Graphical Models for Query-driven Analysis of Multimodal Data

Size: px
Start display at page:

Download "Graphical Models for Query-driven Analysis of Multimodal Data"

Transcription

1 Graphical Models for Query-driven Analysis of Multimodal Data John Fisher Sensing, Learning, & Inference Group Computer Science & Artificial Intelligence Laboratory Massachusetts Institute of Technology October 15, 2015

2 Actionable Information...information is actionable if it is prescriptive of actions that can be taken to either improve upon the state of uncertainty for a particular task or allow one to accurately evaluate the cost of ancillary decisions related to the task. -original source in dispute The perfect is the enemy of the good. -Voltaire, 1764 (though, he probably said it in French)

3 Actionable Information Some Comments on Value, Information, and Action Choices The Economic notion of value is subjective. The value of a tangible good is inversely proportional to its availability. The value of information depends on the actions it induces and the subsequent rewards. Depending on context informational utility can vary. In the economic setting, informational value has focused primarily on decision making. The relation to uncertainty has been one of the key drivers. Perfect information removes all uncertainty about outcomes and hence uncertainty about consequences of actions. In the Bayesian setting we are interested in reasoning about the relation between the uncertain state of nature (e.g.,truth or falseness of a set of assertions) and the inherent distribution of risk associated with subsequent actions.

4 Analysis by Query EES SUT predicate processing logic processing scene representation attribution tracker sensors comes first, the sensor or the query? Goal is to efficiently bridge gap between sensors (broadly construed), queries and answers (including uncertainty).

5 Airborne Detection of Material Analysis structure of the graphical model guides allocation of computational resources and sensing resources. η x x j η w w j y i b η b η s s j z i σ ε η σ m n p(θ) = p(b)p(σ ε ) n i=1 m j=1 p(x j )p(w j )p(s j ) p(z i x,w,s,b i,σ ε ; y i ).

6 Parametric vs. Nonparametric Methods Component-wise MH and Gibbs sampling are two common parametric methods of sampling from high-dimensional distributions. Others exist, e.g.,slice sampling, rejection sampling, Hamiltonian Monte Carlo, etc. Parametric methods require that the dimension of X is constant! Suppose X contains the cluster parameters for m different clusters, but we do not know the number of clusters m a priori. Represent each number of clusters m as corresponding to a model M m. Now X m denotes an r.v. of model M m, not the m-th component of X! Nonparametric MCMC methods extend to these cases while retaining guarantees about convergence to the stationary distribution π(m,x m ).

7 Reversible Jump MCMC (RJMCMC) RJMCMC [1] adds a trans-dimensional jump proposal to each iteration of any parametric method, hence allowing sampling of the model order! Algorithm 1 Reversible-Jump MCMC Initial state x (0) m 0 t = 1,2,... Generate x (t) m from x (t 1) m using componentwise MH, Gibbs, etc. Propose new model M n with probability π mn Sample auxiliary variables u mn ϕ mn (u) Set (x n,v nm ) = T mn ( x m (t),u mn ) via transform T mn : M m M n Set x (t) ( min 1, π(n,x n) π(m, x (t) set x m (t) = x m (t) otherwise. m ) n = x n with acceptance probability ) π nm ϕ nm (v nm ) T mn (x m,u mn ) π mn ϕ mn (u mn ) (x m,u mn ) ; [1] Green (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

8 Grid-based events Divide survey area into cells Sources indicated as x s with 1σ contour shown as dashed lines Average over the set of samples... Compute the probability that each cell contains at least one source by integrating source pdf over the cell. y 8 y 7 y 6 y 5 y 4 y 3 y 2 (3,5) y 1 y A 0 x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8

9 MCMC Inference What an MCMC practitioner might look like. Generative models can be used to compute various expectations and marginal event probabilities. Markov Chain Monte Carlo (MCMC) methods are a way to do this exactly. Akin to flipping a coin and counting. Suitable for large and complex models, i.e., the quality of the estimates do not depend on dimensionality or dependency structure. The challenge is to obtain sufficient independent flips (from the correct distribution).

