BACKPROPAGATION THROUGH THE VOID

Size: px
Start display at page:

Download "BACKPROPAGATION THROUGH THE VOID"

Transcription

1 BACKPROPAGATION THROUGH THE VOID Optimizing Control Variates for Black-Box Gradient Estimation 27 Nov 2017, University of Cambridge Speaker: Geoffrey Roeder, University of Toronto

2 OPTIMIZING EXPECTATIONS L( ) =E p(b ) f(b) Variational inference: Evidence Lower Bound Reinforcement learning: Expected Reward Function Hard attention mechanism How to choose the parameters expectation? to maximize this

3 GRADIENT-BASED OPTIMIZATION Reverse-mode automatic differentiation (backpropagation) computes exact gradients of deterministic, differentiable objectives Reparameterization trick (Williams, 1992; Kingma & Welling 2014; Rezende 2014): using backprop, gives unbiased, lowvariance estimates of gradients of expectations This has allows effective stochastic optimization of large probabilistic continuous latent-variable models

4 GRADIENT-BASED OPTIMIZATION: LIMITATIONS There many relevant objective functions in ML to which backpropagation cannot be applied In RL, in fact, the reward function is unknown: a black box from the perspective of an agent Discrete latent variable models: discrete sampling creates discontinuities, giving the objective function zero gradient w.r.t. its parameters

5 GRADIENT-BASED OPTIMIZATION: LIMITATIONS But, gradients are appealing: in high dimensions, provides information on how to adjust each parameter individually Moreover, stochastic optimization is essential for scalability However, are only guaranteed to converge to a fixed point of an objective if a gradient estimator is unbiased

6 How can we build unbiased stochastic L( )

7 SCORE-FUNCTION ESTIMATOR ( REINFORCE, WILLIAMS 1992)

8 SCORE-FUNCTION ESTIMATOR ( REINFORCE, E p(b )f(b) p(b )f(b)d apple We can estimate this quantity with Monte Carlo integration: High variance: convergence to good solution challenging

9 SCORE-FUNCTION ESTIMATOR ( REINFORCE, E p(b )f(b) p(b )f(b)d = E p(b log p(b ) Log-derivative trick allows us to rewrite gradient of expectation as expectation of gradient (under weak regularity conditions) We can estimate this quantity with Monte Carlo integration: High variance: convergence to good solution challenging

10 SCORE-FUNCTION ESTIMATOR ( REINFORCE, E p(b )f(b) p(b )f(b)d = E p(b log p(b ) ĝ SF log p(b ) Log-derivative trick allows us to rewrite gradient of expectation as expectation of gradient (under weak regularity conditions) Yields unbiased, but high variance estimator

11 REPARAMETERIZATION TRICK g REP T (, ), p( ) Requires function to be known and differentiable Requires distribution p(b ) to be reparameterizable through a transformation T (, ) Unbiased; lower variance empirically

12 CONCRETE REPARAMETERIZATION (MADDISON ET AL. 2016) g CON @ (z),z = T (, ), p( ) Works well with careful hyper parameter choices Lower variance than scorefunction estimator due to reparameterization Biased estimator Temperature parameter Requires f to be known and differentiable Requires p(b ) to be reparamaterizable

13 REBAR (TUCKER ET AL. 2017) Improves over concrete distribution (rebar is stronger than concrete) Uses continuous relaxation of discrete random variables (concrete) to build unbiased, lower-variance gradient estimator Using the reparameterization from the Concrete distribution, construct a control variate for the score-function estimator Show how tune additional parameters of the estimator (e.g., temperature ) online

14 Digression: control variates for Monte Carlo estimators

15 CONTROL VARIATES: DIGRESSION ĝ new (b) =ĝ(b) c(b) E p(b) [c(b)]? = Cov[ĝ, c] Var[ĝ] New estimator is equal in expectation to old estimator (bias is unchanged) Variance is reduced when corr(c, g) > 0 We exploit the difference between the function c and its known mean during optimization to correct the value of the estimator

16 CONTROL VARIATES: FREE-FORM ĝ new (b) =ĝ(b) c (b)+e p(b) [c (b)] If we choose a neural network as our parameterized differentiable function, then the above formulation can be simplified to the above The scaling constant will be absorbed into the weights of the network, and optimality is determined by training How should we update the weights of the free-form control variate?

