://www.dam.brown.edu/people/heijster SIAM Conference on Nonlinear Waves and Coherent Structures MS: Recent

More information

NONLINEAR ASYMPTOTIC STABILITY OF THE SEMI-STRONG PULSE DYNAMICS IN A REGULARIZED GIERER-MEINHARDT MODEL

NONLINEAR ASYMPTOTIC STABILITY OF THE SEMI-STRONG PULSE DYNAMICS IN A REGULARIZED GIERER-MEINHARDT MODEL NONLINEAR ASYMPTOTIC STABILITY OF THE SEMI-STRONG PULSE DYNAMICS IN A REGULARIZED GIERER-MEINHARDT MODEL ARJEN DOELMAN, TASSO J. KAPER, AND KEITH PROMISLOW Abstract. We use renormalization group RG techniques

More information

of the Schnakenberg model

of the Schnakenberg model Pulse motion in the semi-strong limit of the Schnakenberg model Newton Institute 2005 Jens Rademacher, Weierstraß Institut Berlin joint work with Michael Ward (UBC) Angelfish 2, 6, 12 months old [Kondo,

More information

ADIABATIC STABILITY UNDER SEMI-STRONG INTERACTIONS: THE WEAKLY DAMPED REGIME

ADIABATIC STABILITY UNDER SEMI-STRONG INTERACTIONS: THE WEAKLY DAMPED REGIME ADIABATIC STABILITY UNDER SEMI-STRONG INTERACTIONS: THE WEAKLY DAMPED REGIME THOMAS BELLSKY, ARJEN DOELMAN, TASSO J KAPER, AND KEITH PROMISLOW Abstract We rigorously derive multi-pulse interaction laws

More information

Travelling waves in a singularly perturbed sine-gordon equation

Travelling waves in a singularly perturbed sine-gordon equation Physica D 18 3 4 7 Travelling waves in a singularly perturbed sine-gordon equation Gianne Derks a, Arjen Doelman b, Stephan A. van Gils c,, Timco Visser c a Department of Mathematics and Statistics, University

More information

Traveling stripes in the Klausmeier model of vegetation pattern formation

Traveling stripes in the Klausmeier model of vegetation pattern formation Traveling stripes in the Klausmeier model of vegetation pattern formation Paul Carter Arjen Doelman Abstract The Klausmeier equation is a widely studied reaction-diffusion-advection model of vegetation

More information

The Dynamics of Reaction-Diffusion Patterns

The Dynamics of Reaction-Diffusion Patterns The Dynamics of Reaction-Diffusion Patterns Arjen Doelman (Leiden) (Rob Gardner, Tasso Kaper, Yasumasa Nishiura, Keith Promislow, Bjorn Sandstede) STRUCTURE OF THE TALK - Motivation - Topics that won t

More information

The Evans function and the stability of travelling waves

The Evans function and the stability of travelling waves The Evans function and the stability of travelling waves Jitse Niesen (University of Leeds) Collaborators: Veerle Ledoux (Ghent) Simon Malham (Heriot Watt) Vera Thümmler (Bielefeld) PANDA meeting, University

More information

Colliding dissipative pulses the shooting manifold

Colliding dissipative pulses the shooting manifold Colliding dissipative pulses the shooting manifold Arnd Scheel School of Mathematics University of Minnesota 206 Church St SE Minneapolis, MN 55455 scheel@mathumnedu J Douglas Wright School of Mathematics

More information

Late-time tails of self-gravitating waves

Late-time tails of self-gravitating waves Late-time tails of self-gravitating waves (non-rigorous quantitative analysis) Piotr Bizoń Jagiellonian University, Kraków Based on joint work with Tadek Chmaj and Andrzej Rostworowski Outline: Motivation

More information

Numerical Approximation of Phase Field Models

Numerical Approximation of Phase Field Models Numerical Approximation of Phase Field Models Lecture 2: Allen Cahn and Cahn Hilliard Equations with Smooth Potentials Robert Nürnberg Department of Mathematics Imperial College London TUM Summer School

