Eli Barkai. Wrocklaw (2015)

Size: px
Start display at page:

Download "Eli Barkai. Wrocklaw (2015)"

Transcription

1 1/f Noise and the Low-Frequency Cutoff Paradox Eli Barkai Bar-Ilan University Niemann, Kantz, EB PRL (213) Theory Sadegh, EB, Krapf NJP (214) Experiment Stefani, Hoogenboom, EB Physics Today (29) Wrocklaw (215)

2 Outline General remarks on 1/f noise. Fluctuations of 1/f and the low frequency cutoff paradox. Blinking quantum dots. Aging and weak ergodicity breaking.

3 1/f β noise and the infrared catastrophe Low frequency 1/f β power spectrum is widely observed with < β < 2 ( ). If β 1 the apparent total power is infinite S(f)df = if β 1. The total power cannot be infinite if the underlying process is bounded.

4 Power spectral density Sample spectrum I t (ω) = t I(t ) exp( iωt )dt S t (ω) = I t(ω) 2 t If the process is stationary use Wiener-Khintchine theorem. Correlation function is aging, e.g., I(t)I(t + t ) = C(t /t).

5 Low frequency paradox (physics) If I(t) = x cos(ω t), i.e., one mode. S(ω) x 2 δ(ω ω ). x 2 is proportional to the energy of the mode. Sum over all the modes cannot be infinite. 1/f noise implies non countable normal modes.

6 Low frequency paradox (math) S t (ω)dω = 1 t dω t dt 1 exp( iωt 1 )I(t 1 ) t dt 2 exp(iωt 2 )I(t 2 ) = 2π t t I 2 (t 1 )dt 1 < 2π(I max ) 2 The total power, of bounded stationary or non-stationary process, is finite. So how come we do we observe non-integrable 1/f noise?

7 This is a moment in our lifes where we have to ask ourselves if we believe in conservation of energy (total power cannot be infinite), a mathematical theorem (bound on total power), on the one hand, and the experimental fact that noise of many different sources exhibits non integrable 1/f noise. Better, believe in the basic laws of math and physics and the experiments, but throw away the notions of stationary process and ergodicity.

8 Possible solution Think! Total power must be finite z is called the aging exponent S t (ω) ω β t z 1/t S t (ω)dω t z t 1+β = const. Hence we find a relation between the exponents, based on the finite value of the total power z = β 1.

9 Hold your horses Measurement of most cond-mat 1/f noise sources do not exhibit aging. No signature of non-stationary noise. Fundamental difference between measurements of macroscopic source of noise and single molecule measurements. S i N S is time independent. When the number N of fluctuating subunits, on the time scale of the the measurement time is increasing with measurement time.

10 History Non-stationary source of 1/f noise Mandelbrot. Intermittency dynamical systems Manneville 198. Spin glasses Bouchaud, Cugliandolo, Kurchan, Mezard We focus on ergodicity and blinking quantum dots using stochastic approach.

11 Quantum Jumps: Atoms Stefani, Hoogenboom, Barkai Physics Today 62, 34 (29).

12 Quantum Dots Stefani, Hoogenboom, Barkai Physics Today 62, 34 (29).

13 Blinking Nano Crystals (coated CdSe) Intensity time (sec)

14 Power Law Distribution of on and Off times τ on 1 1 τ off.39τ PDF τ Power law waiting time ψ(τ) τ (1+α off ). Averaged time in States On and Off is infinite τ =.

15 Measured Power Spectrum Ages PSD (Hz -1 ) s f (Hz) Sadegh, EB, Krapf NJP (214)

16 Power Spectrum t z PSD x t.12 (Hz ) f (Hz) Sadegh, EB, Krapf NJP (214) Experiment

17 Sample power spectrum is random different realizations of S t (f) e-5 1e-6 1e-7 a) ensemble average of S t (f) e-5 1e-6 1e-7 t=.1 t=1. t=1. t=1. Eq. (9) b) frequency

18 Non-stationarity means that underlying process is non-ergodic. Sample spectrum is not equal to its ensemble average. Niemann, Kantz, EB PRL (213) Theory Similarly, time averaged intensity correlation function is not equal to the ensemble average. Long tailed power law distribution of waiting times induce weak ergodicity breaking Bouchaud.