17 What is essential for a control variate?

18 LEARNING FREE-FORM CONTROL VARIATE: ] For unbiased estimator, we can form a Monte-Carlo estimate for the variance of the estimator overall We use this as the training signal for the parameters of the control variate, adapting the parameters during training

19 GENERALIZING REBAR ĝ LAX = g SF [f] g SF [c ]+g REP [c ] =[f(b) log c (b), Start with score function (SF) estimator of gradient of b = T (, ), p( ) f Introduce a parametrized differentiable function c c Use SF estimator of as a control variate, subtracting its mean estimated through the lower-variance reparameterization estimator This generalizes Tucker et al to free-form control variates: no longer require continuous relaxations

20 RELAX: EXTENSION TO DISCRETE RANDOM VARIABLES ĝ RELAX =[f(b) c log c ( z), z p(z ),b= H(z), z p(z b, ) When b is discrete, we introduce a related distribution and a function H where H(z) =b p(b ) We use a conditional reparameterization scheme developed by Tucker et al for REBAR This estimator is unbiased for all choices of c

21 RELAX: EXTENSION TO DISCRETE RANDOM VARIABLES ĝ RELAX =[f(b) c log c ( z), z p(z ),b= H(z), z p(z b, ) When b is discrete, we introduce a related distribution and a function H where H(z) =b p(b ) We use a conditional reparameterization scheme developed by Tucker et al for REBAR This estimator is unbiased for all choices of c

22 EXPERIMENTAL RESULTS

23 SIMPLE EXAMPLE E p(b ) (t b) 2 b Ber( ) Validated idea with simple function above Used to validate REBAR estimator, fixing t=0.45 We chose t = 0.499

24 SIMPLE EXAMPLE E p(b ) (t b) 2 (Right) RELAX finds a reasonable solution, REINFORCE and REBAR oscillate (Left) Variance is considerably reduced in our estimator

25 A MORE INTERESTING APPLICATION log p(x) L( ) =E q(b x) [log p(x b) + log p(b) log q(b x)] Discrete Variational Autoencoder Latent state: 2 layers of 200 Bernoulli variables Discrete sampling renders reparameterization estimator unusable c (z) =f( (z)) + r (z)

26 MNIST RESULTS

27 OMNIGLOT RESULTS

28 QUANTITATIVE RESULTS Dataset Model Concrete NVIL MuProp REBAR RELAX Nonlinear MNIST linear 1 layer linear 2 layer Nonlinear Omniglot linear 1 layer linear 2 layer Table 1: Best obtained training objective for discrete variational autoencoders.

29 OVERFITTING 1 LAYER: MNIST (LEFT), OMNIGLOT (RIGHT)

30 REINFORCEMENT LEARNING Policy gradient methods effective for finding policy parameters (A2C, A3C, ACKTR) Goal: argmax E ( ) [R( )] Need E ( ) [R( )] True reward function unknown (black-box, from environment)

31 ADVANTAGE ACTOR CRITIC ĝ A2C = 1X t=1 (SUTTON, 2000) X log (a t s t, ) t 0 =t # r t c (s 0 t ),a t (a t s t, ) c is an estimate of the value function This is exactly the REINFORCE estimator using an estimate of the value function as a control variate Why not use action in control variate? Dependence on action would add bias

32 EXTENDING LAX TO RL g RL LAX = log (a t s t ; ) " 1 X t 0 =t # r t 0 c (a t,s t c (a t,s t ) a t = a t ( t,s t, ), t p( t ) Allows for action-dependence in control variate Remains unbiased estimator Similar extension possible for discrete action spaces, see paper Appendix C.2

