Unification - The Standard Model

Size: px
Start display at page:

Download "Unification - The Standard Model"

Transcription

1 Unification - The Standard Model Information on Physics level 4 Undergraduate Course PT.4.6 K.S. Stelle, Office Huxley 519 September 26, 2014 Rapid Feedback to be handed in to the UG office Level 3 (day t.b.a.) Rapid Feedback Presentation every 2nd week (location, dates & times t.b.a.) Course Background This course is a fourth year MSci undergraduate course and is also part of the Quantum Fields and Fundamental Forces MSc run by the Theoretical Physics Group at Imperial. However, it is aimed at the same level as other level four courses. The Masters students have a wide range of backgrounds including some who have completed three-year physics degrees at a 2.1 level or higher, identical to the requirements for an Imperial MSci student to take this course. Support material is provided as described below. Course Outline In the Unification course, we will study the implications of symmetry in field theory. Quantum field theory is used to describe the fundamental interactions as probed in the particle accelerators at CERN, Fermilab, DESY, SLAC etc. It is also the key to understanding phase transitions, whether they took place in the early universe or in modern superconductor physics, so these ideas are also of vital importance to cosmologists and to condensed matter physicists. The course will mainly be concerned with symmetries described by continuous groups (Lie groups) and the discussion will be largely classical, although it is of course motivated by the full quantum theory. Accordingly, this course should only be taken in parallel with the QFT course (the converse, however, is not necessarily true). The objective is to understand the role of symmetry in the Standard Model of elementary particle physics, including a discussion of the mass generating sector of the Standard Model, i.e. the Higgs particle(s) which are currently being intensively searched for at Fermilab and CERN. Key ideas encountered include conserved Noether currents, Goldstone s theorem, local (i.e. gauge) symmetry, and symmetry breaking including the Brout-Englert- Higgs-Kibble mechanism. The ideas have much wider uses, however: they form the backbone of string theory; similar symmetry principles are fundamental to General relativity and gravity; they also explain superfluids and superconductors the Cooper pair in superconductivity theory is just the counterpart of the Higgs particle in particle physics.

2 How the course is taught 26 lectures, 1 revision lecture. Problem sheets: There will be 6 or 7 question sheets plus another revision sheet for self-study. Students are expected to attempt all the questions on the question sheets unless they are indicated as optional. You must keep up with the non-optional questions, especially the questions discussed in the rapid feedback sessions, or you will not follow the later lectures. These questions are representative also of what might appear on the final exam. Answers to (almost) all questions will be handed out about a week after the question sheet. Past exam papers will be a good guide to future exam questions. (Note that the exam format has changed as of Autumn 2005, but previous exam questions can still be of use). For MSc students, there is an optional test a mock exam, in the first week of term in January. This is provided so that we can use positive results to support MSc students applying for PhDs (at any institution or in any topic). The test will be marked informally and will not contribute to the final course grade. It also provides feedback on students progress. Undergraduates are welcome to take the test but should ask me first. The January test will be put on the web, so it can be used for revision for the main summer exam. Office Hours. I will be available in my office to answer questions for two hours each week. I am also available for office hours in the summer term before the exam. My full lecture notes will be made available to students. Many quantum field theory books exist and have the important topics of the course scattered through their pages. As this is an advanced course, it is assumed that students will use books and other sources to supplement the lectures. The bibliography indicates which parts of the various books are relevant. Students may like to look at similar chapters of other quantum field theory books, especially any recommended for the level 4 MSci QFT (quantum field theory) course or suggested for any of the courses on the QFFF MSc. The departmental web site for this course will contain all the paperwork handed out. Any significant updates or corrections will be available only in these electronic versions.