More information

Dissipative Solitons in Physical Systems

Dissipative Solitons in Physical Systems Dissipative Solitons in Physical Systems Talk given by H.-G. Purwins Institute of Applied Physics University of Münster, Germany Chapter 1 Introduction Cosmology and Pattern Formation 1-1 Complex Behaviour

More information

Front Speeds, Cut-Offs, and Desingularization: A Brief Case Study

Front Speeds, Cut-Offs, and Desingularization: A Brief Case Study Contemporary Mathematics Front Speeds, Cut-Offs, and Desingularization: A Brief Case Study Nikola Popović Abstract. The study of propagation phenomena in reaction-diffusion systems is a central topic in

More information

Decay profiles of a linear artificial viscosity system

Decay profiles of a linear artificial viscosity system Decay profiles of a linear artificial viscosity system Gene Wayne, Ryan Goh and Roland Welter Boston University rwelter@bu.edu July 2, 2018 This research was supported by funding from the NSF. Roland Welter

More information

A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao

A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao Department of Mathematics, The Ohio State University; Department of Mathematics and Computer Science, Claremont McKenna College Workshop

More information

Perturbation theory for the defocusing nonlinear Schrödinger equation

Perturbation theory for the defocusing nonlinear Schrödinger equation Perturbation theory for the defocusing nonlinear Schrödinger equation Theodoros P. Horikis University of Ioannina In collaboration with: M. J. Ablowitz, S. D. Nixon and D. J. Frantzeskakis Outline What

More information

Perturbation Theory. Andreas Wacker Mathematical Physics Lund University

Perturbation Theory. Andreas Wacker Mathematical Physics Lund University Perturbation Theory Andreas Wacker Mathematical Physics Lund University General starting point Hamiltonian ^H (t) has typically noanalytic solution of Ψ(t) Decompose Ĥ (t )=Ĥ 0 + V (t) known eigenstates

More information

MULTI-BUMP, BLOW-UP, SELF-SIMILAR SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION. 1. Introduction. The complex Ginzburg-Landau equation (CGL),

MULTI-BUMP, BLOW-UP, SELF-SIMILAR SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION. 1. Introduction. The complex Ginzburg-Landau equation (CGL), MULTI-BUMP, BLOW-UP, SELF-SIMILAR SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS Abstract. In this article we construct, both asymptotically and numerically,

More information

The stability of travelling fronts for general scalar viscous balance law

The stability of travelling fronts for general scalar viscous balance law J. Math. Anal. Appl. 35 25) 698 711 www.elsevier.com/locate/jmaa The stability of travelling fronts for general scalar viscous balance law Yaping Wu, Xiuxia Xing Department of Mathematics, Capital Normal

More information

Classical solutions for the quasi-stationary Stefan problem with surface tension

Classical solutions for the quasi-stationary Stefan problem with surface tension Classical solutions for the quasi-stationary Stefan problem with surface tension Joachim Escher, Gieri Simonett We show that the quasi-stationary two-phase Stefan problem with surface tension has a unique

More information

High-Gain Observers in Nonlinear Feedback Control. Lecture # 3 Regulation

High-Gain Observers in Nonlinear Feedback Control. Lecture # 3 Regulation High-Gain Observers in Nonlinear Feedback Control Lecture # 3 Regulation High-Gain ObserversinNonlinear Feedback ControlLecture # 3Regulation p. 1/5 Internal Model Principle d r Servo- Stabilizing u y

More information

Uniformly accurate averaging numerical schemes for oscillatory evolution equations

Uniformly accurate averaging numerical schemes for oscillatory evolution equations Uniformly accurate averaging numerical schemes for oscillatory evolution equations Philippe Chartier University of Rennes, INRIA Joint work with M. Lemou (University of Rennes-CNRS), F. Méhats (University

More information

Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model

Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model Letter Forma, 15, 281 289, 2000 Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model Yasumasa NISHIURA 1 * and Daishin UEYAMA 2 1 Laboratory of Nonlinear Studies and Computations,

More information

From the Newton equation to the wave equation in some simple cases

From the Newton equation to the wave equation in some simple cases From the ewton equation to the wave equation in some simple cases Xavier Blanc joint work with C. Le Bris (EPC) and P.-L. Lions (Collège de France) Université Paris Diderot, FRACE http://www.ann.jussieu.fr/

