Stochastic Generative Hashing

Size: px
Start display at page:

Download "Stochastic Generative Hashing"

Transcription

1 Stochastic Generative Hashing B. Dai 1, R. Guo 2, S. Kumar 2, N. He 3 and L. Song 1 1 Georgia Institute of Technology, 2 Google Research, NYC, 3 University of Illinois at Urbana-Champaign Discussion by Ikenna Odinaka September 8, / 14

2 Outline 1 Introduction 2 Stochastic Generative Hashing 3 Distributional SGD 4 Experiments 2 / 14

3 Binary Hashing Represent real-valued signals x R d using binary vectors (hash codes) h 0, 1 l Faster search and retrieval e.g. L 2 Nearest Neighbor Search (L2NNS) Reduces time and storage requirements Search with binary vectors based on Hamming distance can be done efficiently Data-dependent versus randomized hashing Previous approaches to data-dependent hashing have two major shortcomings: Heuristically constructed objective function Binary constraints are crudely handled by relaxation leading to subpar results Stochastic Generative Hashing tackles both problems 3 / 14

4 Generative Model p(x h) p(x h) can be chosen to based on the problem domain Simple Gaussian distribution for p(x h) achieves state-of-the-art performance Joint distribution is given by p(x, h) = p(x h)p(h), (1) where p(x h) = N (Uh, ρ 2 I), p(h) B(θ) = l i=1 θh i i (1 θ i ) 1 h i, U = {u i } l i=1, u i R d is a codebook with l codewords, θ = [θ i ] l i=1 [0, 1]l The joint distribution can be written as ( p(x, h) exp 1 ) 2ρ 2 x Uh (log θ 1 θ )T h, (2) 4 / 14

5 Encoding Model q(h x) Computing the posterior p(h x) is intractable Getting the MAP solution from p(h x) requires integer programming Approximate p(h x) using q(h x) as the encoder l q(h x) = q(h k = 1 x) h k q(h k = 0 x) 1 h k (3) k=1 Use linear parametrization h = [h k ] l k=1 B(σ(W T x)), where W = [w k ] l k=1 Rd l MAP solution of q(h x) is h(x) = argmax h q(h x) = sign(w T x) / 14

6 Training Objective Objective function is based on Minimal Description Length (MDL) principle MDL principle tries to minimize the expected amount of information to communicate x L(x) = h q(h x)(l(h) + L(x h)), where L(h) = log p(h) + log q(h x) is the description length of the hash code h, L(x h) = log p(x h) is the description length of x with h already known. For a given bit size l, MDL principle finds the best parameters to maximally compress the training data Training objective is min Θ={W,U,β,ρ} H(Θ) := x H(Θ; x) = x where β := log q(h x)(log p(x, h) log q(h x)), (4) h θ 1 θ W comes from q(h x), while U, β, ρ come from p(x, h) The objective function is also called Helmholtz (variational) free energy 6 / 14

7 Reparametrization via Stochastic Neuron Computing gradients w.r.t. W requires back-propagating through stochastic nodes of binary variable h REINFORCE can be used, but it suffers from high variance REINFORCE + variance reduction techniques suffer from either being biased or expensive to compute Reparametrize Bernoulli distribution using stochastic neuron h k (z) is reparameterized with z (0, 1), k = 1,, l The stochastic neuron is defined as h(z, ξ) := { 1 if z ξ 0 if z < ξ, (5) where ξ U(0, 1) h(z, ξ) B(z), because P( h(z, ξ) = 1) = z Replacing h k B(σ(w T k x)) with h k (σ(w T k x), ξ k) in equation (4) gives H(Θ) = x H(Θ; x) := x ] E ξ [l( h, x), (6) where l( h, x) = log p(x, h(σ(w T x), ξ)) + log q( h(σ(w T x), ξ) x) 7 / 14