33 RL BENCHMARK RESULTS Lunar lander Inverted pendulum Inverted double pendulum Log-Variance Reward Cart-pole Figure 4: Top row: Reward curves. Bottom row: Variance of policy gradients (log scale). In each curve, the center line indicates the mean reward over 5 random seeds. The opaque bars in the top

34 BERNOULLI REPARAM Bernoulli When p(b ) is Bernoulli distribution we let H(z) =I(z >0) and we sample from p(z ) with z = log 1 + log u, u uniform[0, 1]. 1 u We can sample from p(z b, ) with v 0 = v (1 ) b =0 v +(1 ) b =1 z = log 1 + log v 0, v uniform[0, 1]. 1 v0

Backpropagation Through

Backpropagation Through Backpropagation Through Backpropagation Through Backpropagation Through Will Grathwohl Dami Choi Yuhuai Wu Geoff Roeder David Duvenaud Where do we see this guy? L( ) =E p(b ) [f(b)] Just about everywhere!

More information

Discrete Variables and Gradient Estimators

Discrete Variables and Gradient Estimators iscrete Variables and Gradient Estimators This assignment is designed to get you comfortable deriving gradient estimators, and optimizing distributions over discrete random variables. For most questions,

More information

REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models

REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models RBAR: Low-variance, unbiased gradient estimates for discrete latent variable models George Tucker 1,, Andriy Mnih 2, Chris J. Maddison 2,3, Dieterich Lawson 1,*, Jascha Sohl-Dickstein 1 1 Google Brain,

More information

Evaluating the Variance of

Evaluating the Variance of Evaluating the Variance of Likelihood-Ratio Gradient Estimators Seiya Tokui 2 Issei Sato 2 3 Preferred Networks 2 The University of Tokyo 3 RIKEN ICML 27 @ Sydney Task: Gradient estimation for stochastic

More information

arxiv: v3 [cs.lg] 23 Feb 2018

arxiv: v3 [cs.lg] 23 Feb 2018 BACKPROPAGATION THROUGH THE VOID: OPTIMIZING CONTROL VARIATES FOR BLACK-BOX GRADIENT ESTIMATION Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, David Duvenaud University of Toronto and Vector Institute

More information

arxiv: v4 [cs.lg] 6 Nov 2017

arxiv: v4 [cs.lg] 6 Nov 2017 RBAR: Low-variance, unbiased gradient estimates for discrete latent variable models arxiv:10.00v cs.lg] Nov 01 George Tucker 1,, Andriy Mnih, Chris J. Maddison,, Dieterich Lawson 1,*, Jascha Sohl-Dickstein

More information

Discrete Latent Variable Models

Discrete Latent Variable Models Discrete Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 14 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 14 1 / 29 Summary Major themes in the course

More information

Variational Inference for Monte Carlo Objectives

Variational Inference for Monte Carlo Objectives Variational Inference for Monte Carlo Objectives Andriy Mnih, Danilo Rezende June 21, 2016 1 / 18 Introduction Variational training of directed generative models has been widely adopted. Results depend

More information

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Diederik (Durk) Kingma Danilo J. Rezende (*) Max Welling Shakir Mohamed (**) Stochastic Gradient Variational Inference Bayesian

More information

Reinforcement Learning and NLP

Reinforcement Learning and NLP 1 Reinforcement Learning and NLP Kapil Thadani kapil@cs.columbia.edu RESEARCH Outline 2 Model-free RL Markov decision processes (MDPs) Derivative-free optimization Policy gradients Variance reduction Value

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

Gradient Estimation Using Stochastic Computation Graphs

Gradient Estimation Using Stochastic Computation Graphs Gradient Estimation Using Stochastic Computation Graphs Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology May 9, 2017 Outline Stochastic Gradient Estimation

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Policy gradients Daniel Hennes 26.06.2017 University Stuttgart - IPVS - Machine Learning & Robotics 1 Policy based reinforcement learning So far we approximated the action value