More information

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Margaret Beck Joint work with Anna Ghazaryan, University of Kansas and Björn Sandstede, Brown University September

More information

A model of alignment interaction for oriented particles with phase transition

A model of alignment interaction for oriented particles with phase transition A model of alignment interaction for oriented particles with phase transition Amic Frouvelle ACMAC Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond (Institut de Mathématiques de Toulouse,

More information

Hopping transport in disordered solids

Hopping transport in disordered solids Hopping transport in disordered solids Dominique Spehner Institut Fourier, Grenoble, France Workshop on Quantum Transport, Lexington, March 17, 2006 p. 1 Outline of the talk Hopping transport Models for

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

Spike-adding canard explosion of bursting oscillations

Spike-adding canard explosion of bursting oscillations Spike-adding canard explosion of bursting oscillations Paul Carter Mathematical Institute Leiden University Abstract This paper examines a spike-adding bifurcation phenomenon whereby small amplitude canard

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Homogenization for chaotic dynamical systems

Homogenization for chaotic dynamical systems Homogenization for chaotic dynamical systems David Kelly Ian Melbourne Department of Mathematics / Renci UNC Chapel Hill Mathematics Institute University of Warwick November 3, 2013 Duke/UNC Probability

More information

TitleScattering and separators in dissip. Author(s) Nishiura, Yasumasa; Teramoto, Takas

TitleScattering and separators in dissip. Author(s) Nishiura, Yasumasa; Teramoto, Takas TitleScattering and separators in dissip Author(s) Nishiura, Yasumasa; Teramoto, Takas Citation Physical review. E, Statistical, no physics, 67(5): 056210 Issue Date 2003 DOI Doc URLhttp://hdl.handle.net/2115/35226

More information

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Noise is often considered as some disturbing component of the system. In particular physical situations, noise becomes

More information

arxiv: v1 [math.ap] 10 Jun 2008

arxiv: v1 [math.ap] 10 Jun 2008 Counterpropagating two-soliton solutions in the FPU lattice arxiv:0806.1637v1 [math.ap] 10 Jun 2008 A. Hoffman C.E.Wayne Boston University Department of Mathematics Statistics Center for BioDynamics 111

More information

Mathematical modeling of critical conditions in the thermal explosion problem

Mathematical modeling of critical conditions in the thermal explosion problem Mathematical modeling of critical conditions in the thermal explosion problem G. N. Gorelov and V. A. Sobolev Samara State University, Russia Abstract The paper is devoted to the thermal explosion problem

More information

Traveling spots in an excitable medium and ventricular fibrillation

Traveling spots in an excitable medium and ventricular fibrillation Meiji University School of Interdisciplinary Mathematical Sciences 1 Traveling spots in an excitable medium and ventricular fibrillation Hirokazu Ninomiya Meiji University School of Interdisciplinary Mathematical

More information

Coherent structures near the boundary between excitable and oscillatory media

Coherent structures near the boundary between excitable and oscillatory media Coherent structures near the boundary between excitable and oscillatory media Jeremy Bellay University of Minnesota Department of Computer Science 200 Union St. S.E. Minneapolis, MN 55455, USA Arnd Scheel

More information

Stability of Patterns

Stability of Patterns Stability of Patterns Steve Schecter Mathematics Department North Carolina State University 1 2 Overview Motivation Systems of viscous conservation laws and their variants are partial differential equations

More information

Travelling bubbles in a moving boundary problem of Hele-Shaw type

Travelling bubbles in a moving boundary problem of Hele-Shaw type Travelling bubbles in a moving boundary problem of Hele-Shaw type G. Prokert, TU Eindhoven Center for Analysis, Scientific Computing, and Applications (CASA) g.prokert@tue.nl Joint work with M. Günther,

More information

Exponentially Accurate Semiclassical Tunneling Wave Functions in One Dimension

Exponentially Accurate Semiclassical Tunneling Wave Functions in One Dimension Exponentially Accurate Semiclassical Tunneling Wave Functions in One Dimension Vasile Gradinaru Seminar for Applied Mathematics ETH Zürich CH 8092 Zürich, Switzerland, George A. Hagedorn Department of