3 Requirements Quantum Field Theory QFT (Quantum Field Theory) is used to describe the interactions of fundamental particles (electrons, positrons, photons, quarks, neutrinos, etc.). It is also the fundamental description required for the description of phase transitions in systems such as superconducting and superfluid transitions in condensed matter theory. The Unification course is expressed in the language of QFT and therefore the Unification course only makes sense when taken in conjunction with a QFT course. The Unification course itself uses classical analysis but will make frequent reference to the quantum generalizations provided by the QFT course. So QFT is not a prerequisite but it should at least be taken in parallel with Unification. The two courses complement each other: many ideas appear in both courses and seeing them twice usually enhances the understanding of both courses. Lagrangians and actions Lagrangians and actions are a main way of summarizing all the information about a classical system. They form the usual starting point for QFT as used in particle physics and, as such, the entire Unification course will be expressed in this language. It is therefore essential that students be familiar with the use of Lagrangians and actions. In the Unification course, we will use the Lagrangian/action formulation for fields (rather than for the coordinates of particles) in order to derive the Euler-Lagrange equations as the equations of motion. The necessary level of knowledge should be provided by the undergraduate course on Advanced Classical Physics, although elements also appear in the second year Mathematical Methods course. Almost any book on QFT will provide a suitable summary and introduction in the context of fields; see the Unification or QFT course bibliographies. Special Relativity and Index Notation The course will work throughout in the context of relativistic particle physics. This means that knowledge of standard relativistic notation will be assumed from the start, so knowledge of 4-index notation and of the Einstein summation convention in four space-time dimensions will be needed. The required level of knowledge should be provided by the undergraduate course on Advanced Classical Physics. Group Theory At the core of the Unification course is the link between symmetries of field-theory Lagrangians and the properties of the particles arising as excitations of such theories. In particular we will look at symmetries which can be described mathematically by continuous groups known as Lie groups, and by the closely related structures known as Lie algebras. In practice it will be sufficient to understand these simply in the context of matrix representations, either for general unitary matrices (i.e. the group U(d) and its unimodular subgroup SU(d)), or general

4 orthogonal matrices (i.e. the group O(d) and its unimodular subgroup SO(d)). Specific examples will mostly be limited to 2x2 or 3x3 matrices and one-dimensional phase factors. A general knowledge of group theory and group representations is a prerequisite, including the group axioms and a basic understanding of matrix representations. Lie Groups and Lie Algebras are also prerequisites. However, the course will not assume any high degree of fluency in these topics and I expect that for most students this will be the first time they have applied these ideas in practice. We will use the simplest examples, namely the trivial, fundamental and adjoint matrix representations for the groups mentioned above (U(d), SU(d), O(d), SO(d)). The third year undergraduate group theory course should be sufficient to provide a necessary coverage of these topics. A detailed understanding of finite groups and associated topics such as the use of characters, Schur's lemma or orthogonality theorems will not be required, A fluency with vector spaces and matrix algebra is essential but this should have been encountered in the second year Mathematical Methods course. Some QFT books provide a short introduction at the level required - see the Unification or QFT course bibliographies. Particle Physics The course will assume a rough familiarity with the Standard Model of particle physics. The basic properties of the four fundamental forces of nature (electromagnetism, strong nuclear, weak nuclear and gravity) and the associated particles (photon, gluons, W and Z bosons and the graviton) should be known at a basic level. Similarly, the fundamental fermions (electrons, neutrinos, quarks and their bound states the baryons (neutron, proton etc.) and the mesons (pions etc.), and the scalar(s) (Higgs) should all be familiar. You should be aware that these come in three generations. The particle part of the third year undergraduate nuclear and particle physics course should be sufficient to provide the needed background. The fourth year particle physics course contains elements of the unification course without the mathematical development. Both undergraduate particle physics courses generally have good web-based materials (see the physics department web site).

5 Bibliography Background H.F. Jones, Groups, Representation and Physics" (Institute of Physics Publishing, Bristol, 2nd edition 1998, ISBN ). [Chapter 1, section 2.2, chapter 3 (not section 3.2), sections 6.1, 6.2, 8.1 and 8.2 cover all the group theory needed for Unification. Chapters 6, 8, 9, 10 and 11 cover Lie groups in sufficient depth for the full MSc course including a good introduction to symmetries of spacetime in chapter 9 on the Poincaré group.] L.H.Ryder, Quantum Field Theory" (Cambridge University Press, Cambridge, 1985). [General QFT book at an appropriate level for the QFT and Unification courses.] F.Mandl and G.Shaw, Quantum Field Theory" (Wiley, Chichester, revised edition 1996). [General QFT book recommended for the QFT course and for the MSc course in general. Sections 2.1 and 2.2 provide a summary of the required knowledge of special relativity and Lagrangian mechanics.] Overview E.S. Abers and B.W. Lee, Gauge Theories (Physics Reports 9C, No. 1, November 1973). [The first part of this classic Physics Reports review covers many of the main topics of the Unification course. Even if it is hard to read at the beginning of the course, it is hoped that students will be able to understand it by the end of the course.] Cliff Burgess and Guy Moore, The Standard Model a Primer (Cambridge University Press, 2007). [A brand-new graduate level course, goes beyond the Unfication course level. Looks to be a complete and up-to-date treatment of the subject.] Further resources T-P. Cheng and L-F. Li, Gauge Theory of Elementary Particle Physics" (Oxford Univ. Press, 1984). [General QFT book. Starts with good overview of classical Lagrangians. Section 4.1 is a very compact outline of essential group theory ideas needed for Unification. The rest of chapter 4 gives a compact discussion of more group theory as needed for MSc students.] S. Weinberg, Gravitation and Cosmology (Wiley, 1972). [Chapter 2, sections 1-9 provides a good background on Special Relativity.] T. Kibble and F. Berkshire, Classical Mechanics" (Longman, Harlow, 1996). [This book covers Lagrangians etc. at a level accessible to Imperial students.]