More information

Natural Gradients via the Variational Predictive Distribution

Natural Gradients via the Variational Predictive Distribution Natural Gradients via the Variational Predictive Distribution Da Tang Columbia University datang@cs.columbia.edu Rajesh Ranganath New York University rajeshr@cims.nyu.edu Abstract Variational inference

More information

The connection of dropout and Bayesian statistics

The connection of dropout and Bayesian statistics The connection of dropout and Bayesian statistics Interpretation of dropout as approximate Bayesian modelling of NN http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf Dropout Geoffrey Hinton Google, University

More information

Variational Autoencoders

Variational Autoencoders Variational Autoencoders Recap: Story so far A classification MLP actually comprises two components A feature extraction network that converts the inputs into linearly separable features Or nearly linearly

More information

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018 Machine learning for image classification Lecture 14: Reinforcement learning May 9, 2018 Page 3 Outline Motivation Introduction to reinforcement learning (RL) Value function based methods (Q-learning)

More information

Lecture 8: Policy Gradient

Lecture 8: Policy Gradient Lecture 8: Policy Gradient Hado van Hasselt Outline 1 Introduction 2 Finite Difference Policy Gradient 3 Monte-Carlo Policy Gradient 4 Actor-Critic Policy Gradient Introduction Vapnik s rule Never solve

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

Variational Dropout and the Local Reparameterization Trick

Variational Dropout and the Local Reparameterization Trick Variational ropout and the Local Reparameterization Trick iederik P. Kingma, Tim Salimans and Max Welling Machine Learning Group, University of Amsterdam Algoritmica University of California, Irvine, and

More information

Bayesian Semi-supervised Learning with Deep Generative Models

Bayesian Semi-supervised Learning with Deep Generative Models Bayesian Semi-supervised Learning with Deep Generative Models Jonathan Gordon Department of Engineering Cambridge University jg801@cam.ac.uk José Miguel Hernández-Lobato Department of Engineering Cambridge

More information

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning Ronen Tamari The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (#67679) February 28, 2016 Ronen Tamari

More information

Policy Gradient Methods. February 13, 2017

Policy Gradient Methods. February 13, 2017 Policy Gradient Methods February 13, 2017 Policy Optimization Problems maximize E π [expression] π Fixed-horizon episodic: T 1 Average-cost: lim T 1 T r t T 1 r t Infinite-horizon discounted: γt r t Variable-length

More information

Denoising Criterion for Variational Auto-Encoding Framework

Denoising Criterion for Variational Auto-Encoding Framework Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) Denoising Criterion for Variational Auto-Encoding Framework Daniel Jiwoong Im, Sungjin Ahn, Roland Memisevic, Yoshua

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

Deep Reinforcement Learning: Policy Gradients and Q-Learning

Deep Reinforcement Learning: Policy Gradients and Q-Learning Deep Reinforcement Learning: Policy Gradients and Q-Learning John Schulman Bay Area Deep Learning School September 24, 2016 Introduction and Overview Aim of This Talk What is deep RL, and should I use

More information

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement Simon Leglaive 1 Laurent Girin 1,2 Radu Horaud 1 1: Inria Grenoble Rhône-Alpes 2: Univ. Grenoble Alpes, Grenoble INP,

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Lecture 9: Policy Gradient II (Post lecture) 2

Lecture 9: Policy Gradient II (Post lecture) 2 Lecture 9: Policy Gradient II (Post lecture) 2 Emma Brunskill CS234 Reinforcement Learning. Winter 2018 Additional reading: Sutton and Barto 2018 Chp. 13 2 With many slides from or derived from David Silver

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 10-708 Probabilistic Graphical Models Homework 3 (v1.1.0) Due Apr 14, 7:00 PM Rules: 1. Homework is due on the due date at 7:00 PM. The homework should be submitted via Gradescope. Solution to each problem

