RESAGK, Christian 1 ; DIETHOLD, Christian 2 ; FRÖHLICH, WERNER, Michael 3 ;

Size: px
Start display at page:

Download "RESAGK, Christian 1 ; DIETHOLD, Christian 2 ; FRÖHLICH, WERNER, Michael 3 ;"

Transcription

1 Lorentz Force Velocimetry for Poorly Conducting Fluids - Development and Validation of a Novel Flow Rate Measurement Device WEGFRASS, Andre 1 ; RESAGK, Christian 1 ; DIETHOLD, Christian 2 ; FRÖHLICH, Thomas 2 ; WERNER, Michael 3 ; HALBEDEL, Bernd 3 ; THESS, André 1 ( 1 Institute of Thermodynamics and Fluid Mechanics 2 Institute of Process Measurement and Sensor Technology 3 Institute of Inorganic-nonmetallic Materials Department of Mechanical Engineering, Ilmenau University of Technology, P.O. Box , Ilmenau, Germany) Abstract: The paper demonstrated the feasibility of Lorentz Force Velocimetry for flow rate measurements of weakly conducting electrolytes using experimental results on salt water flow exposed to a permanent magnet system. This innovative flow measurement technique allows the non-contact determination of flow rates and relies on the interaction between a magnetic field and a moving conducting fluid. When an electrically conducting fluid moves through the magnetic field a Lorentz force is generated and acts on the measurement system. The present report provides an overview about the experimental setups and the first measurement results. Key words: Lorentz force velocimetry; flow measurement; electrolytes; non-contact measurement 1 Introduction and Motivation There are several well-known techniques available to accomplish the various required flow measurement tasks in industry. But in some special applications the fluids are extremely hot, corrosive or abrasive and classical methods would not withstand the rough environment for a sufficiently long time, because the sensor in each of these techniques interacts with the surrounding fluid or with the pipe wall. Examples for these fluids include metal melts and acids. In order to avoid these interactions a novel contact-free flow rate measurement device has been developed, the so-called Lorentz force flowmeter (LFF). The basic idea of the measurement device relies on the interaction between a magnetic field and a moving conducting fluid. When an electrically conducting fluid moves through the magnetic field, a Lorentz force is generated that acts on the measurement system. The higher the electrical conductivity of the fluid, the higher the generated Lorentz force, and in turn the higher the force acting on the measurement device. So far, this method has been studied [1] [2] and verified [3] only for molten metals, as they have a conveniently high electrical conductivity of several MSm -1, and is known as Lorentz force velocimetry (LFV). The work of our group extends the known LFF for molten metals to an LFF that is capable of resolving the tiny Lorentz forces involved in the flowmetering of poorly conducting electrolytes. In the course of the project work, two different test facilities have been built. Both facilities use salt water as the

2 weakly conducting model fluid. 2 Experiment and Results The two facilities mentioned in the previous section can be distinguished by their means of force measurement; the preliminary setup uses the displacement of a pendulum (1) for detecting the Lorentz force, the final setup uses electromagnetic force compensation (2). Both principles will be explained in the following. (1) Pendulum Setup (2) (1) (3) flow Fig. 1: Sketch of the pendulum setup. The main components are the pendulum comprising the magnet system (1), the interferometric deflection measurement device (2), and the electrolyte channel of rectangular cross-section (3). To prove the applicability of LFV to weakly conducting fluids, we perform experiments on the setup presented in Fig. 1 that contains salt water with an electrical conductivity in the range of 2.3 Sm -1 to 14 Sm -1 at room temperature. Here, the measurement system based on the principle of deflection. The fluid flows in a duct with rectangular cross-section (30 mm x 50 mm), whose design is based on the numerical results of Werner et al. [4].The flow velocities are in the range of up to 4 ms -1. In order to generate a high magnetic field strength, we apply a magnet system which is equipped with high-energy magnets made of NdFeB. The magnet system is suspended on thin tungsten wires resembling a pendulum and the entire system is mounted on a frame of aluminium profiles. The generated Lorentz force causes a deflection of the magnet system which is detected with a laser interferometer. Both the aluminium frame and the laser interferometer are mounted on a granite block with a mass of about 400 kg in order to suppress vibrations from the environment. The Lorentz force is calculated from the dimensions of the pendulum and the measured average deflection [5] (Fig. 2). The mentioned elements above are crucial for measuring the Lorentz force which is expected to be in the range of FLorentz 10-5 N [4] from numerical simulations. In order to evaluate the sensitivity of LFF, we perform experiments at various fluid velocities and for five different electrical conductivities of 2.3 Sm -1, 6.5 Sm -1, 8.5 Sm -1, 13 Sm -1 and 14 Sm -1. The experimental results are compared with numerical simulations (see Fig. 3), produced by three-dimensional simulation software MAXWELL. Beside the fact, that the results are in good

3 agreement with each other, it can also be seen that there is a linear dependence of the Lorentz force on the flow velocity in both experiment and numerical simulation. This is consistent with the theory of Thess et al. [1]. pump on pump off BP1 BP2 BP3 Fig. 2: Diagram depicts an example of the step response behavior of the LFF during a turn on/off scenario of the salt water flow. Here, the salt water has an electrical conductivity of 6.5 Sm -1 and underlies an acceleration between 0 ms -1 (pump off) and 3.0 ms -1 (pump on). Furthermore, the filtered red curve indicates an increasing basic-plateau (BP - no fluid flow) or respectively a drift, causing by the heat transmission from pump. The encouraging result of this comparison is that it proves the applicability of LFV to weakly conducting electrolytes. However, it must be emphasized that this preliminary experimental setup is not an optimized fluid flow design and does not provide any information on the flow dynamics inside the duct and their influence on the total Lorentz force. In order to overcome these disadvantages, a new measurement system has been built F in µn u in m/s Fig. 3: Measurement results of the pendulum experiment. The graph shows the relationship between the velocity of the salt water in the test section and the measured Lorentz force which is acting on the magnet system. The different line types and