8 Theory Proposition 1 (Neighborhood Preservation) If U F is bounded, then the Gaussian reconstruction error, x Uh x 2 is a surrogate for Euclidean neighborhood preservation. Definition 2 (Distributional derivative) Let Ω R d be an open set, C0 (Ω) denote the space of functions that are infinitely differentiable with compact support in Ω, and D (Ω) be the space of continuous linear functionals on C0 (Ω). Let u D (Ω), then a distribution v is called the distributional derivative of u, denoted as v = Du, if it satisfies vφdx = u φdx, φ C0 (Ω). Ω Ω Lemma 3 For a given sample x, the distributional derivative of function H(Θ; x) w.r.t. W is given by D W H(Θ; x) = Eξ [ hl( h(σ(w T x), ξ))σ(w T x) (1 σ(w T x))x T ], (7) where denotes point-wise product and hl( h) denotes the finite difference defined as [ ] hl( h) ]k = l( h k 1) l( h k 0 [ hi ), where k = h ] l if k l, otherwise [ hi l k = i, i 0, 1. l 8 / 14

9 Distributional derivative of Stochastic Neuron H(Θ; x) is not differentiable w.r.t. W because h(z; ξ) is discontinous An unbiased stochastic estimator of the gradient of H at Θ i, using sample x i, ξ i, is given as ˆ Θ H(Θi ; x i ) = [ˆDW H(Θi ; x i ), ˆ U,β,ρ H(Θi ; x i )] (8) The estimator of D W H(Θ; x) needs two forward passes of the model for each dimension of Θ. An approximate distributional derivative D W H(Θ; x) can compute each dimension with only one forward pass D W H(Θ; x) := Eξ [ hl( h(σ(w T x), ξ))σ(w T x) (1 σ(w T x))x T ] (9) The approximate stochastic estimator of the gradient of H is given as ˆ Θ H(Θi ; x i ) = [ˆ DW H(Θi ; x i ), ˆ U,β,ρ H(Θi ; x i )] (10) 9 / 14

10 Distributional SGD Algorithm 10 / 14

11 Convergence of Distributional SGD Proposition 4 The distributional derivative D W H(Θ; x) is equivalent to the traditional gradient W H(Θ; x). Theorem 5 (Convergence of Exact Distributional SGD) Under the assumption that H is L-Lipschitz smooth and the variance of the stochastic distributional gradient (8) is bounded by σ 2 in the distributional SGD, for the solution Θ R sampled from the trajectory {Θ i } t i=1 with probability P(R = i) = 2γ i Lγi 2 ti=1 where γ 2γ i Lγ i 2 i O(1/ t), we have [ E Θ H(ΘR ) 2] ( ) 1 O. t Theorem 6 (Convergence of Approximate Distributional SGD) Under the assumption that the variance of the approximate stochastic distributional gradient (10) is bounded by σ 2, for the solution Θ R sampled from the trajectory {Θ i } t i=1 with probability P(R = i) = γ i ti=1 where γ γ i O(1/ t), we have i [ ] ( ) 1 E (Θ R Θ ) T Θ H(ΘR ) O, t where Θ denotes the optimal solution. 11 / 14

12 Reconstruction Error and Training Time Figure: Comparison of Stochastic Generative Hashing (SGH) against iterative quantization (ITQ) and binary autoencoder (BA). Convergence of reconstruction error with number of SGD training samples. Training time comparison between BA and SGH on SIFT-1M dataset over different bit lengths 12 / 14

13 Large Scale Nearest Neighbor Retrieval Figure: Comparison of SGH, ITQ, K -means hashing (KMH), spectral hashing (SH), spherical hashing (SpH), binary autoencoder (BA), and scalable graph hashing (GH). L2NNS comparison on MNIST, SIFT-1M, GIST-1M, and SIFT-1B with varying binary code lengths. Performance is based on Recall 10@M (fraction of top 10 ground truth neighbors in retrieved M) as M increases to / 14

14 Reconstruction Visualization Figure: Original and reconstructed samples using 64 bits for SGH and ITQ, and 64 real components (64 32 bits) for PCA. Original MNIST image uses bits. Original CIFAR-10 image uses bits. 14 / 14

arxiv: v2 [cs.lg] 12 Aug 2017

arxiv: v2 [cs.lg] 12 Aug 2017 Stochastic Generative Hashing Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao He 3, Le Song arxiv:7.85v cs.lg] Aug 7 Georgia Institute of Technology bodai@gatech.edu, lsong@cc.gatech.edu Google Research, NYC {guorq,

More information

Stochastic Generative Hashing

Stochastic Generative Hashing Bo Dai* 1 Ruiqi Guo* 2 Sanjiv Kumar 2 Niao He 3 Le Song 1 Abstract Learning-based binary hashing has become a powerful paradigm for fast search and retrieval in massive databases. However, due to the requirement