10 MCMC Inference Definition (Detailed Balance) Let π(z) denote the target distribution. If an ergodic Markov chain is constructed with a transition distribution q(ẑ z) that satisfies π(z)q(ẑ z) = π(ẑ)q(z ẑ), then the chain is said to satisfy the detailed balance condition and π(z) is guaranteed to be the unique stationary distribution of the chain. Generative models can be used to compute various expectations and marginal event probabilities. Markov Chain Monte Carlo (MCMC) methods are a way to do this exactly. Akin to flipping a coin and counting. Suitable for large and complex models, i.e., the quality of the estimates do not depend on dimensionality or dependency structure. The challenge is to obtain sufficient independent flips (from the correct distribution).

11 Parallel Sampling in DP Mixture Models Chang and Fisher III [2013] Key Ideas Composition of non-ergodic restricted Gibbs iterations. Points in different super-clusters (groups of clusters) can be sampled in parallel Splits proposed via sub-cluster assignment in constant time and in parallel. Yields an ergodic Markov Chain that satisfied detailed balance. Significantly faster convergence in experiments with large datasets. α π z i x i θ k λ N DPMM α g λ π z i x i θ k π z i θ k N Augmented with sub & super-clusters

12 DP Sampling Properties Chang and Fisher III [2013] CW [7, 8] [4, 14] [3, 6, 9] [10] [11, 18] [1] Exact Model Splits & Merges Intra-cluster Parallelizable 2 Inter-cluster Parallelizable Non-conjugate Priors Log likelihood vs. computation time for real data. All parallel algorithms use 16 cores. 2 Intra-cluster parallelization has not been a significant factor. Decentralized inference may show different behavior

13 Parallel Sampling in HDP Mixture Models Chang and Fisher III [2014] Extension of Chang and Fisher III [2013] to HDPs is not straightforward. The notion of sub-clusters remains Complexity due to additional latent variables and overlapping distributions Necessitates some bookkeeping Split/merge moves are modified from the DP case Empirical results indicate that hold-out log-likelihood (aka perplexity) can be a poor indicator of convergence. α π z i x i θ k λ γ N HDP model α β π d z di x di θ k β π d z di θ k Nd Augmented HDP model D λ

14 HDP Sampling Properties Chang and Fisher III [2014] CRF [15] DA [15] SAMS [16] FSD [5] HW[13] SC [17] [2] Infinite Model MCMC Guarantees Non-Conjugate Priors Parallelizable Local Splits/Merges Global Splits/Merges potentially with adapatation of the DP Metropolis-Hastings framework of Neal [2000]. (a) Results on (a) Enron s and (b) NYTimes articles for 1 and 50 initial topics. (b)

15 Source visibility Single source of specified emission rate s. Marginalizing over wind fields, aircraft path, and half-width. This plots our detection probability conditioned on some source rate versus the false alarm probability. We can reliably detect sources with emission rate of at least 0.02 m 3 /s.

16 Video example of contextual modeling for scene understanding

17 References I J. Chang and J. W. Fisher III. Parallel sampling of dp mixture models using sub-cluster splits. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages URL parallel-sampling-of-dp-mixture-models-using-sub-cluster-splits. pdf. J. Chang and J. W. Fisher III. Mcmc sampling in hdps using sub-cluster. In Advances in Neural Information Processing Systems D. B. Dahl. An improved merge-split sampler for conjugate Dirichlet process mixture models. Technical report, University of Wisconsin - Madison Dept. of Statistics, S. Favaro and Y. W. Teh. MCMC for normalized random measure mixture models. Statistical Science, E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. An HDP-HMM for systems with state persistence. In International Conference on Machine Learning, July P. J. Green and S. Richardson. Modelling heterogeneity with and without the Dirichlet process. Scandinavian Journal of Statistics, pages , 2001.

18 References II H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96: , H. Ishwaran and M. Zarepour. Exact and approximate sum-representations for the Dirichlet process. Canadian Journal of Statistics, 30: , S. Jain and R. Neal. A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Journal of Computational and Graphical Statistics, 13: , S. Jain and R. Neal. Splitting and merging components of a nonconjugate Dirichlet process mixture model. Bayesian Analysis, 2(3): , D. Lovell, R. P. Adams, and V. K. Mansingka. Parallel Markov chain Monte Carlo for Dirichlet process mixtures. In Workshop on Big Learning, NIPS, R. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9(2): , June D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed algorithms for topic models. The Journal of Machine Learning Research, 10: , Dec ISSN

19 References III O. Papaspiliopoulos and G. O. Roberts. Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika, 95(1): , Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476): , C. Wang and D. Blei. A split-merge MCMC algorithm for the Hierarchical Dirichlet process. arxiv: [stat.ml], S. Williamson, A. Dubey, and E. P. Xing. Parallel Markov chain Monte Carlo for nonparametric mixture models. In ICML, 2013a. S. A. Williamson, A. Dubey, and E. P. Xing. Parallel Markov chain Monte Carlo for nonparametric mixture models. In ICML, 2013b.