4 symbols represent different electrical conductivities from 2.3 Sm-1 (rectangle), 6.5 Sm-1 (triangle-down), 8.5 Sm-1 (triangle-up), 13 Sm-1 (circle) and 14 Sm-1 (cross) with the corresponding numerical simulation results (lines). (2) EMF Setup (3) (2) (1) (4) Fig. 4: Left: Sketch of the EMF-setup. The main parts are the LFF / EMF balance (1), the well-defined fluid channel made out glass fiber reinforced plastic (2) with the 1.5 m long test section (3) and a magneto-inductive flowmeter (4) working as reference measurement device. Right: Picture of the experimental setup. In order to overcome the disadvantages from the pendulum setup an improved setup has been built. Besides the new measurement method which is applied to the new setup (so-called EMF balance; acronym for electromagnetic force compensated balance), the new fluid channel enables the possibility to adjust the fluid profile within the measurement test section (turbulent mean profile or laminar profile, obstacles, etc.). That means the new setup helps to understand the effect of the flow profile on the total Lorentz force. This is important because extensive numerical simulations show an influence of the total Lorentz force in the order of several percent. With the new measurement device - EMF balance - a much better response characteristic is expected. EMF is a direct measurement technique whereas the pendulum setup is an indirect technique. 3 Ongoing work Two main steps are planned. The first is to investigate the pendulum setup in order to determine the major error sources to the total Lorentz force. For example the influence of heat fluctuations to the pendulum setup (see Fig. 2). For this, a heating coil will be applied to the channel in order to adjust certain temperature profiles during the fluid flow measurement. The second step includes further measurements with the new EFM prototype under variation of flow velocity, conductivity and flow profile of the fluid. Furthermore, it is planned to apply a sophisticated magnet system - so-called Halbach array. Numerical simulations suggested that the Lorentz force could be tripled with such an array system. That means, with this new array system it is possible to increase the distance between the two magnets from 32mm to 56mm and still have about the same Lorentz force.

5 4 Conclusion The applicability of Lorentz Force Velocimetry for the flow measurement of poorly conducting electrolytes is demonstrated using experimental results on salt water flow exposed to a permanent magnet system. The results provide a linear relationship between the measured Lorentz force, the flow velocity and the conductivity consistent with the theoretical scaling laws. Further measurements are currently being performed on a new experimental setup - an EMF prototype. The new experiments are aimed at investigating the effect of flow dynamics on the measured total Lorentz force. 5 Acknowledgment The authors are grateful to the German Science Foundation (Deutsche Forschungsgemeinschaft) for financial support of the presented work in the framework of the Research Training Group (Graduiertenkolleg) Lorentz Force Velocimetry and Lorentz Force Eddy Current Testing (GRK 1567/1) at Ilmenau University of Technology. References [1] A. Thess, E. Votyakov, B. Knaepen, O. Zikanov: Theory of the Lorentz force flowmeter. New Journal of Physics, 9, 299, [2] A. Thess, E. Votyakov, and Y. Kolesnikov: Lorentz force velocimetry. Physical Review Letters, 96 (164501), [3] Y. Kolesnikov, C. Karcher, and A. Thess: Lorentz force flowmeter for aluminum - Laboratory experiments and plant tests. Met. Trans.B., 42B ( ), [4] M. Werner and B. Halbedel: Optimization of NdFeB Magnet Arrays for Improvement of Lorentz Force Velocimetry to be published in IEEE Journal of Transaction on Magnetics, special Issue for INTERMAG Conference, [5] A. Wegfrass, C. Diethold, M. Werner, T. Fröhlich, B. Halbedel, F. Hilbrunner, C. Resagk, A. Thess: A Universal Noncontact Flowmeter for Liquids, Appl. Phys. Lett., 100 (194103), Biography: WEGFRASS, Andre; Dipl.-Ing.; Ilmenau University of Technology andre.wegfrass@tu-ilmenau.de

Investigations and Experiments of Sophisticated Magnet Systems for a first Lorentz Force Velocimeter for Electrolytes

Investigations and Experiments of Sophisticated Magnet Systems for a first Lorentz Force Velocimeter for Electrolytes Investigations and Experiments of Sophisticated Magnet Systems for a first Lorentz Force Velocimeter for Electrolytes WERNER 1, M. and HALBEDEL 1, B. 1 University of Technology Ilmenau Department of Inorganic-nonmetallic

More information

Eddy Current Interaction of a Magnetic Dipole With a Translating Solid Bar

Eddy Current Interaction of a Magnetic Dipole With a Translating Solid Bar d h International Scientific Colloquium Modelling for Material Processing Riga, September 16-17, 21 Eddy Current Interaction of a Magnetic Dipole With a Translating Solid Bar M. Kirpo, T. Boeck, A. Thess

More information

Influence of the flow profile to Lorentz force velocimetry for weakly conducting fluids an

Influence of the flow profile to Lorentz force velocimetry for weakly conducting fluids an Home Search Collections Journals About Contact us My IOPscience Influence of the flow profile to Lorentz force velocimetry for weakly conducting fluids an experimental validation This content has been

More information

Numerical Study of Magnet Systems for Lorentz Force Velocimetry in Electrically Low Conducting Fluids

Numerical Study of Magnet Systems for Lorentz Force Velocimetry in Electrically Low Conducting Fluids International cientific Colloquium Modelling for Material Processing Riga, eptember 16-17, 2010 umerical tudy of Magnet ystems for Lorentz Force Velocimetry in Electrically Low Conducting Fluids M. Werner,