6 D. Vvedensky, Group Theory" [Notes from a previous lecturer of the undergraduate Group Theory course.] Howard Georgi, Lie Algebras in Particle Physics" (Perseus Books, Reading, MA, Second Edition 1999, ISBN ). [A standard particle physics text which focuses on compact Lie groups and algebras (about 90% of the text), especially SU(2), SU(3), SU(N), SO(N), SU(5), and SO(10). It is quite useful for MSc students. Make sure that you get the second edition as it is much better and includes an excellent forty-page survey of finite groups. Read this introductory survey even if you don't buy the book.] M.Hamermesh, Group Theory and its applications to physical Problems" (Pergamon/Addison-Wesley, 1962), but available now as a cheap Dover (New York, 1989) paperback, ISBN Ch. 1-3,8 [A classic mathematical presentation of Group theory which accessible to physicists. Good for a serious foundation but written in a rather old-fashioned style] Gordon Kane, Modern Elementary Particle Physics" (Addison-Wesley, Redwood City CA, 1987, ISBN ). [Contains little on history or experimental details, but has a very good description of the Standard Model of particle physics and beyond without using quantum field theory.] David Griffths, Introduction to Elementary Particles" (John Wiley, N.Y., 1987). [Has rather more details than Kane, but without much actual quantum field theory.] I.S.Hughes, Elementary Particles" (Cambridge University Press, Cambridge, 3rd edition 1991, ISBN ). D.H.Perkins, Introduction to High Energy Physics" (Adison-Wesley, Redwood City CA, 3rd edition 1986). [Many descriptions of experimental methods as well as the Standard Model of particle physics.] I.J.R.Aitchison and A.J.G. Hey, Gauge Theories in Particle Physics" (Adam-Hilger, Bristol, 1982). [A good introductory text about all aspects of quantum field theory. It stops short of teaching you how to use quantum field theory but it will explain why one uses quantum field theory, what it means and how it relates to the real world. The recent two-volume edition is highly recommended as a comprehensive and readable book.] Sidney Coleman, Aspects of Symmetry: Selected Erice Lectures of Sidney Coleman" (Cambridge University Press, Cambridge, 1985) ISBN [A superb text about certain key topics in field theory but not a complete QFT course. Chapter 1 on SU(2), SU(3) and SU(N) symmetry is a good way to learn about these topics in a particle-physics context, although the applications are by now rather dated. Chapter 5 is the classic introduction to spontaneous symmetry breaking in the context of QFT including gauge fields.]

Modern Physics: Standard Model of Particle Physics (Invited Lecture)

Modern Physics: Standard Model of Particle Physics (Invited Lecture) 261352 Modern Physics: Standard Model of Particle Physics (Invited Lecture) Pichet Vanichchapongjaroen The Institute for Fundamental Study, Naresuan University 1 Informations Lecturer Pichet Vanichchapongjaroen

More information

1 Quantum Theory of Matter

1 Quantum Theory of Matter Quantum Theory of Matter: Superfluids & Superconductors Lecturer: Derek Lee Condensed Matter Theory Blackett 809 Tel: 020 7594 7602 dkk.lee@imperial.ac.uk Level 4 course: PT4.5 (Theory Option) http://www.cmth.ph.ic.ac.uk/people/dkk.lee/teach/qtm

More information

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course?

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course? Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course? Contents: Review of the Standard Model! What we know! What we don

More information

Elementary particles and typical scales in high energy physics

Elementary particles and typical scales in high energy physics Elementary particles and typical scales in high energy physics George Jorjadze Free University of Tbilisi Zielona Gora - 23.01.2017 GJ Elementary particles and typical scales in HEP Lecture 1 1/18 Contents

More information

Course Evaluation, FYTN04 Theoretical Particle. Particle Physics, Fall 11, Department of Astronomy and Theoretical Physics

Course Evaluation, FYTN04 Theoretical Particle. Particle Physics, Fall 11, Department of Astronomy and Theoretical Physics 1 of 16 03/07/2012 03:41 PM Course Evaluation, FYTN04 Theoretical Particle Physics, Fall 11, Department of Astronomy and Theoretical Physics Course Evaluation, FYTN04 Theoretical Particle Physics, Fall