More information

Composite Quantization for Approximate Nearest Neighbor Search

Composite Quantization for Approximate Nearest Neighbor Search Composite Quantization for Approximate Nearest Neighbor Search Jingdong Wang Lead Researcher Microsoft Research http://research.microsoft.com/~jingdw ICML 104, joint work with my interns Ting Zhang from

More information

Towards stability and optimality in stochastic gradient descent

Towards stability and optimality in stochastic gradient descent Towards stability and optimality in stochastic gradient descent Panos Toulis, Dustin Tran and Edoardo M. Airoldi August 26, 2016 Discussion by Ikenna Odinaka Duke University Outline Introduction 1 Introduction

More information

Supplemental Material for Discrete Graph Hashing

Supplemental Material for Discrete Graph Hashing Supplemental Material for Discrete Graph Hashing Wei Liu Cun Mu Sanjiv Kumar Shih-Fu Chang IM T. J. Watson Research Center Columbia University Google Research weiliu@us.ibm.com cm52@columbia.edu sfchang@ee.columbia.edu

More information

Correlation Autoencoder Hashing for Supervised Cross-Modal Search

Correlation Autoencoder Hashing for Supervised Cross-Modal Search Correlation Autoencoder Hashing for Supervised Cross-Modal Search Yue Cao, Mingsheng Long, Jianmin Wang, and Han Zhu School of Software Tsinghua University The Annual ACM International Conference on Multimedia

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 10-708 Probabilistic Graphical Models Homework 3 (v1.1.0) Due Apr 14, 7:00 PM Rules: 1. Homework is due on the due date at 7:00 PM. The homework should be submitted via Gradescope. Solution to each problem

More information

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013. The University of Texas at Austin Department of Electrical and Computer Engineering EE381V: Large Scale Learning Spring 2013 Assignment 1 Caramanis/Sanghavi Due: Thursday, Feb. 7, 2013. (Problems 1 and

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

BACKPROPAGATION THROUGH THE VOID

BACKPROPAGATION THROUGH THE VOID BACKPROPAGATION THROUGH THE VOID Optimizing Control Variates for Black-Box Gradient Estimation 27 Nov 2017, University of Cambridge Speaker: Geoffrey Roeder, University of Toronto OPTIMIZING EXPECTATIONS

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

Variational Inference for Monte Carlo Objectives

Variational Inference for Monte Carlo Objectives Variational Inference for Monte Carlo Objectives Andriy Mnih, Danilo Rezende June 21, 2016 1 / 18 Introduction Variational training of directed generative models has been widely adopted. Results depend

More information

Communication-efficient and Differentially-private Distributed SGD

Communication-efficient and Differentially-private Distributed SGD 1/36 Communication-efficient and Differentially-private Distributed SGD Ananda Theertha Suresh with Naman Agarwal, Felix X. Yu Sanjiv Kumar, H. Brendan McMahan Google Research November 16, 2018 2/36 Outline

More information

Spectral Hashing: Learning to Leverage 80 Million Images

Spectral Hashing: Learning to Leverage 80 Million Images Spectral Hashing: Learning to Leverage 80 Million Images Yair Weiss, Antonio Torralba, Rob Fergus Hebrew University, MIT, NYU Outline Motivation: Brute Force Computer Vision. Semantic Hashing. Spectral

More information

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba Tutorial on: Optimization I (from a deep learning perspective) Jimmy Ba Outline Random search v.s. gradient descent Finding better search directions Design white-box optimization methods to improve computation

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT)

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT) Metric Embedding of Task-Specific Similarity Greg Shakhnarovich Brown University joint work with Trevor Darrell (MIT) August 9, 2006 Task-specific similarity A toy example: Task-specific similarity A toy

More information

Deep unsupervised learning

Deep unsupervised learning Deep unsupervised learning Advanced data-mining Yongdai Kim Department of Statistics, Seoul National University, South Korea Unsupervised learning In machine learning, there are 3 kinds of learning paradigm.