19 Fluctuations of the power spectrum The average decreases with measurement time S t (ω) C t 1 α 1 ω 2 α The value of S t (ω) is fluctuating ( ) St (ω 1 ) S t (ω 1 ),, S t (ω n ) S t (ω n ) Y α (ξ 1,, ξ n ) Y α has a normalized Mittag-Leffler distribution. The ξ i are independent exponential random variable with mean 1. The whole spectrum has a common random prefactor Y α.

20 Motivation of the result t dτ exp(iωτ)i(τ) n(t) j=1 d j (ω) d j (ω) iχ j exp(iωt j ) 1 exp(iωτ j) ω With this approximation S t (ω) 1 t n(t) k,l=1 d k (ω)d l ( ω) Assuming that n(t) is independent of waiting times

21 S t (ω) n(t) d l (ω)d l ( ω), t S t (ω) (I ) 2 n(t) t 2 ˆψ(iω) ˆψ( iω) ω 2 The spectrum is time dependent since n(t) t α. We get β = 2 α and z = 1 α so β = z + 1. Repeat this for S t (ω 1 ) S t (ω 2 ). The Mittag-Leffler distribution describes number of renewals n/ n(t). To isolate the Mittag Leffler fluctuations N S t (ω j ) with large N. M = 1 N i=1 S t (ω j )

22 Mittag Leffler distribution α=.2 probability density of M α=.5 α= value of M When α 1 we get an ergodic behavior. Niemann, Kantz, EB PRL (213) Theory

23 Group Material Nu. Radii T α on α off Dahan CdSe-ZnS nm 3 K.58(.17).48(.15) Orrit CdS EXP.65(.2) Bawendi CdTe (.1).5(.1) Kuno CdSe-ZnS Cichos Si Ha CdSe(coat) 3 Exp? 1

24 Uncapped NC on (short) off (long) Capped NC on (short) on (long) off (long) Efros, Orrit, Onsager, Hong-Noolandi r Ons = e2 k b T ɛ 7nm

25 Critical exponents of nano-crystals Theory Experiment Simulation β > S f β β > = 2 α β < β < = α.7.6 z S t z z = 1 α.12.3 γ f c 1/t γ γ = ω S t () t ω ω = Aging exponent is lower than expected. Scaling relations between exponents hold γ(β > 1) z, ω = γ within errors.

26 Summary Critical exponents describe the spectrum of blinking dots. Power spectrum ages, the longer the measurement time the noise is reduced. This solves the low frequency paradox, the total power is a constant. Fundamental difference between measurement of noise on the single molecule level, if compared with macroscopical measurements. Power law sojourn times are found in diverse systems. Non-stationarity implies non-ergodicity, which was quantified.

27 Ref. and Thanks M. Niemann, H. Kantz, E. Barkai Fluctuations of 1/f noise and the low frequency cutoff paradox Phys. Rev. Lett. 11, 1463 (213). S. Sadegh, E. Barkai, and D. Krapf 1/f noise for intermittent quantum dots exhibits non-stationarity and critical exponents New. J. of Physics 16 (214) F. D. Stefani, J. P. Hoogenboom, and E. Barkai Beyond Quantum Jumps: Blinking Nano-scale Light Emitters Physics Today 62 nu. 2, p. 34 (February 29).

28 Popular Old Model S(ω) is time independent. S(ω) = p(τ) 1+ω 2 τ 2dτ τ Here exponential decay of the correlation function, and distributed kinetics yields 1/f noise. In experiment no Lorentzian spectrum for single QDs. Take p(τ) = 1/τ. But 1/τ is non-normalized. So maybe add a cutoff. What is the upper limit of the integral? Should we put the age of universe (as suggested)? Then S(ω) depends on age of universe? but measurement time is much less then that.

29 Answer: upper limit of integral is measurement time. Then S(ω) depends on measurement time. And exactly in the way we claim β 1 = z. How many fluctuating objects? N t z So N S is time independent and also independent of the non-relevant age of the universe. As observed in many macroscopic experiments.

30 Distributed Kinetics Model x x x x x Number of fluctuators increases with measurement time

31 Aging PSD in Single Molecule Measurements t m =1 3 t m =1 4 2 t m =1 5 t m = Distributed kinetics model.

32 No Aging in Macroscopic Measurements 4 2 t m =1 3 2 t m =1 4 t m =1 5 4 t m =1 6 ~ω Distributed kinetics model.

33 Fluctuations of power spectrum PSD (1/Hz).1 1E-3 1E-4 1E f (Hz) 1 Amplitude of 1/f noise is random, varies from one measurement to the other. This is related to non-stationarity and non-ergodicity.