More information

Course Evaluation, FYTN04 Theoretical Particle. Particle Physics, Fall 12, Department of Astronomy and Theoretical Physics

Course Evaluation, FYTN04 Theoretical Particle. Particle Physics, Fall 12, Department of Astronomy and Theoretical Physics 1 of 15 03/14/2013 01:20 PM Course Evaluation, FYTN04 Theoretical Particle Physics, Fall 12, Department of Astronomy and Theoretical Physics Course Evaluation, FYTN04 Theoretical Particle Physics, Fall

More information

SYMMETRIES & CONSERVATIONS LAWS. Stephen Haywood (RAL) Tel Symmetries & Conservation Laws Lecture 0, page1

SYMMETRIES & CONSERVATIONS LAWS. Stephen Haywood (RAL) Tel Symmetries & Conservation Laws Lecture 0, page1 SYMMETRIES & CONSERVATIONS LAWS Stephen Haywood (RAL) Stephen.Haywood@stfc.ac.uk Tel 01235 446761 Symmetries & Conservation Laws Lecture 0, page1 Motivation This course complements the courses on Standard

More information

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model Lecture 8 September 21, 2017 Today General plan for construction of Standard Model theory Properties of SU(n) transformations (review) Choice of gauge symmetries for the Standard Model Use of Lagrangian

More information

The ATLAS Experiment and the CERN Large Hadron Collider

The ATLAS Experiment and the CERN Large Hadron Collider The ATLAS Experiment and the CERN Large Hadron Collider HEP101-2 January 28, 2013 Al Goshaw 1 HEP 101-2 plan Jan. 14: Introduction to CERN and ATLAS DONE Today: 1. Comments on grant opportunities 2. Overview

More information

Pedagogical Strategy

Pedagogical Strategy Integre Technical Publishing Co., Inc. Hartle November 18, 2002 1:42 p.m. hartlemain19-end page 557 Pedagogical Strategy APPENDIX D...as simple as possible, but not simpler. attributed to A. Einstein The

More information

Course Evaluation, Department of Theoretical Physics - FYS230 Theoretical Particle Physics, Fall 2006

Course Evaluation, Department of Theoretical Physics - FYS230 Theoretical Particle Physics, Fall 2006 Course Evaluation, Department of Theoretical Physics - FYS230 Theoretical Particle Physics, Fall 2006 Course Evaluation, Department of Theoretical Physics - FYS230 Theoretical Particle Physics, Fall 2006

More information

Physics 610: Quantum Field Theory I

Physics 610: Quantum Field Theory I Physics 610: Quantum Field Theory I Fall 2011 Instructor: George Sterman (MT-6108, george.sterman@stonybrook.edu) Room: Physics P-112 TuTh 8:20-9:40 This course will introduce quantum field theory, emphasizing

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Physics (PHYS) Courses. Physics (PHYS) 1

Physics (PHYS) Courses. Physics (PHYS) 1 Physics (PHYS) 1 Physics (PHYS) Courses PHYS 5001. Introduction to Quantum Computing. 3 Credit Hours. This course will give an elementary introduction to some basics of quantum information and quantum

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

Part III The Standard Model

Part III The Standard Model Part III The Standard Model Theorems Based on lectures by C. E. Thomas Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Introduction and motivation: QCD and modern high-energy physics

More information

Illustration of the Emergence of Fundamental Forces

Illustration of the Emergence of Fundamental Forces Copyright 2017 by Sylwester Kornowski All rights reserved Illustration of the Emergence of Fundamental Forces Sylwester Kornowski Abstract: Here, within the Scale-Symmetric Theory (SST), we illustrate

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

cgrahamphysics.com Particles that mediate force Book pg Exchange particles Particles that mediate force Book pg 299-300 Exchange particles Review Baryon number B Total # of baryons must remain constant All baryons have the same number B = 1 (p, n, Λ, Σ, Ξ) All non baryons (leptons

More information

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013 Fundamental Forces David Morrissey Key Concepts, March 15, 2013 Not a fundamental force... Also not a fundamental force... What Do We Mean By Fundamental? Example: Electromagnetism (EM) electric forces

More information

The Why, What, and How? of the Higgs Boson

The Why, What, and How? of the Higgs Boson Modern Physics The Why, What, and How? of the Higgs Boson Sean Yeager University of Portland 10 April 2015 Outline Review of the Standard Model Review of Symmetries Symmetries in the Standard Model The