More information

ODE Final exam - Solutions

ODE Final exam - Solutions ODE Final exam - Solutions May 3, 018 1 Computational questions (30 For all the following ODE s with given initial condition, find the expression of the solution as a function of the time variable t You

More information

Switching, sparse and averaged control

Switching, sparse and averaged control Switching, sparse and averaged control Enrique Zuazua Ikerbasque & BCAM Basque Center for Applied Mathematics Bilbao - Basque Country- Spain zuazua@bcamath.org http://www.bcamath.org/zuazua/ WG-BCAM, February

More information

Complex geometrical optics solutions for Lipschitz conductivities

Complex geometrical optics solutions for Lipschitz conductivities Rev. Mat. Iberoamericana 19 (2003), 57 72 Complex geometrical optics solutions for Lipschitz conductivities Lassi Päivärinta, Alexander Panchenko and Gunther Uhlmann Abstract We prove the existence of

More information

A sharp diffuse interface tracking method for approximating evolving interfaces

A sharp diffuse interface tracking method for approximating evolving interfaces A sharp diffuse interface tracking method for approximating evolving interfaces Vanessa Styles and Charlie Elliott University of Sussex Overview Introduction Phase field models Double well and double obstacle

More information

Splitting methods with boundary corrections

Splitting methods with boundary corrections Splitting methods with boundary corrections Alexander Ostermann University of Innsbruck, Austria Joint work with Lukas Einkemmer Verona, April/May 2017 Strang s paper, SIAM J. Numer. Anal., 1968 S (5)

More information

Slow Modulation & Large-Time Dynamics Near Periodic Waves

Slow Modulation & Large-Time Dynamics Near Periodic Waves Slow Modulation & Large-Time Dynamics Near Periodic Waves Miguel Rodrigues IRMAR Université Rennes 1 France SIAG-APDE Prize Lecture Jointly with Mathew Johnson (Kansas), Pascal Noble (INSA Toulouse), Kevin

More information

Nonlinear Modulational Instability of Dispersive PDE Models

Nonlinear Modulational Instability of Dispersive PDE Models Nonlinear Modulational Instability of Dispersive PDE Models Jiayin Jin, Shasha Liao, and Zhiwu Lin Georgia Tech ICERM workshop on water waves, 4/28/2017 Jiayin Jin, Shasha Liao, and Zhiwu Lin Georgia Tech

More information

Pattern formation in reaction-diffusion systems an explicit approach

Pattern formation in reaction-diffusion systems an explicit approach Pattern formation in reaction-diffusion systems an explicit approach Arjen Doelman Mathematisch Instituut, Leiden University, P.O. Box 9512, 2300 RA Leiden, the Netherlands, doelman@math.leidenuniv.nl

More information

An introduction to Birkhoff normal form

An introduction to Birkhoff normal form An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

More information

A model of alignment interaction for oriented particles with phase transition

A model of alignment interaction for oriented particles with phase transition A model of alignment interaction for oriented particles with phase transition Amic Frouvelle Archimedes Center for Modeling, Analysis & Computation (ACMAC) University of Crete, Heraklion, Crete, Greece

More information

Introduction LECTURE 1

Introduction LECTURE 1 LECTURE 1 Introduction The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in

More information

An unfortunate misprint

An unfortunate misprint An unfortunate misprint Robert L. Jerrard Department of Mathematics University of Toronto March 22, 21, BIRS Robert L. Jerrard (Toronto ) An unfortunate misprint March 22, 21, BIRS 1 / 12 Consider the

More information

Compacton-like solutions in some nonlocal hydrodynamic-type models

Compacton-like solutions in some nonlocal hydrodynamic-type models Compacton-like solutions in some nonlocal hydrodynamic-type models Vsevolod Vladimirov AGH University of Science and technology, Faculty of Applied Mathematics Protaras, October 26, 2008 WMS AGH Compactons

More information

arxiv: v1 [math.ap] 8 Feb 2018

arxiv: v1 [math.ap] 8 Feb 2018 The dynamics of disappearing pulses in a singularly perturbed reaction-diffusion system with parameters that vary in time and space Robbin Bastiaansen and Arjen Doelman July 7, 18 arxiv:18.737v1 [math.ap]