More information

Lecture 9: Policy Gradient II 1

Lecture 9: Policy Gradient II 1 Lecture 9: Policy Gradient II 1 Emma Brunskill CS234 Reinforcement Learning. Winter 2019 Additional reading: Sutton and Barto 2018 Chp. 13 1 With many slides from or derived from David Silver and John

More information

Deep Latent-Variable Models of Natural Language

Deep Latent-Variable Models of Natural Language Deep Latent-Variable of Natural Language Yoon Kim, Sam Wiseman, Alexander Rush Tutorial 2018 https://github.com/harvardnlp/deeplatentnlp 1/153 Goals Background 1 Goals Background 2 3 4 5 6 2/153 Goals

More information

arxiv: v5 [stat.ml] 5 Aug 2017

arxiv: v5 [stat.ml] 5 Aug 2017 CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX Eric Jang Google Brain ejang@google.com Shixiang Gu University of Cambridge MPI Tübingen sg77@cam.ac.uk Ben Poole Stanford University poole@cs.stanford.edu

More information

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016 Deep Variational Inference FLARE Reading Group Presentation Wesley Tansey 9/28/2016 What is Variational Inference? What is Variational Inference? Want to estimate some distribution, p*(x) p*(x) What is

More information

Lecture 8: Policy Gradient I 2

Lecture 8: Policy Gradient I 2 Lecture 8: Policy Gradient I 2 Emma Brunskill CS234 Reinforcement Learning. Winter 2018 Additional reading: Sutton and Barto 2018 Chp. 13 2 With many slides from or derived from David Silver and John Schulman

More information

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) September 26 & October 3, 2017 Section 1 Preliminaries Kullback-Leibler divergence KL divergence (continuous case) p(x) andq(x) are two density distributions. Then the KL-divergence is defined as Z KL(p

More information

Approximation Methods in Reinforcement Learning

Approximation Methods in Reinforcement Learning 2018 CS420, Machine Learning, Lecture 12 Approximation Methods in Reinforcement Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/cs420/index.html Reinforcement

More information

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models Auto-Encoding Variational Bayes Diederik Kingma and Max Welling Stochastic Backpropagation and Approximate Inference in Deep Generative Models Danilo J. Rezende, Shakir Mohamed, Daan Wierstra Neural Variational

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

Reinforcement Learning for NLP

Reinforcement Learning for NLP Reinforcement Learning for NLP Advanced Machine Learning for NLP Jordan Boyd-Graber REINFORCEMENT OVERVIEW, POLICY GRADIENT Adapted from slides by David Silver, Pieter Abbeel, and John Schulman Advanced

More information

15-889e Policy Search: Gradient Methods Emma Brunskill. All slides from David Silver (with EB adding minor modificafons), unless otherwise noted

15-889e Policy Search: Gradient Methods Emma Brunskill. All slides from David Silver (with EB adding minor modificafons), unless otherwise noted 15-889e Policy Search: Gradient Methods Emma Brunskill All slides from David Silver (with EB adding minor modificafons), unless otherwise noted Outline 1 Introduction 2 Finite Difference Policy Gradient

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Machine Learning I Continuous Reinforcement Learning

Machine Learning I Continuous Reinforcement Learning Machine Learning I Continuous Reinforcement Learning Thomas Rückstieß Technische Universität München January 7/8, 2010 RL Problem Statement (reminder) state s t+1 ENVIRONMENT reward r t+1 new step r t

More information

A Unified View of Deep Generative Models

A Unified View of Deep Generative Models SAILING LAB Laboratory for Statistical Artificial InteLigence & INtegreative Genomics A Unified View of Deep Generative Models Zhiting Hu and Eric Xing Petuum Inc. Carnegie Mellon University 1 Deep generative

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

CSC411: Final Review. James Lucas & David Madras. December 3, 2018

CSC411: Final Review. James Lucas & David Madras. December 3, 2018 CSC411: Final Review James Lucas & David Madras December 3, 2018 Agenda 1. A brief overview 2. Some sample questions Basic ML Terminology The final exam will be on the entire course; however, it will be