More information

APPLICATION OF A MULTI-DEGREE-OF-FREEDOM SENSOR IN LOCAL LORENTZ FORCE VELOCIMETRY USING A SMALL-SIZE PERMANENT MAGNET SYSTEM

APPLICATION OF A MULTI-DEGREE-OF-FREEDOM SENSOR IN LOCAL LORENTZ FORCE VELOCIMETRY USING A SMALL-SIZE PERMANENT MAGNET SYSTEM 58 th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universitt Ilmenau, 08 12 September 2014 URN: urn:nbn:gbv:ilm1-2014iwk:3 APPLICATION OF A MULTI-DEGREE-OF-FREEDOM SENSOR IN LOCAL LORENTZ FORCE VELOCIMETRY

More information

Electromagnetic flow rate measurement in molten tin circulating in a closed-loop test system

Electromagnetic flow rate measurement in molten tin circulating in a closed-loop test system IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Electromagnetic flow rate measurement in molten tin circulating in a closed-loop test system To cite this article: Z. Lyu et al

More information

Lorentz force velocimetry using small-size permanent magnet systems and a multi-degree-of-freedom force/torque sensor

Lorentz force velocimetry using small-size permanent magnet systems and a multi-degree-of-freedom force/torque sensor Lorentz force velocimetry using small-size permanent magnet systems and a multi-degree-of-freedom force/torque sensor D Hernández, C Karcher To cite this version: D Hernández, C Karcher. Lorentz force

More information

Experimental and numerical investigation on particle-induced liquid metal flow using Lorentz force velocimetry

Experimental and numerical investigation on particle-induced liquid metal flow using Lorentz force velocimetry IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental and numerical investigation on particle-induced liquid metal flow using Lorentz force velocimetry To cite this article:

More information

FORCE MEASUREMENTS BY STRAIN GAUGE SENSORS AS PART OF TIME-OF-FLIGHT FLOW RATE CONTROL

FORCE MEASUREMENTS BY STRAIN GAUGE SENSORS AS PART OF TIME-OF-FLIGHT FLOW RATE CONTROL URN (Paper): urn:nbn:de:gbv:ilm1-2014iwk-109:8 58 th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau, 08 12 September 2014 URN: urn:nbn:de:gbv:ilm1-2014iwk:3 FORCE MEASUREMENTS BY STRAIN GAUGE

More information

Eddy Current Testing of Metallic Sheets with Defects Using Force Measurements

Eddy Current Testing of Metallic Sheets with Defects Using Force Measurements SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 5, No. 1, May 2008, 11-20 Eddy Current Testing of Metallic Sheets with Defects Using Force Measurements Hartmut Brauer 1, Marek Ziolkowski 2 Abstract: The

More information

Numerical optimization of the magnet system for the Lorentz Force Velocimetry of electrolytes

Numerical optimization of the magnet system for the Lorentz Force Velocimetry of electrolytes International Journal of Applied Electromagnetics and Mechanics 38 (2012) 79 92 79 DOI 10.3233/JAE-2012-1410 IOS Press Numerical optimization of the magnet system for the Lorentz Force Velocimetry of electrolytes

More information

Flow Measurement and Instrumentation

Flow Measurement and Instrumentation Flow Measurement and Instrumentation 22 (2011) 242 247 Contents lists available at ScienceDirect Flow Measurement and Instrumentation journal homepage: www.elsevier.com/locate/flowmeasinst Calibration

More information

Electromagnetic interaction between a rising spherical particle in a conducting liquid and a. localized magnetic field for

Electromagnetic interaction between a rising spherical particle in a conducting liquid and a. localized magnetic field for IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Electromagnetic interaction between a rising spherical particle in a conducting liquid and a localized magnetic field To cite

More information

Numerical Simulation of Lorentz Force Enhanced Flow Patterns within Glass Melts

Numerical Simulation of Lorentz Force Enhanced Flow Patterns within Glass Melts International Scientific Colloquium Modelling for Material Processing Riga, September 16-17, 2010 Numerical Simulation of Lorentz Force Enhanced Flow Patterns within Glass Melts U. Lüdtke, A. Kelm, B.

More information

MAGNETOHYDRODYNAMICS Vol. 51 (2015), No. 3, pp

MAGNETOHYDRODYNAMICS Vol. 51 (2015), No. 3, pp MAGNETOHYDRODYNAMICS Vol. 51 (2015), No. 3, pp. 579 588 ELECTROMAGNETIC INTERACTION OF A SMALL MAGNET AND LIQUID METAL FLOW IN A PIPE WITH INSULATING OR CONDUCTING WALLS O. Kazak 1, Ch. Heinicke 2, Th.

More information

Lorentz force particle analyzer

Lorentz force particle analyzer Lorentz force particle analyzer Xiaodong Wang, André Thess, René Moreau, Yanqing Tan, Shangjun Dai, Zhen Tao, Wenzhi Yang, and Bo Wang Citation: Journal of Applied Physics 120, 014903 (2016); doi: 10.1063/1.4956842

More information

Local Lorentz force flowmeter at a continuous caster model using a new generation

Local Lorentz force flowmeter at a continuous caster model using a new generation Home Search Collections Journals About Contact us My IOPscience Local Lorentz force flowmeter at a continuous caster model using a new generation multicomponent force and torque sensor This content has

More information

MAGNETOHYDRODYNAMICS Vol. 53 (2017), No. 4, pp

MAGNETOHYDRODYNAMICS Vol. 53 (2017), No. 4, pp MAGNETOHYDRODYNAMICS Vol. 53 (2017), No. 4, pp. 619 631 NUMERICAL STUDY OF THE INTERACTION BETWEEN A BUBBLE RISING IN A COLUMN OF CONDUCTING LIQUID AND A PERMANENT MAGNET N.Tran 1, T.Boeck 2, U.Lüdtke