More information

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) September 26 & October 3, 2017 Section 1 Preliminaries Kullback-Leibler divergence KL divergence (continuous case) p(x) andq(x) are two density distributions. Then the KL-divergence is defined as Z KL(p

More information

Greedy Layer-Wise Training of Deep Networks

Greedy Layer-Wise Training of Deep Networks Greedy Layer-Wise Training of Deep Networks Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle NIPS 2007 Presented by Ahmed Hefny Story so far Deep neural nets are more expressive: Can learn

More information

Speaker Representation and Verification Part II. by Vasileios Vasilakakis

Speaker Representation and Verification Part II. by Vasileios Vasilakakis Speaker Representation and Verification Part II by Vasileios Vasilakakis Outline -Approaches of Neural Networks in Speaker/Speech Recognition -Feed-Forward Neural Networks -Training with Back-propagation

More information

Improved Bayesian Compression

Improved Bayesian Compression Improved Bayesian Compression Marco Federici University of Amsterdam marco.federici@student.uva.nl Karen Ullrich University of Amsterdam karen.ullrich@uva.nl Max Welling University of Amsterdam Canadian

More information

Variational Inference and Learning. Sargur N. Srihari

Variational Inference and Learning. Sargur N. Srihari Variational Inference and Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics in Approximate Inference Task of Inference Intractability in Inference 1. Inference as Optimization 2. Expectation Maximization

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier Machine Learning 10-701/15 701/15-781, 781, Spring 2008 Theory of Classification and Nonparametric Classifier Eric Xing Lecture 2, January 16, 2006 Reading: Chap. 2,5 CB and handouts Outline What is theoretically

More information

2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data

2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data 2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data Liu Liu Instructor: Dr. Hairong Qi University of Tennessee, Knoxville lliu25@vols.utk.edu September 21, 2017 Liu Liu (UTK)

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

Discrete Variables and Gradient Estimators

Discrete Variables and Gradient Estimators iscrete Variables and Gradient Estimators This assignment is designed to get you comfortable deriving gradient estimators, and optimizing distributions over discrete random variables. For most questions,

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

The Power of Asymmetry in Binary Hashing

The Power of Asymmetry in Binary Hashing The Power of Asymmetry in Binary Hashing Behnam Neyshabur Yury Makarychev Toyota Technological Institute at Chicago Russ Salakhutdinov University of Toronto Nati Srebro Technion/TTIC Search by Image Image

More information

Statistical Learning. Dong Liu. Dept. EEIS, USTC

Statistical Learning. Dong Liu. Dept. EEIS, USTC Statistical Learning Dong Liu Dept. EEIS, USTC Chapter 6. Unsupervised and Semi-Supervised Learning 1. Unsupervised learning 2. k-means 3. Gaussian mixture model 4. Other approaches to clustering 5. Principle

More information

The connection of dropout and Bayesian statistics

The connection of dropout and Bayesian statistics The connection of dropout and Bayesian statistics Interpretation of dropout as approximate Bayesian modelling of NN http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf Dropout Geoffrey Hinton Google, University

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Bishop PRML Ch. 9 Alireza Ghane c Ghane/Mori 4 6 8 4 6 8 4 6 8 4 6 8 5 5 5 5 5 5 4 6 8 4 4 6 8 4 5 5 5 5 5 5 µ, Σ) α f Learningscale is slightly Parameters is slightly larger larger

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

Compressed Fisher vectors for LSVR

Compressed Fisher vectors for LSVR XRCE@ILSVRC2011 Compressed Fisher vectors for LSVR Florent Perronnin and Jorge Sánchez* Xerox Research Centre Europe (XRCE) *Now with CIII, Cordoba University, Argentina Our system in a nutshell High-dimensional

More information

Optimized Product Quantization for Approximate Nearest Neighbor Search

Optimized Product Quantization for Approximate Nearest Neighbor Search Optimized Product Quantization for Approximate Nearest Neighbor Search Tiezheng Ge Kaiming He 2 Qifa Ke 3 Jian Sun 2 University of Science and Technology of China 2 Microsoft Research Asia 3 Microsoft

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Lecture 5: Logistic Regression. Neural Networks

Lecture 5: Logistic Regression. Neural Networks Lecture 5: Logistic Regression. Neural Networks Logistic regression Comparison with generative models Feed-forward neural networks Backpropagation Tricks for training neural networks COMP-652, Lecture

More information

Variational Bayes and Variational Message Passing

Variational Bayes and Variational Message Passing Variational Bayes and Variational Message Passing Mohammad Emtiyaz Khan CS,UBC Variational Bayes and Variational Message Passing p.1/16 Variational Inference Find a tractable distribution Q(H) that closely