More information

Reinforcement Learning via Policy Optimization

Reinforcement Learning via Policy Optimization Reinforcement Learning via Policy Optimization Hanxiao Liu November 22, 2017 1 / 27 Reinforcement Learning Policy a π(s) 2 / 27 Example - Mario 3 / 27 Example - ChatBot 4 / 27 Applications - Video Games

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Policy Search: Actor-Critic and Gradient Policy search Mario Martin CS-UPC May 28, 2018 Mario Martin (CS-UPC) Reinforcement Learning May 28, 2018 / 63 Goal of this lecture So far

More information

Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning

Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning Michalis K. Titsias Department of Informatics Athens University of Economics and Business

More information

Robust Locally-Linear Controllable Embedding

Robust Locally-Linear Controllable Embedding Ershad Banijamali Rui Shu 2 Mohammad Ghavamzadeh 3 Hung Bui 3 Ali Ghodsi University of Waterloo 2 Standford University 3 DeepMind Abstract Embed-to-control (E2C) 7] is a model for solving high-dimensional

More information

Local Expectation Gradients for Doubly Stochastic. Variational Inference

Local Expectation Gradients for Doubly Stochastic. Variational Inference Local Expectation Gradients for Doubly Stochastic Variational Inference arxiv:1503.01494v1 [stat.ml] 4 Mar 2015 Michalis K. Titsias Athens University of Economics and Business, 76, Patission Str. GR10434,

More information

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms *

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms * Proceedings of the 8 th International Conference on Applied Informatics Eger, Hungary, January 27 30, 2010. Vol. 1. pp. 87 94. Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

arxiv: v3 [cs.lg] 25 Feb 2016 ABSTRACT

arxiv: v3 [cs.lg] 25 Feb 2016 ABSTRACT MUPROP: UNBIASED BACKPROPAGATION FOR STOCHASTIC NEURAL NETWORKS Shixiang Gu 1 2, Sergey Levine 3, Ilya Sutskever 3, and Andriy Mnih 4 1 University of Cambridge 2 MPI for Intelligent Systems, Tübingen,

More information

Probabilistic Graphical Models for Image Analysis - Lecture 4

Probabilistic Graphical Models for Image Analysis - Lecture 4 Probabilistic Graphical Models for Image Analysis - Lecture 4 Stefan Bauer 12 October 2018 Max Planck ETH Center for Learning Systems Overview 1. Repetition 2. α-divergence 3. Variational Inference 4.

More information

(Deep) Reinforcement Learning

(Deep) Reinforcement Learning Martin Matyášek Artificial Intelligence Center Czech Technical University in Prague October 27, 2016 Martin Matyášek VPD, 2016 1 / 17 Reinforcement Learning in a picture R. S. Sutton and A. G. Barto 2015

More information

Variational Inference in TensorFlow. Danijar Hafner Stanford CS University College London, Google Brain

Variational Inference in TensorFlow. Danijar Hafner Stanford CS University College London, Google Brain Variational Inference in TensorFlow Danijar Hafner Stanford CS 20 2018-02-16 University College London, Google Brain Outline Variational Inference Tensorflow Distributions VAE in TensorFlow Variational

More information

Temporal Difference. Learning KENNETH TRAN. Principal Research Engineer, MSR AI

Temporal Difference. Learning KENNETH TRAN. Principal Research Engineer, MSR AI Temporal Difference Learning KENNETH TRAN Principal Research Engineer, MSR AI Temporal Difference Learning Policy Evaluation Intro to model-free learning Monte Carlo Learning Temporal Difference Learning

More information

Stochastic Generative Hashing

Stochastic Generative Hashing Stochastic Generative Hashing B. Dai 1, R. Guo 2, S. Kumar 2, N. He 3 and L. Song 1 1 Georgia Institute of Technology, 2 Google Research, NYC, 3 University of Illinois at Urbana-Champaign Discussion by