More information

Electrically Induced Instabilities of Liquid Metal Free Surfaces

Electrically Induced Instabilities of Liquid Metal Free Surfaces International Scientific Colloquium Modelling for Material Processing Riga, June 8-9, 2006 Electrically Induced Instabilities of Liquid Metal Free Surfaces D. Schulze, Ch. Karcher, V. Kocourek, J.U. Mohring

More information

arxiv: v1 [physics.flu-dyn] 27 Mar 2017

arxiv: v1 [physics.flu-dyn] 27 Mar 2017 arxiv:1703.09116v1 [physics.flu-dyn] 27 Mar 2017 Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals N Krauter and F Stefani Helmholtz-Zentrum

More information

DEVELOPMENT OF A NOVEL ACTIVE ISOLATION CONCEPT 1

DEVELOPMENT OF A NOVEL ACTIVE ISOLATION CONCEPT 1 DEVELOPMENT OF A NOVEL ACTIVE ISOLATION CONCEPT 1 Michiel J. Vervoordeldonk, Theo A.M. Ruijl, Rob M.G. Rijs Philips Centre for Industrial Technology, PO Box 518, 5600 MD Eindhoven, The Netherlands 2 1

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System Journal of Magnetics 18(3), 250-254 (2013) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2013.18.3.250 Analysis and Experiments of the Linear Electrical Generator in Wave

More information

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER Intensive Programme Renewable Energy Sources May 2011, Železná Ruda-Špičák, University of West Bohemia, Czech Republic NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC

More information

Velocity and temperature measurements in a large-scale Rayleigh-Bénard experiment using LDA and micro thermistors

Velocity and temperature measurements in a large-scale Rayleigh-Bénard experiment using LDA and micro thermistors Velocity and temperature measurements in a large-scale Rayleigh-Bénard experiment using LDA and micro thermistors by C Resagk 1, R du Puits 1, A Thess 1, F H Busse 2, A Tilgner 3 1 Dept. of Mech. Engineering,

More information

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560 FLOW MEASUREMENT INC 102 Fundamental of Instrumentation and Process Control 2/2560 TABLE OF CONTENTS A. INTRODUCTION B. LOCAL FLOW MEASUREMENT B.1 Particle Image Velocimetry (PIV) B.2 Laser doppler anemometry

More information

Postprint. This is the accepted version of a paper presented at ACTUATOR 2014, Bremen, Germany, June 2014.

Postprint.   This is the accepted version of a paper presented at ACTUATOR 2014, Bremen, Germany, June 2014. http://www.diva-portal.org Postprint This is the accepted version of a paper presented at ACTUATOR 0, Bremen, Germany, 5 June 0. Citation for the original published paper: Chen, C., Bissal, A., Salinas,

More information

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters Last lecture Analog-to-digital conversion (Ch. 1.1). Introduction to flow measurement systems (Ch. 12.1). Today s menu Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters

More information

Application of Lorentz force eddy current testing and eddy current testing on moving nonmagnetic conductors

Application of Lorentz force eddy current testing and eddy current testing on moving nonmagnetic conductors International Journal of Applied Electromagnetics and Mechanics 45 (2014) 519 526 519 DOI 10.3233/JAE-141872 IOS Press Application of Lorentz force eddy current testing and eddy current testing on moving

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education PHYSICS Paper /03

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education PHYSICS Paper /03 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education PHYSICS Paper 3 0625/03 May/June 2005 Candidates answer on the Question Paper. No Additional

More information

Analysis and Design of Electromagnetic Pump

Analysis and Design of Electromagnetic Pump Excerpt from the Proceedings of the COMSOL Conference 2010 India Analysis and Design of Electromagnetic Pump Vikas Teotia *, Sanjay Malhotra, Kumud Singh and Umakant Mahapatra Bhabha Atomic Research Centre,

More information

MEASUREMENTS IN BLADE CASCADE FLOW. David Krivánka

MEASUREMENTS IN BLADE CASCADE FLOW. David Krivánka SOUTĚŽNÍ PŘEHLÍDKA STUDENTSKÝCH A DOKTORSKÝCH PRACÍ FST 2007 MEASUREMENTS IN BLADE CASCADE FLOW David Krivánka ABSTRACT This paper deals with the the aeroelasticity problem which occurs when the turbine

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com 1 1. Define electric field strength at a point in space....... [Total 1 marks] 2. Fig. 1 shows a square flat coil of insulated wire placed in a region of a uniform magnetic field

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *6993431972* PHYSICS 0625/21 Paper 2 Core May/June 2011 1 hour 15 minutes Candidates answer on

More information

WHEN an electrically conducting material moves across

WHEN an electrically conducting material moves across IEEE TRANSACTIONS ON MAGNETICS, VOL. 50, NO. 8, AUGUST 2014 7027209 Lorentz Force and Joule Heat Induced in an Electrically Conducting Plate Moving With Time-Dependent Velocity Under the Influence of a

More information

Stability of Liquid Metal Interface Affected by a High-Frequency Magnetic Field

Stability of Liquid Metal Interface Affected by a High-Frequency Magnetic Field International Scientific Colloquium Modelling for Electromagnetic Processing Hannover, March 4-6, 3 Stability of Liquid Metal Interface Affected by a High-Frequency Magnetic Field J-U Mohring, Ch Karcher,

More information

Lorentz force velocimetry using a bulk HTS magnet system: proof-of-concept

Lorentz force velocimetry using a bulk HTS magnet system: proof-of-concept Superconductor Science and Technology PAPER OPEN ACCESS Lorentz force velocimetry using a bulk HTS magnet system: proof-of-concept To cite this article: 2018 Supercond. Sci. Technol. 31 084003 View the