34 Fluctuations of the power spectrum Power spectrum ergodic processes, we expect P DF [S t (ω)] δ[s t (ω) S t (ω) ] This is correct, after binning/smoothing. For non ergodic process, this will not happen Where C is random S t (ω) S t (ω) C. C = Y α ξ Y α (ξ) is a ML (exp) RV. Y α n/ n

35 If I know the fluctuations of number of transitions, I have the fluctuations of the sample spectrum. Even better find PDF of (S(ω 1 ),...S(ω n )).

36 Transition frequency PSD (1/Hz).1 1E-3 1E-5 ~ f -.72 ~ f E f (Hz) Power spectrum exhibits a transition at f c =.1Hz. This is related to cutoff on the on times.

37 Things to do Ask the listener: This is a moment in your life where you have to ask your self if you believe in conservation of energy (total power cannot be infinite), a mathematical theorem (bound on total power), on the one hand, and the experimental fact that noise of many different sources exhibits non integrable 1/f noise. Better, believe in the basic laws of math and physics and the experiments, but throw away the notions of stationary process and ergodicity. Better explain why N increases with t and why it exactly cancels the aging. At start list of systems where this phenomena is found. Add some detail on the derivation, multipoint correlation functions. SHow that you actually worked hard on the theory. Find quatations from reviews on stationarity.

38 Quotation from mathematical book on 1/f noise.

1/f Noise: the Low Frequency Cutoff Paradox HIT (2018) Eli Barkai. Bar-Ilan University

1/f Noise: the Low Frequency Cutoff Paradox HIT (2018) Eli Barkai. Bar-Ilan University 1/f Noise: the Low Frequency Cutoff Paradox Eli Barkai Bar-Ilan University Niemann, Kantz, EB PRL (213) Sadegh, EB, Krapf NJP (214) Leibovich, EB PRL (215) Leibovich, Dechant, Lutz, EB PRE (216) Leibovich,

More information

1/f Noise on the nano-scale Aeging Wiener-Khinchin approach. Pohang (2016)

1/f Noise on the nano-scale Aeging Wiener-Khinchin approach. Pohang (2016) 1/f Noise on the nano-scale Aeging Wiener-Khinchin approach Eli Barkai Bar-Ilan University Niemann, Kantz, EB PRL (213) MMNP (216) Sadegh, EB, Krapf NJP (214) Leibovich, EB PRL (215) Leibovich, Dechant,

More information

Weak Ergodicity Breaking WCHAOS 2011

Weak Ergodicity Breaking WCHAOS 2011 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Bel, Burov, Korabel, Margolin, Rebenshtok WCHAOS 211 Outline Single molecule experiments exhibit weak ergodicity breaking. Blinking quantum dots,

More information

Weak Ergodicity Breaking

Weak Ergodicity Breaking Weak Ergodicity Breaking Eli Barkai Bar-Ilan University 215 Ergodicity Ergodicity: time averages = ensemble averages. x = lim t t x(τ)dτ t. x = xp eq (x)dx. Ergodicity out of equilibrium δ 2 (, t) = t

More information

Weak Ergodicity Breaking. Manchester 2016

Weak Ergodicity Breaking. Manchester 2016 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Burov, Froemberg, Garini, Metzler PCCP 16 (44), 24128 (2014) Akimoto, Saito Manchester 2016 Outline Experiments: anomalous diffusion of single molecules

More information

Fluctuations of 1=f Noise and the Low-Frequency Cutoff Paradox

Fluctuations of 1=f Noise and the Low-Frequency Cutoff Paradox PRL 11, 1463 (213) P H Y S I C A L R E V I E W L E T T E R S 5 APRIL 213 Fluctuations of 1=f Noise and the Low-Frequency Cutoff Paradox Markus Niemann, 1 Holger Kantz, 2 and Eli Barkai 3 1 Institut für

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Statistics. on Single Molecule Photon. Diffusion. Influence of Spectral

Statistics. on Single Molecule Photon. Diffusion. Influence of Spectral Influence of Spectral Diffusion on Single Molecule Photon Statistics Eli Barkai Yong He Bar-Ilan Feb. 24 25 Single Molecule Photon Statistics Sub-Poissonian Statistics, Mandel s Q parameter (198). Spectral