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department Dialogue management: Parametric approaches to policy optimisation Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department 1 / 30 Dialogue optimisation as a reinforcement learning

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

Behavior Policy Gradient Supplemental Material

Behavior Policy Gradient Supplemental Material Behavior Policy Gradient Supplemental Material Josiah P. Hanna 1 Philip S. Thomas 2 3 Peter Stone 1 Scott Niekum 1 A. Proof of Theorem 1 In Appendix A, we give the full derivation of our primary theoretical

More information

arxiv: v1 [stat.ml] 3 Nov 2016

arxiv: v1 [stat.ml] 3 Nov 2016 CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX Eric Jang Google Brain ejang@google.com Shixiang Gu University of Cambridge MPI Tübingen Google Brain sg717@cam.ac.uk Ben Poole Stanford University poole@cs.stanford.edu

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING AN INTRODUCTION Prof. Dr. Ann Nowé Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING WHAT IS IT? What is it? Learning from interaction Learning about, from, and while

More information

Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence

Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence ESANN 0 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 7-9 April 0, idoc.com publ., ISBN 97-7707-. Stochastic Gradient

More information

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating?

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating? CSE 190: Reinforcement Learning: An Introduction Chapter 8: Generalization and Function Approximation Objectives of this chapter: Look at how experience with a limited part of the state set be used to

More information

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating?

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating? CSE 190: Reinforcement Learning: An Introduction Chapter 8: Generalization and Function Approximation Objectives of this chapter: Look at how experience with a limited part of the state set be used to

More information

Natural Language Processing. Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu

Natural Language Processing. Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu Natural Language Processing Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu Projects Project descriptions due today! Last class Sequence to sequence models Attention Pointer networks Today Weak

More information

Tutorial on Policy Gradient Methods. Jan Peters

Tutorial on Policy Gradient Methods. Jan Peters Tutorial on Policy Gradient Methods Jan Peters Outline 1. Reinforcement Learning 2. Finite Difference vs Likelihood-Ratio Policy Gradients 3. Likelihood-Ratio Policy Gradients 4. Conclusion General Setup

More information

CS Deep Reinforcement Learning HW5: Soft Actor-Critic Due November 14th, 11:59 pm

CS Deep Reinforcement Learning HW5: Soft Actor-Critic Due November 14th, 11:59 pm CS294-112 Deep Reinforcement Learning HW5: Soft Actor-Critic Due November 14th, 11:59 pm 1 Introduction For this homework, you get to choose among several topics to investigate. Each topic corresponds

More information

arxiv: v1 [stat.ml] 8 Jun 2015

arxiv: v1 [stat.ml] 8 Jun 2015 Variational ropout and the Local Reparameterization Trick arxiv:1506.0557v1 [stat.ml] 8 Jun 015 iederik P. Kingma, Tim Salimans and Max Welling Machine Learning Group, University of Amsterdam Algoritmica

More information

Introduction of Reinforcement Learning

Introduction of Reinforcement Learning Introduction of Reinforcement Learning Deep Reinforcement Learning Reference Textbook: Reinforcement Learning: An Introduction http://incompleteideas.net/sutton/book/the-book.html Lectures of David Silver

More information

Reinforcement learning an introduction

Reinforcement learning an introduction Reinforcement learning an introduction Prof. Dr. Ann Nowé Computational Modeling Group AIlab ai.vub.ac.be November 2013 Reinforcement Learning What is it? Learning from interaction Learning about, from,

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

ARM: Augment-REINFORCE-Merge Gradient for Discrete Latent Variable Models

ARM: Augment-REINFORCE-Merge Gradient for Discrete Latent Variable Models ARM: Augment-REINFORCE-Merge Gradient for Discrete Latent Variable Models Mingzhang Yin Mingyuan Zhou July 29, 2018 Abstract To backpropagate the gradients through discrete stochastic layers, we encode