More information

Traveling Waves and Steady States of S-K-T Competition Model

Traveling Waves and Steady States of S-K-T Competition Model Traveling Waves and Steady States of S-K-T Competition Model with Cross diffusion Capital Normal University, Beijing, China (joint work with Wei-Ming Ni, Qian Xu, Xuefeng Wang and Yanxia Wu) 2015 KAIST

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

Exponential Stability of the Traveling Fronts for a Pseudo-Para. Pseudo-Parabolic Fisher-KPP Equation

Exponential Stability of the Traveling Fronts for a Pseudo-Para. Pseudo-Parabolic Fisher-KPP Equation Exponential Stability of the Traveling Fronts for a Pseudo-Parabolic Fisher-KPP Equation Based on joint work with Xueli Bai (Center for PDE, East China Normal Univ.) and Yang Cao (Dalian University of

More information

Holographic Geometries from Tensor Network States

Holographic Geometries from Tensor Network States Holographic Geometries from Tensor Network States J. Molina-Vilaplana 1 1 Universidad Politécnica de Cartagena Perspectives on Quantum Many-Body Entanglement, Mainz, Sep 2013 1 Introduction & Motivation

More information

1. Introduction. In this paper, we continue our study of slowly modulated two-pulse solutions in the one-dimensional Gray Scott model: V t = D 2 V

1. Introduction. In this paper, we continue our study of slowly modulated two-pulse solutions in the one-dimensional Gray Scott model: V t = D 2 V SIAM J. APPL. MATH. Vol. 61, No. 6, pp. 2036 2062 c 2001 Society for Industrial and Applied Mathematics SLOWLY MODULATED TWO-PULSE SOLUTIONS IN THE GRAY SCOTT MODEL II: GEOMETRIC THEORY, BIFURCATIONS,

More information

Phase-field systems with nonlinear coupling and dynamic boundary conditions

Phase-field systems with nonlinear coupling and dynamic boundary conditions 1 / 46 Phase-field systems with nonlinear coupling and dynamic boundary conditions Cecilia Cavaterra Dipartimento di Matematica F. Enriques Università degli Studi di Milano cecilia.cavaterra@unimi.it VIII

More information

The Stability and Dynamics of a Spike in the One-Dimensional Keller-Segel model

The Stability and Dynamics of a Spike in the One-Dimensional Keller-Segel model Preprint 1 The Stability and Dynamics of a Spike in the One-Dimensional Keller-Segel model K. KANG, T. KOLOKOLNIKOV and. J. WARD Kyungkeun Kang, Department of athematics, University of British Columbia,

More information

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1)

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1) Title On the stability of contact Navier-Stokes equations with discont free b Authors Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 4 Issue 4-3 Date Text Version publisher URL

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

A model of alignment interaction for oriented particles with phase transition

A model of alignment interaction for oriented particles with phase transition A model of alignment interaction for oriented particles with phase transition Amic Frouvelle Institut de Mathématiques de Toulouse Joint work with Jian-Guo Liu (Duke Univ.) and Pierre Degond (IMT) Amic

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

Introduction to PDEs and Numerical Methods: Exam 1

Introduction to PDEs and Numerical Methods: Exam 1 Prof Dr Thomas Sonar, Institute of Analysis Winter Semester 2003/4 17122003 Introduction to PDEs and Numerical Methods: Exam 1 To obtain full points explain your solutions thoroughly and self-consistently

More information

Stability of Linear Distributed Parameter Systems with Time-Delays

Stability of Linear Distributed Parameter Systems with Time-Delays Stability of Linear Distributed Parameter Systems with Time-Delays Emilia FRIDMAN* *Electrical Engineering, Tel Aviv University, Israel joint with Yury Orlov (CICESE Research Center, Ensenada, Mexico)

More information

A solitary-wave solution to a perturbed KdV equation

A solitary-wave solution to a perturbed KdV equation University of Warwick institutional repository: http://go.warwick.ac.uk/wrap This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please

More information

Fission of a longitudinal strain solitary wave in a delaminated bar

Fission of a longitudinal strain solitary wave in a delaminated bar Fission of a longitudinal strain solitary wave in a delaminated bar Karima Khusnutdinova Department of Mathematical Sciences, Loughborough University, UK K.Khusnutdinova@lboro.ac.uk and G.V. Dreiden, A.M.