More information

Signals and Spectra - Review

Signals and Spectra - Review Signals and Spectra - Review SIGNALS DETERMINISTIC No uncertainty w.r.t. the value of a signal at any time Modeled by mathematical epressions RANDOM some degree of uncertainty before the signal occurs

More information

1/f noise for intermittent quantum dots exhibits nonstationarity

1/f noise for intermittent quantum dots exhibits nonstationarity 1/f noise for intermittent quantum dots exhibits nonstationarity and critical exponents Sanaz Sadegh 1, Eli Barkai 2 and Diego Krapf 1,3 1 Department of Electrical and Computer Engineering, Colorado State

More information

Spectral Analysis of Random Processes

Spectral Analysis of Random Processes Spectral Analysis of Random Processes Spectral Analysis of Random Processes Generally, all properties of a random process should be defined by averaging over the ensemble of realizations. Generally, all

More information

Theory of fractional Lévy diffusion of cold atoms in optical lattices

Theory of fractional Lévy diffusion of cold atoms in optical lattices Theory of fractional Lévy diffusion of cold atoms in optical lattices, Erez Aghion, David Kessler Bar-Ilan Univ. PRL, 108 230602 (2012) PRX, 4 011022 (2014) Fractional Calculus, Leibniz (1695) L Hospital:

More information

Problem Sheet 1 Examples of Random Processes

Problem Sheet 1 Examples of Random Processes RANDOM'PROCESSES'AND'TIME'SERIES'ANALYSIS.'PART'II:'RANDOM'PROCESSES' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''Problem'Sheets' Problem Sheet 1 Examples of Random Processes 1. Give

More information

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm Anomalous Lévy diffusion: From the flight of an albatross to optical lattices Eric Lutz Abteilung für Quantenphysik, Universität Ulm Outline 1 Lévy distributions Broad distributions Central limit theorem

More information

Nonergodicity of a Time Series Obeying Lévy Statistics

Nonergodicity of a Time Series Obeying Lévy Statistics Journal of Statistical Physics, Vol. 122, No. 1, January 26 ( C 26 ) DOI: 1.17/s1955-5-876-9 Nonergodicity of a Time Series Obeying Lévy Statistics Gennady Margolin 1 and Eli Barkai 2 Received March 9,

More information

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics Nagoya Winter Workshop on Quantum Information, Measurement, and Quantum Foundations (Nagoya, February 18-23, 2010) Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides were adapted

More information

Symmetry of the Dielectric Tensor

Symmetry of the Dielectric Tensor Symmetry of the Dielectric Tensor Curtis R. Menyuk June 11, 2010 In this note, I derive the symmetry of the dielectric tensor in two ways. The derivations are taken from Landau and Lifshitz s Statistical

More information

Damped harmonic motion

Damped harmonic motion Damped harmonic motion March 3, 016 Harmonic motion is studied in the presence of a damping force proportional to the velocity. The complex method is introduced, and the different cases of under-damping,

More information

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES 13.42 READING 6: SPECTRUM OF A RANDOM PROCESS SPRING 24 c A. H. TECHET & M.S. TRIANTAFYLLOU 1. STATIONARY AND ERGODIC RANDOM PROCESSES Given the random process y(ζ, t) we assume that the expected value

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 9 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Is the superposition of many random spike trains a Poisson process?

Is the superposition of many random spike trains a Poisson process? Is the superposition of many random spike trains a Poisson process? Benjamin Lindner Max-Planck-Institut für Physik komplexer Systeme, Dresden Reference: Phys. Rev. E 73, 2291 (26) Outline Point processes

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France Quantum (spin) glasses Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France Giulio Biroli (Saclay) Daniel R. Grempel (Saclay) Gustavo Lozano (Buenos Aires) Homero Lozza (Buenos Aires) Constantino

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Modeling point processes by the stochastic differential equation

Modeling point processes by the stochastic differential equation Modeling point processes by the stochastic differential equation Vygintas Gontis, Bronislovas Kaulakys, Miglius Alaburda and Julius Ruseckas Institute of Theoretical Physics and Astronomy of Vilnius University,

More information

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest In the last lecture, we have discussed how one can describe the response of a well-equilibriated macroscopic system to