More information

Model-Based Reinforcement Learning with Continuous States and Actions

Model-Based Reinforcement Learning with Continuous States and Actions Marc P. Deisenroth, Carl E. Rasmussen, and Jan Peters: Model-Based Reinforcement Learning with Continuous States and Actions in Proceedings of the 16th European Symposium on Artificial Neural Networks

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

CSC321 Lecture 22: Q-Learning

CSC321 Lecture 22: Q-Learning CSC321 Lecture 22: Q-Learning Roger Grosse Roger Grosse CSC321 Lecture 22: Q-Learning 1 / 21 Overview Second of 3 lectures on reinforcement learning Last time: policy gradient (e.g. REINFORCE) Optimize

More information

Deep latent variable models

Deep latent variable models Deep latent variable models Pierre-Alexandre Mattei IT University of Copenhagen http://pamattei.github.io @pamattei 19 avril 2018 Séminaire de statistique du CNAM 1 Overview of talk A short introduction

More information

A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation

A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation Hajime Fujita and Shin Ishii, Nara Institute of Science and Technology 8916 5 Takayama, Ikoma, 630 0192 JAPAN

More information

Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms

Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms Christian A. Naesseth Francisco J. R. Ruiz Scott W. Linderman David M. Blei Linköping University Columbia University University

More information

Quasi-Monte Carlo Flows

Quasi-Monte Carlo Flows Quasi-Monte Carlo Flows Florian Wenzel TU Kaiserslautern Germany wenzelfl@hu-berlin.de Alexander Buchholz ENSAE-CREST, Paris France alexander.buchholz@ensae.fr Stephan Mandt Univ. of California, Irvine

More information

Reinforcement. Function Approximation. Learning with KATJA HOFMANN. Researcher, MSR Cambridge

Reinforcement. Function Approximation. Learning with KATJA HOFMANN. Researcher, MSR Cambridge Reinforcement Learning with Function Approximation KATJA HOFMANN Researcher, MSR Cambridge Representation and Generalization in RL Focus on training stability Learning generalizable value functions Navigating

More information

Summary of A Few Recent Papers about Discrete Generative models

Summary of A Few Recent Papers about Discrete Generative models Summary of A Few Recent Papers about Discrete Generative models Presenter: Ji Gao Department of Computer Science, University of Virginia https://qdata.github.io/deep2read/ Outline SeqGAN BGAN: Boundary

More information

Value Function Methods. CS : Deep Reinforcement Learning Sergey Levine

Value Function Methods. CS : Deep Reinforcement Learning Sergey Levine Value Function Methods CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 2 is due in one week 2. Remember to start forming final project groups and writing your proposal! Proposal

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Function approximation Daniel Hennes 19.06.2017 University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Eligibility traces n-step TD returns Forward and backward view Function

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Approximate Bayesian inference

Approximate Bayesian inference Approximate Bayesian inference Variational and Monte Carlo methods Christian A. Naesseth 1 Exchange rate data 0 20 40 60 80 100 120 Month Image data 2 1 Bayesian inference 2 Variational inference 3 Stochastic

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Function approximation Mario Martin CS-UPC May 18, 2018 Mario Martin (CS-UPC) Reinforcement Learning May 18, 2018 / 65 Recap Algorithms: MonteCarlo methods for Policy Evaluation

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

How to do backpropagation in a brain. Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto

How to do backpropagation in a brain. Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto 1 How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto What is wrong with back-propagation? It requires labeled training data. (fixed) Almost

More information

Deep Generative Models

Deep Generative Models Deep Generative Models Durk Kingma Max Welling Deep Probabilistic Models Worksop Wednesday, 1st of Oct, 2014 D.P. Kingma Deep generative models Transformations between Bayes nets and Neural nets Transformation

More information

Probabilistic Planning. George Konidaris

Probabilistic Planning. George Konidaris Probabilistic Planning George Konidaris gdk@cs.brown.edu Fall 2017 The Planning Problem Finding a sequence of actions to achieve some goal. Plans It s great when a plan just works but the world doesn t

More information