More information

The Scale-Symmetric Theory as the Origin of the Standard Model

The Scale-Symmetric Theory as the Origin of the Standard Model Copyright 2017 by Sylwester Kornowski All rights reserved The Scale-Symmetric Theory as the Origin of the Standard Model Sylwester Kornowski Abstract: Here we showed that the Scale-Symmetric Theory (SST)

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

Elementary Particle Physics Fall Term 2016 v2. Course Information

Elementary Particle Physics Fall Term 2016 v2. Course Information Physics 145 Harvard University Elementary Particle Physics Fall Term 2016 v2 Course Information Instructors: Gary Feldman, Professor, Lyman 232, 617-496-1044, gfeldman@fas.harvard.edu Anders Andreassen,

More information

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

The Standard Model and Beyond

The Standard Model and Beyond Paul Langacker The Standard Model and Beyond CRC PRESS Boca Raton Ann Arbor London Tokyo Contents Preface xi 1 Notation and Conventions 1 1.1 Problems............................. 5 2 Review of Perturbative

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

The Correct Interpretation of the Kaluza-Klein Theory

The Correct Interpretation of the Kaluza-Klein Theory Copyright 2014 by Sylwester Kornowski All rights reserved The Correct Interpretation of the Kaluza-Klein Theory Sylwester Kornowski Abstract: Here, within the Scale-Symmetric Everlasting Theory (S-SET),

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

g abφ b = g ab However, this is not true for a local, or space-time dependant, transformations + g ab

g abφ b = g ab However, this is not true for a local, or space-time dependant, transformations + g ab Yang-Mills theory Modern particle theories, such as the Standard model, are quantum Yang- Mills theories. In a quantum field theory, space-time fields with relativistic field equations are quantized and,

More information

Birth of electroweak theory from an Imperial perspective

Birth of electroweak theory from an Imperial perspective Birth of electroweak theory from an Imperial perspective Tom Kibble King s College London 2 Oct 2012 Electroweak theory Oct 2012 1 Outline Story of spontaneous symmetry breaking in gauge theories and electro-weak

More information

DEPARTMENT OF PHYSICS AND ASTRONOMY. BSc/MSci Programme Structures (Full-time Undergraduate Degrees)

DEPARTMENT OF PHYSICS AND ASTRONOMY. BSc/MSci Programme Structures (Full-time Undergraduate Degrees) DEPARTMENT OF PHYSICS AND ASTRONOMY BSc/MSci Programme Structures (Full-time Undergraduate Degrees) 2016/2017 Dates of College Terms The College terms for session 2016/2017 are: First Term: Monday 26 September

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

[Gr1] David Griffiths, Introduction to Elementary Particles, (1987) John Wiley & Sons, Inc., ISBN

[Gr1] David Griffiths, Introduction to Elementary Particles, (1987) John Wiley & Sons, Inc., ISBN Course: Physics 701B Elementary Particles Time: Spring 2007, 3:00-4:30 MW, 353 JB (or maybe 042 JB on W) Instructor: Tom DeLillo, 348 JB, 978-3974(office), 264-7806(home) Email: delillo@math.twsu.edu Office

More information

MA201: Further Mathematical Methods (Linear Algebra) 2002

MA201: Further Mathematical Methods (Linear Algebra) 2002 MA201: Further Mathematical Methods (Linear Algebra) 2002 General Information Teaching This course involves two types of teaching session that you should be attending: Lectures This is a half unit course

More information

INTRODUCING EINSTEIN'S RELATIVITY BY RAY D'INVERNO DOWNLOAD EBOOK : INTRODUCING EINSTEIN'S RELATIVITY BY RAY D'INVERNO PDF

INTRODUCING EINSTEIN'S RELATIVITY BY RAY D'INVERNO DOWNLOAD EBOOK : INTRODUCING EINSTEIN'S RELATIVITY BY RAY D'INVERNO PDF Read Online and Download Ebook INTRODUCING EINSTEIN'S RELATIVITY BY RAY D'INVERNO DOWNLOAD EBOOK : INTRODUCING EINSTEIN'S RELATIVITY BY RAY D'INVERNO PDF Click link bellow and free register to download

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

Physics 622 Relativistic Quantum Field Theory Course Syllabus

Physics 622 Relativistic Quantum Field Theory Course Syllabus Physics 622 Relativistic Quantum Field Theory Course Syllabus Instructor Office Swain West 226 Phone Number 855 0243 Open Door Policy Steven Gottlieb, Distinguished Professor I don t want to constrain