More information

Bohr Sommerfeld Quantization Condition Derived by a Microlocal WKB Method

Bohr Sommerfeld Quantization Condition Derived by a Microlocal WKB Method Vietnam Journal of Mathematics 32: SI (2004) 153 160 9LHWQDP -RXUQDO RI 0$7+(0$7,&6 9$67 Bohr Sommerfeld Quantization Condition Derived by a Microlocal WKB Method Setsuro Fujiié 1 and Maher Zerzeri 2 1

More information

Figure 1: Ca2+ wave in a Xenopus oocyte following fertilization. Time goes from top left to bottom right. From Fall et al., 2002.

Figure 1: Ca2+ wave in a Xenopus oocyte following fertilization. Time goes from top left to bottom right. From Fall et al., 2002. 1 Traveling Fronts Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 2 When mature Xenopus oocytes (frog

More information

Invariant Manifolds and the Stability of Traveling Waves in Scalar Viscous Conservation Laws

Invariant Manifolds and the Stability of Traveling Waves in Scalar Viscous Conservation Laws Invariant Manifolds and the Stability of Traveling Waves in Scalar Viscous Conservation Laws Margaret Beck and C. Eugene Wayne Department of Mathematics and Statistics and Center for BioDynamics, Boston

More information

Stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at

Stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at Stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity Zhiwu Lin School of Mathematics Georgia Institute of Technology Atlanta, GA 30332, USA Zhengping Wang Department

More information

Reconstructing inclusions from Electrostatic Data

Reconstructing inclusions from Electrostatic Data Reconstructing inclusions from Electrostatic Data Isaac Harris Texas A&M University, Department of Mathematics College Station, Texas 77843-3368 iharris@math.tamu.edu Joint work with: W. Rundell Purdue

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 12, 215 Averaging and homogenization workshop, Luminy. Fast-slow systems

More information

Exponentially small splitting of separatrices of the pendulum: two different examples. Marcel Guardia, Carme Olivé, Tere M-Seara

Exponentially small splitting of separatrices of the pendulum: two different examples. Marcel Guardia, Carme Olivé, Tere M-Seara Exponentially small splitting of separatrices of the pendulum: two different examples Marcel Guardia, Carme Olivé, Tere M-Seara 1 A fast periodic perturbation of the pendulum We consider a non-autonomous

More information

THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS

THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS Alain Miranville Université de Poitiers, France Collaborators : L. Cherfils, G. Gilardi, G.R. Goldstein, G. Schimperna,

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

The stability of Kerr-de Sitter black holes

The stability of Kerr-de Sitter black holes The stability of Kerr-de Sitter black holes András Vasy (joint work with Peter Hintz) July 2018, Montréal This talk is about the stability of Kerr-de Sitter (KdS) black holes, which are certain Lorentzian

More information

Nonlinear Wave Propagation in 1D Random Media

Nonlinear Wave Propagation in 1D Random Media Nonlinear Wave Propagation in 1D Random Media J. B. Thoo, Yuba College UCI Computational and Applied Math Seminar Winter 22 Typeset by FoilTEX Background O Doherty and Anstey (Geophysical Prospecting,

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Stochastic differential equations in neuroscience

Stochastic differential equations in neuroscience Stochastic differential equations in neuroscience Nils Berglund MAPMO, Orléans (CNRS, UMR 6628) http://www.univ-orleans.fr/mapmo/membres/berglund/ Barbara Gentz, Universität Bielefeld Damien Landon, MAPMO-Orléans

More information

Computation of homoclinic and heteroclinic orbits for flows

Computation of homoclinic and heteroclinic orbits for flows Computation of homoclinic and heteroclinic orbits for flows Jean-Philippe Lessard BCAM BCAM Mini-symposium on Computational Math February 1st, 2011 Rigorous Computations Connecting Orbits Compute a set