More information

Permanent Magnet Arrangements for Low-Field NMR

Permanent Magnet Arrangements for Low-Field NMR Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Permanent Magnet Arrangements for Low-Field NMR Carsten Horch, Stefan Schlayer, Frank Stallmach Faculty of Physics and Earth Sciences, University

More information

arxiv:physics/ v1 [physics.flu-dyn] 12 Oct 2006

arxiv:physics/ v1 [physics.flu-dyn] 12 Oct 2006 arxiv:physics/0610086v1 [physics.flu-dyn] 12 Oct 2006 Heat to electricity thermoacoustic-magnetohydrodynamic conversion A. A. Castrejón-Pita and G. Huelsz Centro de Investigación en Energía, Universidad

More information

Sensitivity analysis of a Lorentz force flowmeter for laminar and turbulent flows in a circular pipe

Sensitivity analysis of a Lorentz force flowmeter for laminar and turbulent flows in a circular pipe Center for Turbulence Research Proceedings of the Summer Program 26 431 Sensitivity analysis of a Lorentz force flowmeter for laminar and turbulent flows in a circular pipe By A. Thess, B. Knaepen, E.

More information

arxiv: v1 [physics.flu-dyn] 6 Nov 2017

arxiv: v1 [physics.flu-dyn] 6 Nov 2017 Local Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow Till Zürner, 1, Tobias Vogt, 2 Christian Resagk, 1 Sven Eckert, 2 and Jörg Schumacher 1 1 Technische Universität

More information

The Quad Confinement Thruster - Preliminary Performance Characterization and Thrust Vector Control

The Quad Confinement Thruster - Preliminary Performance Characterization and Thrust Vector Control The Quad Confinement Thruster - Preliminary Performance Characterization and Thrust Vector Control IEPC-2011-099 Presented at the 32 nd International Electric Propulsion Conference, Wiesbaden, Germany

More information

Suppression of Temperature Fluctuations by Rotating Magnetic Field in a Large Scale Rayleigh-Bénard Cell

Suppression of Temperature Fluctuations by Rotating Magnetic Field in a Large Scale Rayleigh-Bénard Cell International Scientific Colloquium Modelling for Material Processing Riga, September 16-17, 2010 Suppression of Temperature Fluctuations by Rotating Magnetic Field in a Large Scale Rayleigh-Bénard Cell

More information

From Flowmeter to Advanced Process Analyzer

From Flowmeter to Advanced Process Analyzer A3. From Flowmeter to Advanced Process Analyzer Daniel Schrag,3 ; Kai Hencken ; Andrea Andenna ; Detlef Pape ; Harald Grothey 2 ABB Switzerland Ltd. AG, Dättwil, Switzerland 2 ABB Automation Products GmbH,

More information

Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method

Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method R. Lerch a, M. Kaltenbacher a and M. Meiler b a Univ. Erlangen-Nuremberg, Dept. of Sensor Technology, Paul-Gordan-Str.

More information

CALIBRATION OF MHD FLOWMETER USING COMSOL SOFTWARE. Institute for Plasma Research Bhat, Gandhinagar, India

CALIBRATION OF MHD FLOWMETER USING COMSOL SOFTWARE. Institute for Plasma Research Bhat, Gandhinagar, India CALIBRATION OF MHD FLOWMETER USING COMSOL SOFTWARE By Srikanta Sahu Institute for Plasma Research Bhat, Gandhinagar, India OUTLINE Introduction Flow meter description Usage of COMSOL Results Velocity Profile

More information

NIST ELECTROSTATIC FORCE BALANCE EXPERIMENT

NIST ELECTROSTATIC FORCE BALANCE EXPERIMENT NIST ELECTROSTATIC FORCE BALANCE EXPERIMENT John A. Kramar, David B. Newell, and Jon R. Pratt National Institute of Standards and Technology, Gaithersburg, MD, USA We have designed and built a prototype

More information

Development of a Two-axis Dual Pendulum Thrust Stand for Thrust Vector Measurement of Hall Thrusters

Development of a Two-axis Dual Pendulum Thrust Stand for Thrust Vector Measurement of Hall Thrusters Development of a Two-axis Dual Pendulum Thrust Stand for Thrust Vector Measurement of Hall Thrusters Naoki Nagao, Shigeru Yokota, Kimiya Komurasaki, and Yoshihiro Arakawa The University of Tokyo, Tokyo,

More information

A MAGNETOHYDRODYNAMIC STUDY OF BEHAVIOR IN AN ELECTROLYTE FLUID USING NUMERICAL AND EXPERIMENTAL SOLUTIONS

A MAGNETOHYDRODYNAMIC STUDY OF BEHAVIOR IN AN ELECTROLYTE FLUID USING NUMERICAL AND EXPERIMENTAL SOLUTIONS A MAGNETOHYDRODYNAMIC STUDY OF BEHAVIOR IN AN ELECTROLYTE FLUID USING NUMERICAL AND EXPERIMENTAL SOLUTIONS L. P. Aoki, M. G. Maunsell, and H. E. Schulz Universidade de São Paulo Escola de Engenharia de

More information

October 23. Physics 272. Fall Prof. Philip von Doetinchem

October 23. Physics 272. Fall Prof. Philip von Doetinchem Physics 272 October 23 Fall 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_fall_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Fall 14 - von Doetinchem - 170 Motional electromotive

More information

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Serena De Paolis *, Francesca Lionetto and Alfonso Maffezzoli

More information

Numerical Study of a DC Electromagnetic Liquid Metal Pump: Limits of the Model Nedeltcho Kandev

Numerical Study of a DC Electromagnetic Liquid Metal Pump: Limits of the Model Nedeltcho Kandev Numerical Study of a DC Electromagnetic Liquid Metal Pump: Limits of the Model Nedeltcho Kandev Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston Introduction This work presents the