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information

Where are we heading? Nathan Seiberg IAS 2016

Where are we heading? Nathan Seiberg IAS 2016 Where are we heading? Nathan Seiberg IAS 2016 Two half-talks A brief, broad brush status report of particle physics and what the future could be like The role of symmetries in physics and how it is changing

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction FYS 3510 Subatomic physics with applications in astrophysics Nuclear and Particle Physics: An Introduction Nuclear and Particle Physics: An Introduction, 2nd Edition Professor Brian Martin ISBN: 978-0-470-74275-4

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

PHYSICS 564 Introduction to Particle Physics I

PHYSICS 564 Introduction to Particle Physics I PHYSICS 564 Introduction to Particle Physics I Prof. Norbert Neumeister Department of Physics Purdue University Fall 2016 http://www.physics.purdue.edu/phys564 Course Format Lectures: Time: Tuesday, Thursday

More information

Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4. Wim Kloet

Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4. Wim Kloet Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4 Wim Kloet 1 Lecture 1 TOPICS Administration - course web page - contact details Course materials - text book - iclicker - syllabus Course Components

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction The book Introduction to Modern Physics: Theoretical Foundations starts with the following two paragraphs [Walecka (2008)]: At the end of the 19th century, one could take pride in

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

3 Dimensional String Theory

3 Dimensional String Theory 3 Dimensional String Theory New ideas for interactions and particles Abstract...1 Asymmetry in the interference occurrences of oscillators...1 Spontaneously broken symmetry in the Planck distribution law...3

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

PHYS 420: Astrophysics & Cosmology

PHYS 420: Astrophysics & Cosmology PHYS 420: Astrophysics & Cosmology Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Lecture 5: Sept. 19, 2013 First Applications of Noether s Theorem. 1 Translation Invariance. Last Latexed: September 18, 2013 at 14:24 1

Lecture 5: Sept. 19, 2013 First Applications of Noether s Theorem. 1 Translation Invariance. Last Latexed: September 18, 2013 at 14:24 1 Last Latexed: September 18, 2013 at 14:24 1 Lecture 5: Sept. 19, 2013 First Applications of Noether s Theorem Copyright c 2005 by Joel A. Shapiro Now it is time to use the very powerful though abstract

More information

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B PH5211: High Energy Physics Prafulla Kumar Behera E-mail:behera@iitm.ac.in Room: HSB-304B Information Class timing: Wed. 11am, Thur. 9am, Fri. 8am The course will be graded as follows: 1 st quiz (20 marks)

More information

The Building Blocks of Nature

The Building Blocks of Nature The Building Blocks of Nature PCES 15.1 Schematic picture of constituents of an atom, & rough length scales. The size quoted for the nucleus here (10-14 m) is too large- a single nucleon has size 10-15

More information

Essential Physics II. Lecture 14:

Essential Physics II. Lecture 14: Essential Physics II E II Lecture 14: 18-01-16 Last lecture of EP2! Congratulations! This was a hard course. Be proud! Next week s exam Next Monday! All lecture slides on course website: http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep2

More information

COSMOLOGY Space Time Energy Acceleration --Matter

COSMOLOGY Space Time Energy Acceleration --Matter PHYSICS 477/577/790 Northern Illinois University Department of Physics Faraday Hall FR 143 (?) Tue & Thu, 12:30 13:45 Spring 2018 January 16, 2018 May 11, 2018 COSMOLOGY Space Time Energy Acceleration

More information

Particle Physics Lectures Outline

Particle Physics Lectures Outline Subatomic Physics: Particle Physics Lectures Physics of the Large Hadron Collider (plus something about neutrino physics) 1 Particle Physics Lectures Outline 1 - Introduction The Standard Model of particle

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Higgs boson may appear to be a technihiggs

Higgs boson may appear to be a technihiggs Higgs boson may appear to be a technihiggs The discovered elusive Higgs boson, first predicted theoretically, turns out to may have been a different particle after all. A team of international researchers

More information

Physics 424: Dr. Justin Albert (call me Justin!)

Physics 424: Dr. Justin Albert (call me Justin!) Physics 424: Dr. Justin Albert (call me Justin!) A Brief History of Particle Physics Discoveries (Or: Figuring out What the Universe is Made Of ) Looking Inside the Atom: e -, p, and n! 1897: J.J. Thomson

More information

A COURSE IN FIELD THEORY

A COURSE IN FIELD THEORY A COURSE IN FIELD THEORY Pierre van Baal Instituut-Lorentz for Theoretical Physics, University of Leiden, P.O.Box 9506, 2300 RA Leiden, The Netherlands. Fall, 1998 Corrected version January 2001 Copyright

More information

Le Modèle Standard et ses extensions

Le Modèle Standard et ses extensions Particules Élémentaires, Gravitation et Cosmologie Année 2007-08 08 Le Modèle Standard et ses extensions Cours I: 8 février f 2008 Théories de jauge : un rappel Programme du cours 2008 Théories de jauge:

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &.