More information

Diffusion in a Logarithmic Potential Anomalies, Aging & Ergodicity Breaking

Diffusion in a Logarithmic Potential Anomalies, Aging & Ergodicity Breaking Diffusion in a Logarithmic Potential Anomalies, Aging & Ergodicity Breaking David Kessler Bar-Ilan Univ. E. Barkai (Bar-Ilan) A. Dechant (Augsburg) E. Lutz (Augsburg) PRL, 105 120602 (2010) arxiv:1105.5496

More information

Weak chaos, infinite ergodic theory, and anomalous diffusion

Weak chaos, infinite ergodic theory, and anomalous diffusion Weak chaos, infinite ergodic theory, and anomalous diffusion Rainer Klages Queen Mary University of London, School of Mathematical Sciences Marseille, CCT11, 24 May 2011 Weak chaos, infinite ergodic theory,

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver Stochastic Signals Overview Definitions Second order statistics Stationarity and ergodicity Random signal variability Power spectral density Linear systems with stationary inputs Random signal memory Correlation

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Beyond the color of the noise: what is memory in random phenomena?

Beyond the color of the noise: what is memory in random phenomena? Beyond the color of the noise: what is memory in random phenomena? Gennady Samorodnitsky Cornell University September 19, 2014 Randomness means lack of pattern or predictability in events according to

More information

Slightly off-equilibrium dynamics

Slightly off-equilibrium dynamics Slightly off-equilibrium dynamics Giorgio Parisi Many progresses have recently done in understanding system who are slightly off-equilibrium because their approach to equilibrium is quite slow. In this

More information

Example 4.1 Let X be a random variable and f(t) a given function of time. Then. Y (t) = f(t)x. Y (t) = X sin(ωt + δ)

Example 4.1 Let X be a random variable and f(t) a given function of time. Then. Y (t) = f(t)x. Y (t) = X sin(ωt + δ) Chapter 4 Stochastic Processes 4. Definition In the previous chapter we studied random variables as functions on a sample space X(ω), ω Ω, without regard to how these might depend on parameters. We now

More information

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008 CD2dBS-v2 Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models Burhan Bakar and Ugur Tirnakli Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey

More information

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths 4.1 The Natural Line Shape 4.2 Collisional Broadening 4.3 Doppler Broadening 4.4 Einstein Treatment of Stimulated Processes Width

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 6 Jun 2001

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 6 Jun 2001 arxiv:cond-mat/0106113v1 [cond-mat.mtrl-sci] 6 Jun 2001 On the power spectrum of magnetization noise G. Durin a,, S. Zapperi b a Istituto Elettrotecnico Nazionale Galileo Ferraris and INFM, Corso M. d

More information

Fluctuations in the aging dynamics of structural glasses

Fluctuations in the aging dynamics of structural glasses Fluctuations in the aging dynamics of structural glasses Horacio E. Castillo Collaborator: Azita Parsaeian Collaborators in earlier work: Claudio Chamon Leticia F. Cugliandolo José L. Iguain Malcolm P.

More information

arxiv: v2 [physics.data-an] 5 Jan 2017

arxiv: v2 [physics.data-an] 5 Jan 2017 Statistical properties of a filtered Poisson process with additive random noise: Distributions, correlations and moment estimation A. Theodorsen and O. E. Garcia Department of Physics and Technology, arxiv:169.167v2

More information

Time dependent perturbation theory 1 D. E. Soper 2 University of Oregon 11 May 2012

Time dependent perturbation theory 1 D. E. Soper 2 University of Oregon 11 May 2012 Time dependent perturbation theory D. E. Soper University of Oregon May 0 offer here some background for Chapter 5 of J. J. Sakurai, Modern Quantum Mechanics. The problem Let the hamiltonian for a system

More information

Lecture - 30 Stationary Processes

Lecture - 30 Stationary Processes Probability and Random Variables Prof. M. Chakraborty Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 30 Stationary Processes So,

More information

Chapter 6. Random Processes

Chapter 6. Random Processes Chapter 6 Random Processes Random Process A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). For a fixed (sample path): a random process

More information

Non-Stationary Dephasing by a Classical Intermittent Noise

Non-Stationary Dephasing by a Classical Intermittent Noise Non-Stationary Dephasing by a Classical Intermittent Noise (CNRS & ENS Lyon) David Carpentier (CNRS & ENS Lyon) Maxime Clusel (ENS Lyon) Josef Schriefl (ENS Lyon & University of Karlsruhe) May 2005 Europhysics

More information

ENGR352 Problem Set 02

ENGR352 Problem Set 02 engr352/engr352p02 September 13, 2018) ENGR352 Problem Set 02 Transfer function of an estimator 1. Using Eq. (1.1.4-27) from the text, find the correct value of r ss (the result given in the text is incorrect).