More information

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement Simon Leglaive 1 Laurent Girin 1,2 Radu Horaud 1 1: Inria Grenoble Rhône-Alpes 2: Univ. Grenoble Alpes, Grenoble INP,

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Object Recognition 2017-2018 Jakob Verbeek Clustering Finding a group structure in the data Data in one cluster similar to

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Generative Models Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

Outline. Supervised Learning. Hong Chang. Institute of Computing Technology, Chinese Academy of Sciences. Machine Learning Methods (Fall 2012)

Outline. Supervised Learning. Hong Chang. Institute of Computing Technology, Chinese Academy of Sciences. Machine Learning Methods (Fall 2012) Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Linear Models for Regression Linear Regression Probabilistic Interpretation

More information

Latent state estimation using control theory

Latent state estimation using control theory Latent state estimation using control theory Bert Kappen SNN Donders Institute, Radboud University, Nijmegen Gatsby Unit, UCL London August 3, 7 with Hans Christian Ruiz Bert Kappen Smoothing problem Given

More information

Factor Graphs and Message Passing Algorithms Part 1: Introduction

Factor Graphs and Message Passing Algorithms Part 1: Introduction Factor Graphs and Message Passing Algorithms Part 1: Introduction Hans-Andrea Loeliger December 2007 1 The Two Basic Problems 1. Marginalization: Compute f k (x k ) f(x 1,..., x n ) x 1,..., x n except

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models Auto-Encoding Variational Bayes Diederik Kingma and Max Welling Stochastic Backpropagation and Approximate Inference in Deep Generative Models Danilo J. Rezende, Shakir Mohamed, Daan Wierstra Neural Variational

More information

Learning Deep Architectures for AI. Part II - Vijay Chakilam

Learning Deep Architectures for AI. Part II - Vijay Chakilam Learning Deep Architectures for AI - Yoshua Bengio Part II - Vijay Chakilam Limitations of Perceptron x1 W, b 0,1 1,1 y x2 weight plane output =1 output =0 There is no value for W and b such that the model

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data January 17, 2006 Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Multi-Layer Perceptrons Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole

More information

Probabilistic Graphical Models for Image Analysis - Lecture 4

Probabilistic Graphical Models for Image Analysis - Lecture 4 Probabilistic Graphical Models for Image Analysis - Lecture 4 Stefan Bauer 12 October 2018 Max Planck ETH Center for Learning Systems Overview 1. Repetition 2. α-divergence 3. Variational Inference 4.

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

Accelerated Block-Coordinate Relaxation for Regularized Optimization

Accelerated Block-Coordinate Relaxation for Regularized Optimization Accelerated Block-Coordinate Relaxation for Regularized Optimization Stephen J. Wright Computer Sciences University of Wisconsin, Madison October 09, 2012 Problem descriptions Consider where f is smooth

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

1 Machine Learning Concepts (16 points)

1 Machine Learning Concepts (16 points) CSCI 567 Fall 2018 Midterm Exam DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO PLEASE TURN OFF ALL CELL PHONES Problem 1 2 3 4 5 6 Total Max 16 10 16 42 24 12 120 Points Please read the following instructions

More information

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Sum-Product Networks STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Introduction Outline What is a Sum-Product Network? Inference Applications In more depth

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Introduction to Machine Learning (67577)

Introduction to Machine Learning (67577) Introduction to Machine Learning (67577) Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem Deep Learning Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks

More information

Accelerated Manhattan hashing via bit-remapping with location information

Accelerated Manhattan hashing via bit-remapping with location information DOI 1.17/s1142-15-3217-x Accelerated Manhattan hashing via bit-remapping with location information Wenshuo Chen 1 Guiguang Ding 1 Zijia Lin 2 Jisheng Pei 2 Received: 2 May 215 / Revised: 2 December 215

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

LDPC Codes. Intracom Telecom, Peania

LDPC Codes. Intracom Telecom, Peania LDPC Codes Alexios Balatsoukas-Stimming and Athanasios P. Liavas Technical University of Crete Dept. of Electronic and Computer Engineering Telecommunications Laboratory December 16, 2011 Intracom Telecom,

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Kernel methods, kernel SVM and ridge regression

Kernel methods, kernel SVM and ridge regression Kernel methods, kernel SVM and ridge regression Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Collaborative Filtering 2 Collaborative Filtering R: rating matrix; U: user factor;