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &. An Introductory Course of PARTICLE PHYSICS Palash B. Pal Saha Institute of Nuclear Physics Kolkata, India W CRC Press Taylor &. Francis Croup Boca Raton London New York CRC Press is an imprint of the &

More information

Beyond Standard Models Higgsless Models. Zahra Sheikhbahaee

Beyond Standard Models Higgsless Models. Zahra Sheikhbahaee Beyond Standard Models Higgsless Models Zahra Sheikhbahaee Standard Model There are three basic forces in the Universe: 1. Electroweak force, including electromagnetic force, 2. Strong nuclear force, 3.

More information

20th Century Concepts in STM January 23, 2014 Tycho Sleator V Spring 2014

20th Century Concepts in STM January 23, 2014 Tycho Sleator V Spring 2014 20th Century Concepts in STM January 23, 2014 Tycho Sleator V85.0020 Spring 2014 Welcome to 20 th Century Concepts in Space, Time, and Matter, V85.0020. This course is intended to provide you with a current

More information

PH Welcome to IIT Madras and welcome to PH 1010 Course. A few Dos and Don ts in this Course

PH Welcome to IIT Madras and welcome to PH 1010 Course. A few Dos and Don ts in this Course PH 1010 A Batch Teacher : Dr.A.Subrahmanyam Welcome to IIT Madras and welcome to PH 1010 Course A bit of Introduction about the Course A few Dos and Don ts in this Course 1 Please remember that ALL of

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Fall 003 Masahiro Morii Teaching Staff! Lecturer: Masahiro Morii! Tuesday/Thursday 11:30 1:00. Jefferson 56! Section leaders: Srinivas Paruchuri and Abdol-Reza Mansouri! Two or three

More information

Mechanics Physics 151. Fall 2003 Masahiro Morii

Mechanics Physics 151. Fall 2003 Masahiro Morii Mechanics Physics 151 Fall 2003 Masahiro Morii Teaching Staff! Lecturer: Masahiro Morii! Tuesday/Thursday 11:30 1:00. Jefferson 256! Section leaders: Srinivas Paruchuri and Abdol-Reza Mansouri! Two or

More information

Neutrino Physics. Kam-Biu Luk. Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory

Neutrino Physics. Kam-Biu Luk. Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory Neutrino Physics Kam-Biu Luk Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory 4-15 June, 2007 Outline Brief overview of particle physics Properties of

More information

THE STANDARD MODEL IN A NUTSHELL BY DAVE GOLDBERG DOWNLOAD EBOOK : THE STANDARD MODEL IN A NUTSHELL BY DAVE GOLDBERG PDF

THE STANDARD MODEL IN A NUTSHELL BY DAVE GOLDBERG DOWNLOAD EBOOK : THE STANDARD MODEL IN A NUTSHELL BY DAVE GOLDBERG PDF Read Online and Download Ebook THE STANDARD MODEL IN A NUTSHELL BY DAVE GOLDBERG DOWNLOAD EBOOK : THE STANDARD MODEL IN A NUTSHELL BY DAVE Click link bellow and free register to download ebook: THE STANDARD

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

The cosmological constant puzzle

The cosmological constant puzzle The cosmological constant puzzle Steven Bass Cosmological constant puzzle: Accelerating Universe: believed to be driven by energy of nothing (vacuum) Vacuum energy density (cosmological constant or dark

More information

Symmetries Then and Now

Symmetries Then and Now Symmetries Then and Now Nathan Seiberg, IAS 40 th Anniversary conference Laboratoire de Physique Théorique Global symmetries are useful If unbroken Multiplets Selection rules If broken Goldstone bosons

More information

Democritus, a fifth century B.C. philosopher, is credited with being the first

Democritus, a fifth century B.C. philosopher, is credited with being the first This paper will give a general overview of the current thoughts on the building blocks of atoms through the scope of the Standard Model. There will be an abridged explanation of the interactions that these

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 7-3: THE STRUCTURE OF MATTER Questions From Reading Activity? Essential Idea: It is believed that all the matter around us is made up of fundamental