More information

ON FRACTIONAL RELAXATION

ON FRACTIONAL RELAXATION Fractals, Vol. 11, Supplementary Issue (February 2003) 251 257 c World Scientific Publishing Company ON FRACTIONAL RELAXATION R. HILFER ICA-1, Universität Stuttgart Pfaffenwaldring 27, 70569 Stuttgart,

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

arxiv:cond-mat/ v1 4 Aug 2003

arxiv:cond-mat/ v1 4 Aug 2003 Conductivity of thermally fluctuating superconductors in two dimensions Subir Sachdev arxiv:cond-mat/0308063 v1 4 Aug 2003 Abstract Department of Physics, Yale University, P.O. Box 208120, New Haven CT

More information

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process Lecture Notes 7 Stationary Random Processes Strict-Sense and Wide-Sense Stationarity Autocorrelation Function of a Stationary Process Power Spectral Density Continuity and Integration of Random Processes

More information

Stochastic Processes. A stochastic process is a function of two variables:

Stochastic Processes. A stochastic process is a function of two variables: Stochastic Processes Stochastic: from Greek stochastikos, proceeding by guesswork, literally, skillful in aiming. A stochastic process is simply a collection of random variables labelled by some parameter:

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 5c Lecture Fourier Analysis (H&L Sections 3. 4) (Georgi Chapter ) What We Did Last ime Studied reflection of mechanical waves Similar to reflection of electromagnetic waves Mechanical

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Modelling nonequilibrium macroscopic oscillators. oscillators of interest to experimentalists.

Modelling nonequilibrium macroscopic oscillators. oscillators of interest to experimentalists. Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. P. De Gregorio RareNoise : L. Conti, M. Bonaldi, L. Rondoni ERC-IDEAS: www.rarenoise.lnl.infn.it Nonequilibrium Processes:

More information

4 Classical Coherence Theory

4 Classical Coherence Theory This chapter is based largely on Wolf, Introduction to the theory of coherence and polarization of light [? ]. Until now, we have not been concerned with the nature of the light field itself. Instead,

More information

Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes

Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of

More information

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2.0 THEOREM OF WIENER- KHINTCHINE An important technique in the study of deterministic signals consists in using harmonic functions to gain the spectral

More information

CONTINUOUS TIME RANDOM WALK WITH CORRELATED WAITING TIMES

CONTINUOUS TIME RANDOM WALK WITH CORRELATED WAITING TIMES CONTINUOUS TIME RANDOM WALK WITH CORRELATED WAITING TIMES Aleksei V. Chechkin, 1,2 Michael Hofmann 3, and Igor M. Sokolov 3 1 School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel

More information

3.3 Energy absorption and the Green function

3.3 Energy absorption and the Green function 142 3. LINEAR RESPONSE THEORY 3.3 Energy absorption and the Green function In this section, we first present a calculation of the energy transferred to the system by the external perturbation H 1 = Âf(t)

More information

Rate Constants from Uncorrelated Single-Molecule Data

Rate Constants from Uncorrelated Single-Molecule Data 646 J. Phys. Chem. B 001, 105, 646-650 Rate Constants from Uncorrelated Single-Molecule Data Marián Boguñá, Lisen Kullman, Sergey M. Bezrukov,, Alexander M. Berezhkovskii,, and George H. Weiss*, Center

More information

PHYSICS 653 HOMEWORK 1 P.1. Problems 1: Random walks (additional problems)

PHYSICS 653 HOMEWORK 1 P.1. Problems 1: Random walks (additional problems) PHYSICS 653 HOMEWORK 1 P.1 Problems 1: Random walks (additional problems) 1-2. Generating function (Lec. 1.1/1.2, random walks) Not assigned 27. Note: any corrections noted in 23 have not been made. This

More information

Shape of the return probability density function and extreme value statistics

Shape of the return probability density function and extreme value statistics Shape of the return probability density function and extreme value statistics 13/09/03 Int. Workshop on Risk and Regulation, Budapest Overview I aim to elucidate a relation between one field of research

More information

Response to Periodic and Non-periodic Loadings. Giacomo Boffi.