More information

LECTURES ON PARTIAL HYPERBOLICITY AND STABLE ERGODICITY

LECTURES ON PARTIAL HYPERBOLICITY AND STABLE ERGODICITY LECTURES ON PARTIAL HYPERBOLICITY AND STABLE ERGODICITY YA. PESIN 1. Introduction 2 2. The Concept of Hyperbolicity 5 2.1. Complete hyperbolicity (Anosov systems) 5 2.2. Definition of partial hyperbolicity

More information

1 Introduction Self-replicating spots and pulses have been observed in excitable reaction-diusion systems [22, 17, 24, 23, 16, 9, 2, 3, 4, 25, 21, 19,

1 Introduction Self-replicating spots and pulses have been observed in excitable reaction-diusion systems [22, 17, 24, 23, 16, 9, 2, 3, 4, 25, 21, 19, Slowly-modulated two pulse solutions and pulse splitting bifurcations Arjen Doelman Korteweg-deVries Instituut Universiteit van Amsterdam Plantage Muidergracht 24 1018TV Amsterdam, The Netherlands Wiktor

More information

Inégalités spectrales pour le contrôle des EDP linéaires : groupe de Schrödinger contre semigroupe de la chaleur.

Inégalités spectrales pour le contrôle des EDP linéaires : groupe de Schrödinger contre semigroupe de la chaleur. Inégalités spectrales pour le contrôle des EDP linéaires : groupe de Schrödinger contre semigroupe de la chaleur. Luc Miller Université Paris Ouest Nanterre La Défense, France Pde s, Dispersion, Scattering

More information

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons.

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons. Chapter 3 Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons. 73 3.1 Introduction The study of linear and nonlinear wave propagation

More information

Evans function review

Evans function review Evans function review Part I: History, construction, properties and applications Strathclyde, April 18th 2005 Simon J.A. Malham http://www.ma.hw.ac.uk/ simonm/talks/ Acknowledgments T.J. Bridges, C.K.R.T.

More information

Random dynamical systems with microstructure

Random dynamical systems with microstructure Random dynamical systems with microstructure Renato Feres Washington University, St. Louis ESI, July 2011 1/37 Acknowledgements Different aspects of this work are joint with: Tim Chumley (Central limit

More information

Weakly non-linear completely resonant hamiltonian PDEs and the problem of weak turbulence

Weakly non-linear completely resonant hamiltonian PDEs and the problem of weak turbulence Sergei Kuksin Weakly non-linear completely resonant hamiltonian PDEs and the problem of weak turbulence (Toronto, 10 January, 2014 ) 1 1 Introduction: weak turbulence (WT) (One of) origines: Rudolf Peierls,

More information

Mathematical modelling of collective behavior

Mathematical modelling of collective behavior Mathematical modelling of collective behavior Young-Pil Choi Fakultät für Mathematik Technische Universität München This talk is based on joint works with José A. Carrillo, Maxime Hauray, and Samir Salem

More information

Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation

Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation Center for Turbulence Research Annual Research Briefs 006 363 Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation By S. Fedotov AND S. Abarzhi 1. Motivation

More information

SRB measures for non-uniformly hyperbolic systems

SRB measures for non-uniformly hyperbolic systems SRB measures for non-uniformly hyperbolic systems Vaughn Climenhaga University of Maryland October 21, 2010 Joint work with Dmitry Dolgopyat and Yakov Pesin 1 and classical results Definition of SRB measure

More information

Math 575-Lecture 26. KdV equation. Derivation of KdV

Math 575-Lecture 26. KdV equation. Derivation of KdV Math 575-Lecture 26 KdV equation We look at the KdV equations and the so-called integrable systems. The KdV equation can be written as u t + 3 2 uu x + 1 6 u xxx = 0. The constants 3/2 and 1/6 are not

More information

Asymptotic behavior of Ginzburg-Landau equations of superfluidity

Asymptotic behavior of Ginzburg-Landau equations of superfluidity Communications to SIMAI Congress, ISSN 1827-9015, Vol. 3 (2009) 200 (12pp) DOI: 10.1685/CSC09200 Asymptotic behavior of Ginzburg-Landau equations of superfluidity Alessia Berti 1, Valeria Berti 2, Ivana

More information