More information

KEY NOTE TALK 2: NON-DESTRUCTIVE TESTING FOR COMPOSITE MATERIALS FROM LABORATORY FEASIBILITY STUDIES TO INDUSTRIAL PROOFED SOLUTIONS

KEY NOTE TALK 2: NON-DESTRUCTIVE TESTING FOR COMPOSITE MATERIALS FROM LABORATORY FEASIBILITY STUDIES TO INDUSTRIAL PROOFED SOLUTIONS KEY NOTE TALK 2: NON-DESTRUCTIVE TESTING FOR COMPOSITE MATERIALS FROM LABORATORY FEASIBILITY STUDIES TO INDUSTRIAL PROOFED SOLUTIONS The name giver: Joseph von Fraunhofer (1787 1826) Deutsches Museum Researcher

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15)

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE EE6302-ELECTROMAGNETIC THEORY UNIT 4 PART A 1. Define mutual inductance and self inductance. (A/M-15) Self inductance is the ration between the induced

More information

VELOCITY MEASUREMENTS IN CAPILLARIES

VELOCITY MEASUREMENTS IN CAPILLARIES VELOCITY MEASUREMENTS IN CAPILLARIES S. Bergeler 1, I. Menn, K. Michel 1 1 Institut für Allgemeine Elektrotechnik, University of Rostock, D-18051 Rostock, Germany Klinik und Poliklinik für Innere Medizin,

More information

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 5 Issue 8 ǁ August. 2017 ǁ PP. 32-39 Effect of Liquid Viscosity on Sloshing

More information

PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION

PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION More Info at Open Access Database www.ndt.net/?id=18576 PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION T. Yamamoto, T. Furukawa, I. Komura Japan Power Engineering and Inspection Corporation,

More information

Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I

Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I 1 Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I - Vibration-Reduction Method and Measurement - T. Tomaru A, T. Suzuki A, T. Haruyama A, T. Shintomi A, N. Sato A, A. Yamamoto

More information

Mechanisms of Vortex Oscillation in a Fluidic Flow Meter

Mechanisms of Vortex Oscillation in a Fluidic Flow Meter Vol. THE UNIVERSITY OF CENTRAL FLORIDA Published November 2, 2017 Mechanisms of Vortex Oscillation in a Fluidic Flow Meter By: Mohammed Al-Muqbel and Peshala Gamage Faculty Mentor: Dr. Hansen Mansy UCF

More information

APPLICATIONS OF VIBRATION TRANSDUCERS

APPLICATIONS OF VIBRATION TRANSDUCERS APPLICATIONS OF VIBRATION TRANSDUCERS 1) Measurements on Structures or Machinery Casings: Accelerometers and Velocity Sensors Used in gas turbines, axial compressors, small and mid-size pumps. These sensors

More information

MAGNETS AND INSERTION DEVICES FOR THE ESRF II

MAGNETS AND INSERTION DEVICES FOR THE ESRF II MAGNETS AND INSERTION DEVICES FOR THE ESRF II OUTLINE Magnetic design R&D and Magnetic measurements IDs & BM sources Summary J. Chavanne G. Lebec C. Benabderrahmane C.Penel On behalf the accelerator upgrade

More information

Physics 42 Exam 3 Spring 2016 Name: M T W

Physics 42 Exam 3 Spring 2016 Name: M T W Physics 42 Exam 3 Spring 2016 Name: M T W Conceptual Questions & Shorty (2 points each) 1. Which magnetic field causes the observed force? 2. If released from rest, the current loop will move a. upward

More information

Coupling Physics. Tomasz Stelmach Senior Application Engineer

Coupling Physics. Tomasz Stelmach Senior Application Engineer Coupling Physics Tomasz Stelmach Senior Application Engineer Agenda Brief look @ Multiphysics solution What is new in R18 Fluent Maxwell coupling wireless power transfer Brief look @ ANSYS Multiphysics

More information

FLOW MEASUREMENT INC 331 Industrial process measurement 2018

FLOW MEASUREMENT INC 331 Industrial process measurement 2018 FLOW MEASUREMENT INC 331 Industrial process measurement 2018 1 TABLE OF CONTENTS A. INTRODUCTION B. LOCAL FLOW MEASUREMENT B.1 Particle Image Velocimetry (PIV) B.2 Laser doppler anemometry (LDA) B.3 Hot-wire

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes

More information

SELECCIÓN DE CAUDALIMETROS. Tablas de Fabricantes

SELECCIÓN DE CAUDALIMETROS. Tablas de Fabricantes SELECCIÓN DE CAUDALIMETROS Tablas de Fabricantes Flow Meter Selection Table http://www.instrumart.com/content.aspxcontentid=219 Página 1 de 1 17/09/2007 KEY Best for this application OK with some exceptions

More information

High-performance Forehearth Coloring using Lorentz Forces

High-performance Forehearth Coloring using Lorentz Forces High-performance Forehearth Coloring using Lorentz Forces Torres J.O. 1, Halbedel B. 1, Weber C. 2, Reche. R. 3 1 Technische Universität Ilmenau, Ilemanu, Germany 2 Ferro GmbH, Frankfurt am Main, Germany

More information

Experiment and Simulation of the Eddy Current NDT on an Aluminium Plate Using a Uniform Field Probe

Experiment and Simulation of the Eddy Current NDT on an Aluminium Plate Using a Uniform Field Probe Experiment and Simulation of the Eddy Current NDT on an Aluminium Plate Using a Uniform Field Probe Luka Kufrin 1,2, A. Lopes Ribeiro 1,2, H. Geirinhas Ramos 1,2, O. Postolache 1 1 Instituto de Telecomunicações,

More information

Optimization of two-dimensional permanent magnet arrays for diamagnetic levitation