More information

PH 610/710-2A: Advanced Classical Mechanics I. Fall Semester 2007

PH 610/710-2A: Advanced Classical Mechanics I. Fall Semester 2007 PH 610/710-2A: Advanced Classical Mechanics I Fall Semester 2007 Time and location: Tuesdays & Thursdays 8:00am 9:15am (EB 144) Instructor and office hours: Dr. Renato Camata, camata@uab.edu CH 306, (205)

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 5 The thermal universe - part I In the last lecture we have shown that our very early universe was in a very hot and dense state. During

More information

Part 1: Introduction

Part 1: Introduction FYSH300, fall 2011 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Office: FL249. No fixed reception hours. kl 2011 Part 1: Introduction 1 Dates, times Lectures: Mon, Wed at 14h15, FYS3 Exercises: Mon, at 12h15,

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

CURRICULUM VITAE (ABBREVIATED) SERGE RUDAZ

CURRICULUM VITAE (ABBREVIATED) SERGE RUDAZ CURRICULUM VITAE (ABBREVIATED) SERGE RUDAZ SCHOOL OF PHYSICS AND ASTRONOMY UNIVERSITY OF MINNESOTA MINNEAPOLIS, MN 55455 telephone: (612) 624-5022 fax: (612) 624-4578 e-mail: rudaz@mnhep.hep.umn.edu Date

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

Symmetry and Unification

Symmetry and Unification Thursday, March 12, 2009 09:59 i Symmetry and Unification T.S. Evans Theoretical Physics, Physics Department, Imperial College London, South Kensington Campus, London SW7 2AZ, UK These notes are incomplete

More information

Dr. LeGrande M. Slaughter Chemistry Building Rm. 307E Office phone: ; Tues, Thurs 11:00 am-12:20 pm, CHEM 331D

Dr. LeGrande M. Slaughter Chemistry Building Rm. 307E Office phone: ; Tues, Thurs 11:00 am-12:20 pm, CHEM 331D Syllabus: CHEM 5620 Selected Topics in Inorganic Chemistry: Transition Metal Organometallic Chemistry and Catalysis Spring Semester 2017 (3 credit hours) Instructor: Lecture: Required Text: Office Hours:

More information

Topic B. Spectral Analysis and the Classical Description of Absorption Susceptibility. Topic C. Basic Quantum Mechanical Models Spectroscopic Systems

Topic B. Spectral Analysis and the Classical Description of Absorption Susceptibility. Topic C. Basic Quantum Mechanical Models Spectroscopic Systems Chem 249: Syllabus Experimental Spectroscopy Winter Quarter 2018 Lecture: TuTh 1100a-1220p Room TBA Web Page: http://unicorn.ps.uci.edu/249/ Instructor: Prof. Robert M. Corn Overview Chemistry 249 is a

More information

Lie Algebras in Particle Physics

Lie Algebras in Particle Physics Lie Algebras in Particle Physics Second Edition Howard Georgi S WieW Advanced Book Program A Member of the Perseus Books Group Contents Why Group Theory? 1 1 Finite Groups 2 1.1 Groups and representations

More information

Notes on Quantum Mechanics

Notes on Quantum Mechanics Notes on Quantum Mechanics K. Schulten Department of Physics and Beckman Institute University of Illinois at Urbana Champaign 405 N. Mathews Street, Urbana, IL 61801 USA (April 18, 2000) Preface i Preface

More information

The Higgs Boson, the Origin of Mass, and the Mystery of Spontaneous Symmetry Breaking. Felix Yu Theoretical Physics Department Fermilab

The Higgs Boson, the Origin of Mass, and the Mystery of Spontaneous Symmetry Breaking. Felix Yu Theoretical Physics Department Fermilab The Higgs Boson, the Origin of Mass, and the Mystery of Spontaneous Symmetry Breaking Felix Yu Theoretical Physics Department Fermilab Ask-A-Scientist Public Talk November 3, 2013 Nobel Prize 2013 F. Englert,

More information

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks + 9.2.E - Particle Physics Year 12 Physics 9.8 Quanta to Quarks + Atomic Size n While an atom is tiny, the nucleus is ten thousand times smaller than the atom and the quarks and electrons are at least

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 12 Nov. 18, 2015 Today Big Bang Nucleosynthesis and Neutrinos Particle Physics & the Early Universe Standard Model of Particle

More information

Astronomy 001 Online SP16 Syllabus (Section 8187)

Astronomy 001 Online SP16 Syllabus (Section 8187) Astronomy 001 Online SP16 Syllabus (Section 8187) Instructor: Elizabeth Bell Email (best way to contact me): bellea@wlac.edu Classroom: online Office Hours: online by appointment Prerequisite: None REQUIRED:

More information