Response to Periodic and Non-periodic Loadings. Giacomo Boffi. Periodic and Non-periodic http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March 7, 218 Outline Undamped SDOF systems

More information

Non-stationary Ambient Response Data Analysis for Modal Identification Using Improved Random Decrement Technique

Non-stationary Ambient Response Data Analysis for Modal Identification Using Improved Random Decrement Technique 9th International Conference on Advances in Experimental Mechanics Non-stationary Ambient Response Data Analysis for Modal Identification Using Improved Random Decrement Technique Chang-Sheng Lin and Tse-Chuan

More information

8.2 Harmonic Regression and the Periodogram

8.2 Harmonic Regression and the Periodogram Chapter 8 Spectral Methods 8.1 Introduction Spectral methods are based on thining of a time series as a superposition of sinusoidal fluctuations of various frequencies the analogue for a random process

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

System Identification

System Identification System Identification Arun K. Tangirala Department of Chemical Engineering IIT Madras July 27, 2013 Module 3 Lecture 1 Arun K. Tangirala System Identification July 27, 2013 1 Objectives of this Module

More information

Supplementary Figure S1: Numerical PSD simulation. Example numerical simulation of the power spectral density, S(f) from a trapped particle

Supplementary Figure S1: Numerical PSD simulation. Example numerical simulation of the power spectral density, S(f) from a trapped particle Supplementary Figure S1: Numerical PSD simulation. Example numerical simulation of the power spectral density, S(f) from a trapped particle oscillating at Ω 0 /(2π) = f xy = 600Hz and subject to a periodic

More information

2007 Summer College on Plasma Physics

2007 Summer College on Plasma Physics SMR/1856-10 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Dielectric relaxation and ac universality in materials with disordered structure. J. Juul Rasmussen Risø National Laboratory

More information

Green Functions in Many Body Quantum Mechanics

Green Functions in Many Body Quantum Mechanics Green Functions in Many Body Quantum Mechanics NOTE This section contains some advanced material, intended to give a brief introduction to methods used in many body quantum mechanics. The material at the

More information

CHAPTER V. Brownian motion. V.1 Langevin dynamics

CHAPTER V. Brownian motion. V.1 Langevin dynamics CHAPTER V Brownian motion In this chapter, we study the very general paradigm provided by Brownian motion. Originally, this motion is that a heavy particle, called Brownian particle, immersed in a fluid

More information

COMPLEXITY AS AGING NON-POISSON RENEWAL PROCESSES. Simone Bianco, B.S., M.S. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY

COMPLEXITY AS AGING NON-POISSON RENEWAL PROCESSES. Simone Bianco, B.S., M.S. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY COMPLEXITY AS AGING NON-POISSON RENEWAL PROCESSES Simone Bianco, B.S., M.S. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS May 2007 APPROVED: Paolo Grigolini, Major

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

Time-Dependent Statistical Mechanics A1. The Fourier transform

Time-Dependent Statistical Mechanics A1. The Fourier transform Time-Dependent Statistical Mechanics A1. The Fourier transform c Hans C. Andersen November 5, 2009 1 Definition of the Fourier transform and its inverse. Suppose F (t) is some function of time. Then its

More information

Open Quantum Systems and Markov Processes II

Open Quantum Systems and Markov Processes II Open Quantum Systems and Markov Processes II Theory of Quantum Optics (QIC 895) Sascha Agne sascha.agne@uwaterloo.ca July 20, 2015 Outline 1 1. Introduction to open quantum systems and master equations

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Wave Phenomena Physics 15c. Lecture 11 Dispersion

Wave Phenomena Physics 15c. Lecture 11 Dispersion Wave Phenomena Physics 15c Lecture 11 Dispersion What We Did Last Time Defined Fourier transform f (t) = F(ω)e iωt dω F(ω) = 1 2π f(t) and F(w) represent a function in time and frequency domains Analyzed

More information

The sum of log-normal variates in geometric Brownian motion arxiv: v1 [cond-mat.stat-mech] 8 Feb 2018

The sum of log-normal variates in geometric Brownian motion arxiv: v1 [cond-mat.stat-mech] 8 Feb 2018 The sum of log-normal variates in geometric Brownian motion arxiv:802.02939v [cond-mat.stat-mech] 8 Feb 208 Ole Peters and Alexander Adamou London Mathematical Laboratory 8 Margravine Gardens, London W6

More information

IV. Covariance Analysis

IV. Covariance Analysis IV. Covariance Analysis Autocovariance Remember that when a stochastic process has time values that are interdependent, then we can characterize that interdependency by computing the autocovariance function.