Optimization of two-dimensional permanent magnet arrays for diamagnetic levitation Optimization of two-dimensional permanent magnet arrays for diamagnetic levitation Roland Moser, François Barrot, Jan Sandtner, Hannes Bleuler Laboratory of Robotic Systems Swiss Federal Institute of Technology,

More information

arxiv: v2 [physics.ins-det] 31 Mar 2011

arxiv: v2 [physics.ins-det] 31 Mar 2011 arxiv:.44v [physics.ins-det] 3 Mar Contactless Electromagnetic Phase-Shift Flowmeter for Liquid Metals Jānis Priede, Dominique Buchenau and Gunter Gerbeth Applied Mathematics Research Centre, Coventry

More information

Intensity Distribution of Strong Magnetic Fields Created by Opposing Linear Halbach Assemblies of Permanent Magnets

Intensity Distribution of Strong Magnetic Fields Created by Opposing Linear Halbach Assemblies of Permanent Magnets 1 Intensity Distribution of Strong Magnetic Fields Created by Opposing Linear Halbach Assemblies of Permanent Magnets Václav Žežulka 1, Jaromír Pištora 2, Michal Lesňák 3*, Pavel Straka 1, Dalibor Ciprian

More information

ACTIVE SEPARATION CONTROL ON A SLATLESS 2D HIGH-LIFT WING SECTION

ACTIVE SEPARATION CONTROL ON A SLATLESS 2D HIGH-LIFT WING SECTION 26th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES ACTIVE SEPARATION CONTROL ON A SLATLESS 2D HIGH-LIFT WING SECTION F. Haucke, I. Peltzer, W. Nitsche Chair for Aerodynamics Department of Aeronautics

More information

Voltage generation induced by mechanical straining in magnetic shape memory materials

Voltage generation induced by mechanical straining in magnetic shape memory materials JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 12 15 JUNE 2004 Voltage generation induced by mechanical straining in magnetic shape memory materials I. Suorsa, J. Tellinen, K. Ullakko, and E. Pagounis a)

More information

Transition and turbulence in MHD at very strong magnetic fields

Transition and turbulence in MHD at very strong magnetic fields Transition and turbulence in MHD at very strong magnetic fields Prasanta Dey, Yurong Zhao, Oleg Zikanov University of Michigan Dearborn, USA Dmitry Krasnov, Thomas Boeck, Andre Thess Ilmenau University

More information

An Electromagnetic Force Balance Experiment for Measurement Science Education

An Electromagnetic Force Balance Experiment for Measurement Science Education An Electromagnetic Force Balance Experiment for Measurement Science Education L M Faller and H Zangl Institute of Smart System Technologies, Sensors and Actuators, Alpen-Adria-Universitaet Klagenfurt,

More information

COMPARISON OF DEFECT DETECTION IN ALUMINUM AND STEEL PLATES USING AN ELECTROMAGNETIC ACOUSTIC TRANSDUCER

COMPARISON OF DEFECT DETECTION IN ALUMINUM AND STEEL PLATES USING AN ELECTROMAGNETIC ACOUSTIC TRANSDUCER The 12 th International Conference of the Slovenian Society for Non-Destructive Testing Application of Contemporary Non-Destructive Testing in Engineering September 4-6, 2013, Portorož, Slovenia COMPARISON

More information

VERIFICATION TEST OF A THREE-SURFACE-MULTI-LAYERED CHANNEL TO REDUCE MHD PRESSURE DROP

VERIFICATION TEST OF A THREE-SURFACE-MULTI-LAYERED CHANNEL TO REDUCE MHD PRESSURE DROP NTHAS8: The Eighth Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety Beppu, Japan, December 9-12, 212 Paper Number N8P189 VERIFICATION TEST OF A THREE-SURFACE-MULTI-LAYERED CHANNEL TO REDUCE

More information

O. A Survey of Critical Experiments

O. A Survey of Critical Experiments O. A Survey of Critical Experiments 1 (A) Visualizations of Turbulent Flow Figure 1: Van Dyke, Album of Fluid Motion #152. Generation of turbulence by a grid. Smoke wires show a uniform laminar stream

More information

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field.

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field. 1 (a) Fig. 2.1 shows a horizontal current-carrying wire placed in a uniform magnetic field. I region of uniform magnetic field wire Fig. 2.1 The magnetic field of flux density 0.070 T is at right angles

More information

Helicon Plasma Thruster Experiment Controlling Cross-Field Diffusion within a Magnetic Nozzle

Helicon Plasma Thruster Experiment Controlling Cross-Field Diffusion within a Magnetic Nozzle Helicon Plasma Thruster Experiment Controlling Cross-Field Diffusion within a Magnetic Nozzle IEPC-2013-163 Presented at the 33rd International Electric Propulsion Conference, The George Washington University

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 5: Faraday s Law

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 5: Faraday s Law MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 OBJECTIVES Experiment 5: Faraday s Law 1. To become familiar with the concepts of changing magnetic flux and induced current

More information

Physics 102, Learning Guide 4, Spring Learning Guide 4

Physics 102, Learning Guide 4, Spring Learning Guide 4 Physics 102, Learning Guide 4, Spring 2002 1 Learning Guide 4 z B=0.2 T y a R=1 Ω 1. Magnetic Flux x b A coil of wire with resistance R = 1Ω and sides of length a =0.2m and b =0.5m lies in a plane perpendicular

More information

ELECTRONIC FLOWMETERS FOR THERMAL ENERGY MEASUREMENT. By Dr. Crainic Monica Sabina

ELECTRONIC FLOWMETERS FOR THERMAL ENERGY MEASUREMENT. By Dr. Crainic Monica Sabina ELECTRONIC FLOWMETERS FOR THERMAL ENERGY MEASUREMENT By Dr. Crainic Monica Sabina Luxten Lighting Company AEM Branch Office Gas and Water Meters Research Department 26 Calea Buziaşului300693 Timişoara

More information

Experimentally determined distribution of granular-flow characteristics in collisional bed load transport

Experimentally determined distribution of granular-flow characteristics in collisional bed load transport Experimentally determined distribution of granular-flow characteristics in collisional bed load transport Václav Matoušek 1,*, Štěpán Zrostlík 1, Luigi Fraccarollo 2, Anna Prati 2, and Michele Larcher

More information

The ZEPTO project: Tuneable permanent magnets for the next generation of high energy accelerators.