More information

Logistic Regression. Seungjin Choi

Logistic Regression. Seungjin Choi Logistic Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Accelerating Stochastic Optimization

Accelerating Stochastic Optimization Accelerating Stochastic Optimization Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem and Mobileye Master Class at Tel-Aviv, Tel-Aviv University, November 2014 Shalev-Shwartz

More information

RaRE: Social Rank Regulated Large-scale Network Embedding

RaRE: Social Rank Regulated Large-scale Network Embedding RaRE: Social Rank Regulated Large-scale Network Embedding Authors: Yupeng Gu 1, Yizhou Sun 1, Yanen Li 2, Yang Yang 3 04/26/2018 The Web Conference, 2018 1 University of California, Los Angeles 2 Snapchat

More information

Lecture 4: Types of errors. Bayesian regression models. Logistic regression

Lecture 4: Types of errors. Bayesian regression models. Logistic regression Lecture 4: Types of errors. Bayesian regression models. Logistic regression A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting more generally COMP-652 and ECSE-68, Lecture

More information

7.1 Coupling from the Past

7.1 Coupling from the Past Georgia Tech Fall 2006 Markov Chain Monte Carlo Methods Lecture 7: September 12, 2006 Coupling from the Past Eric Vigoda 7.1 Coupling from the Past 7.1.1 Introduction We saw in the last lecture how Markov

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

Normalization Techniques

Normalization Techniques Normalization Techniques Devansh Arpit Normalization Techniques 1 / 39 Table of Contents 1 Introduction 2 Motivation 3 Batch Normalization 4 Normalization Propagation 5 Weight Normalization 6 Layer Normalization

More information

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Jakob Verbeek & Daan Wynen 206-09-22 Jakob Verbeek & Daan Wynen Unsupervised Neural Networks Outline Autoencoders Restricted) Boltzmann

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

LOCALITY PRESERVING HASHING. Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA

LOCALITY PRESERVING HASHING. Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA LOCALITY PRESERVING HASHING Yi-Hsuan Tsai Ming-Hsuan Yang Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA ABSTRACT The spectral hashing algorithm relaxes

More information

arxiv: v1 [cs.it] 21 Feb 2013

arxiv: v1 [cs.it] 21 Feb 2013 q-ary Compressive Sensing arxiv:30.568v [cs.it] Feb 03 Youssef Mroueh,, Lorenzo Rosasco, CBCL, CSAIL, Massachusetts Institute of Technology LCSL, Istituto Italiano di Tecnologia and IIT@MIT lab, Istituto

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ Bayesian paradigm Consistent use of probability theory

More information

RegML 2018 Class 8 Deep learning

RegML 2018 Class 8 Deep learning RegML 2018 Class 8 Deep learning Lorenzo Rosasco UNIGE-MIT-IIT June 18, 2018 Supervised vs unsupervised learning? So far we have been thinking of learning schemes made in two steps f(x) = w, Φ(x) F, x

More information

A summary of Deep Learning without Poor Local Minima

A summary of Deep Learning without Poor Local Minima A summary of Deep Learning without Poor Local Minima by Kenji Kawaguchi MIT oral presentation at NIPS 2016 Learning Supervised (or Predictive) learning Learn a mapping from inputs x to outputs y, given

More information

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods.

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Linear models for classification Logistic regression Gradient descent and second-order methods

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ 1 Bayesian paradigm Consistent use of probability theory

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

Lecture 6. Notes on Linear Algebra. Perceptron

Lecture 6. Notes on Linear Algebra. Perceptron Lecture 6. Notes on Linear Algebra. Perceptron COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture Notes on linear algebra Vectors

More information

Evaluating the Variance of

Evaluating the Variance of Evaluating the Variance of Likelihood-Ratio Gradient Estimators Seiya Tokui 2 Issei Sato 2 3 Preferred Networks 2 The University of Tokyo 3 RIKEN ICML 27 @ Sydney Task: Gradient estimation for stochastic

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Nicolas Thome Prenom.Nom@cnam.fr http://cedric.cnam.fr/vertigo/cours/ml2/ Département Informatique Conservatoire

More information

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications Class 19: Data Representation by Design What is data representation? Let X be a data-space X M (M) F (M) X A data representation

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information