More information

ˆd = 1 2π. d(t)e iωt dt. (1)

ˆd = 1 2π. d(t)e iωt dt. (1) Bremsstrahlung Initial questions: How does the hot gas in galaxy clusters cool? What should we see in their inner portions, where the density is high? As in the last lecture, we re going to take a more

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Feb 2004

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Feb 2004 A statistical model with a standard Gamma distribution Marco Patriarca and Kimmo Kaski Laboratory of Computational Engineering, Helsinki University of Technology, P.O.Box 923, 25 HUT, Finland arxiv:cond-mat/422v

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

RVs and their probability distributions

RVs and their probability distributions RVs and their probability distributions RVs and their probability distributions In these notes, I will use the following notation: The probability distribution (function) on a sample space will be denoted

More information

Harmonic oscillator. U(x) = 1 2 bx2

Harmonic oscillator. U(x) = 1 2 bx2 Harmonic oscillator The harmonic oscillator is a familiar problem from classical mechanics. The situation is described by a force which depends linearly on distance as happens with the restoring force

More information

Reliability Theory of Dynamically Loaded Structures (cont.)

Reliability Theory of Dynamically Loaded Structures (cont.) Outline of Reliability Theory of Dynamically Loaded Structures (cont.) Probability Density Function of Local Maxima in a Stationary Gaussian Process. Distribution of Extreme Values. Monte Carlo Simulation

More information

Linear Response and Onsager Reciprocal Relations

Linear Response and Onsager Reciprocal Relations Linear Response and Onsager Reciprocal Relations Amir Bar January 1, 013 Based on Kittel, Elementary statistical physics, chapters 33-34; Kubo,Toda and Hashitsume, Statistical Physics II, chapter 1; and

More information

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001). Overview in Images 5 nm K.S. Min et al. PhD Thesis K.V. Vahala et al, Phys. Rev. Lett, 85, p.74 (000) J. D. Joannopoulos, et al, Nature, vol.386, p.143-9 (1997) T.Thio et al., Optics Letters 6, 197-1974

More information

Phase Transitions and Renormalization:

Phase Transitions and Renormalization: Phase Transitions and Renormalization: Using quantum techniques to understand critical phenomena. Sean Pohorence Department of Applied Mathematics and Theoretical Physics University of Cambridge CAPS 2013

More information

Voltage-clamp and Hodgkin-Huxley models

Voltage-clamp and Hodgkin-Huxley models Voltage-clamp and Hodgkin-Huxley models Read: Hille, Chapters 2-5 (best) Koch, Chapters 6, 8, 9 See also Clay, J. Neurophysiol. 80:903-913 (1998) (for a recent version of the HH squid axon model) Rothman

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

Definition of a Stochastic Process

Definition of a Stochastic Process Definition of a Stochastic Process Balu Santhanam Dept. of E.C.E., University of New Mexico Fax: 505 277 8298 bsanthan@unm.edu August 26, 2018 Balu Santhanam (UNM) August 26, 2018 1 / 20 Overview 1 Stochastic

More information

Point Process Models of 1/f Noise and Internet Traffic

Point Process Models of 1/f Noise and Internet Traffic Point Process Models of 1/f Noise and Internet Traffic V. Gontis, B. Kaulays, and J. Rusecas Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 12, LT-118 Vilnius, Lithuania

More information

Noisy continuous time random walks

Noisy continuous time random walks Noisy continuous time random walks Jae-Hyung Jeon, Eli Barkai, and Ralf Metzler Citation: J. Chem. Phys. 139, 121916 (2013); doi: 10.1063/1.4816635 View online: http://dx.doi.org/10.1063/1.4816635 View

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Full characterization of the fractional Poisson process

Full characterization of the fractional Poisson process epl draft Full characterization of the fractional Poisson process Mauro Politi,3, Taisei Kaizoji and Enrico Scalas 2,3 SSRI & Department of Economics and Business, International Christian University, 3--2

More information

4. Eye-tracking: Continuous-Time Random Walks

4. Eye-tracking: Continuous-Time Random Walks Applied stochastic processes: practical cases 1. Radiactive decay: The Poisson process 2. Chemical kinetics: Stochastic simulation 3. Econophysics: The Random-Walk Hypothesis 4. Eye-tracking: Continuous-Time

More information