The ZEPTO project: Tuneable permanent magnets for the next generation of high energy accelerators. The ZEPTO project: Tuneable permanent magnets for the next generation of high energy accelerators. Alex Bainbridge, Ben Shepherd, Norbert Collomb, Jim Clarke. STFC Daresbury Laboratory, UK Michele Modena,

More information

Motional Electromotive Force

Motional Electromotive Force Motional Electromotive Force The charges inside the moving conductive rod feel the Lorentz force The charges drift toward the point a of the rod The accumulating excess charges at point a create an electric

More information

DSC HW 3: Assigned 6/25/11, Due 7/2/12 Page 1

DSC HW 3: Assigned 6/25/11, Due 7/2/12 Page 1 DSC HW 3: Assigned 6/25/11, Due 7/2/12 Page 1 Problem 1 (Motor-Fan): A motor and fan are to be connected as shown in Figure 1. The torque-speed characteristics of the motor and fan are plotted on the same

More information

Comparison between Numerical and Experimental for UVP Measurement in Double Bent Pipe with Out-of-Plane Angle

Comparison between Numerical and Experimental for UVP Measurement in Double Bent Pipe with Out-of-Plane Angle Journal of Flow Control, Measurement & Visualization, 24, 2, 54-64 Published Online October 24 in SciRes. http://www.scirp.org/journal/jfcmv http://dx.doi.org/.4236/jfcmv.24.247 Comparison between Numerical

More information

Electrodynamic passive magnetic bearing using reluctance forces

Electrodynamic passive magnetic bearing using reluctance forces Electrodynamic passive magnetic bearing using reluctance forces Keywords Jan Sandtner, Hannes Bleuler: École polytechnique fédérale de Lausanne EPFL, Switzerland Département de microtechnique DMT, Institut

More information

DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR

DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR Łukasz DR ZIKOWSKI Włodzimierz KOCZARA Institute of Control and Industrial Electronics Warsaw University of Technology, Warsaw,

More information

Light, Electricity and Liquids. By Vitaliy Zamsha and Vladimir Shevtsov

Light, Electricity and Liquids. By Vitaliy Zamsha and Vladimir Shevtsov Light, Electricity and Liquids updated By Vitaliy Zamsha and Vladimir Shevtsov Abstract The authors of this article revealed their long-awaited work, which represents some effects in liquids under the

More information

Application of an ultrasonic velocity profile monitor in a hydraulic laboratory

Application of an ultrasonic velocity profile monitor in a hydraulic laboratory Application of an ultrasonic velocity profile monitor in a hydraulic laboratory Abstract Helmut Knoblauch 1, Roman Klasinc 1, Thomas Geisler 1 Velocity profile measurement using the ultrasound-pulse-doppler

More information

INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD

INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD 3rd Workshop on Transport Phenomena in Two-Phase Flow Nessebar, Bulgaria, 2-7 September 1998, p.p. 133-138 INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD

More information

ULTRASONIC FLOW MEASUREMENT WITH INTEGRATED TEMPERATURE MEASUREMENT COMPENSATION

ULTRASONIC FLOW MEASUREMENT WITH INTEGRATED TEMPERATURE MEASUREMENT COMPENSATION ULTRASONIC FLOW MEASUREMENT WITH INTEGRATED TEMPERATURE MEASUREMENT COMPENSATION Benjamin E. McDonald, Lei Sui GE Oil & Gas - Measurement & Control 1100 Technology Park Dr., Billerica, MA 01821 USA * E-mail

More information

Range of Competencies

Range of Competencies PHYSICS Content Domain Range of Competencies l. Nature of Science 0001 0002 14% ll. Mechanics 0003 0006 28% lll. Electricity and Magnetism 0007 0009 22% lv. Waves 0010 0011 14% V. Modern Physics 0012 0014

More information

AP Physics B Summer Assignment

AP Physics B Summer Assignment BERGEN COUNTY TECHNICAL SCHOOL AP Physics B Summer Assignment 2011 Solve all problems on separate paper. This will be due the first week of school. If you need any help you can e-mail Mr. Zavorotniy at

More information

On Permanent Magnet Material Testing. 1. Permanent Magnet magnetization.

On Permanent Magnet Material Testing. 1. Permanent Magnet magnetization. July 3 2006 CBN06-2 On Permanent Magnet Material Testing. Alexander Temnykh, LEPP, Ithaca, NY, 14853 Abstract. Note describes two experiments made to explore basic properties of permanent magnet (PM) material

More information

PHYSICS ADVANCED HIGHER. Unit 3 Electromagnetism Homework

PHYSICS ADVANCED HIGHER. Unit 3 Electromagnetism Homework PHYSICS ADVANCED HIGHER Unit 3 Electromagnetism Homework 1 DATA SHEET COMMON PHYSICAL QUANTITIES Quantity Symbol Value Quantity Symbol Value Gravitational acceleration on Earth Radius of Earth Mass of

More information

Finite Element Model of a Magnet Driven Reed Switch

Finite Element Model of a Magnet Driven Reed Switch Excerpt from the Proceedings of the COMSOL Conference 2008 Boston Finite Element Model of a Magnet Driven Reed Switch Bryan M. LaBarge 1 and Dr. Ernesto Gutierrez-Miravete 2 1 Gems Sensors and Controls,

More information