20 References IV

Spatial Normalized Gamma Process

Spatial Normalized Gamma Process Spatial Normalized Gamma Process Vinayak Rao Yee Whye Teh Presented at NIPS 2009 Discussion and Slides by Eric Wang June 23, 2010 Outline Introduction Motivation The Gamma Process Spatial Normalized Gamma

More information

arxiv: v1 [stat.ml] 8 Jan 2012

arxiv: v1 [stat.ml] 8 Jan 2012 A Split-Merge MCMC Algorithm for the Hierarchical Dirichlet Process Chong Wang David M. Blei arxiv:1201.1657v1 [stat.ml] 8 Jan 2012 Received: date / Accepted: date Abstract The hierarchical Dirichlet process

More information

28 : Approximate Inference - Distributed MCMC

28 : Approximate Inference - Distributed MCMC 10-708: Probabilistic Graphical Models, Spring 2015 28 : Approximate Inference - Distributed MCMC Lecturer: Avinava Dubey Scribes: Hakim Sidahmed, Aman Gupta 1 Introduction For many interesting problems,

More information

Parallel Markov Chain Monte Carlo for Pitman-Yor Mixture Models

Parallel Markov Chain Monte Carlo for Pitman-Yor Mixture Models Parallel Markov Chain Monte Carlo for Pitman-Yor Mixture Models Avinava Dubey School of Computer Science Carnegie Mellon University Pittsburgh, PA 523 Sinead A. Williamson McCombs School of Business University

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Bayesian Nonparametrics for Speech and Signal Processing

Bayesian Nonparametrics for Speech and Signal Processing Bayesian Nonparametrics for Speech and Signal Processing Michael I. Jordan University of California, Berkeley June 28, 2011 Acknowledgments: Emily Fox, Erik Sudderth, Yee Whye Teh, and Romain Thibaux Computer

More information

Applied Bayesian Nonparametrics 3. Infinite Hidden Markov Models

Applied Bayesian Nonparametrics 3. Infinite Hidden Markov Models Applied Bayesian Nonparametrics 3. Infinite Hidden Markov Models Tutorial at CVPR 2012 Erik Sudderth Brown University Work by E. Fox, E. Sudderth, M. Jordan, & A. Willsky AOAS 2011: A Sticky HDP-HMM with

More information

Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures

Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures 17th Europ. Conf. on Machine Learning, Berlin, Germany, 2006. Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures Shipeng Yu 1,2, Kai Yu 2, Volker Tresp 2, and Hans-Peter

More information

arxiv: v1 [stat.ml] 5 Dec 2016

arxiv: v1 [stat.ml] 5 Dec 2016 A Nonparametric Latent Factor Model For Location-Aware Video Recommendations arxiv:1612.01481v1 [stat.ml] 5 Dec 2016 Ehtsham Elahi Algorithms Engineering Netflix, Inc. Los Gatos, CA 95032 eelahi@netflix.com

More information

Dirichlet Enhanced Latent Semantic Analysis

Dirichlet Enhanced Latent Semantic Analysis Dirichlet Enhanced Latent Semantic Analysis Kai Yu Siemens Corporate Technology D-81730 Munich, Germany Kai.Yu@siemens.com Shipeng Yu Institute for Computer Science University of Munich D-80538 Munich,

More information

Bayesian Nonparametrics: Dirichlet Process

Bayesian Nonparametrics: Dirichlet Process Bayesian Nonparametrics: Dirichlet Process Yee Whye Teh Gatsby Computational Neuroscience Unit, UCL http://www.gatsby.ucl.ac.uk/~ywteh/teaching/npbayes2012 Dirichlet Process Cornerstone of modern Bayesian

More information

Approximate Inference using MCMC

Approximate Inference using MCMC Approximate Inference using MCMC 9.520 Class 22 Ruslan Salakhutdinov BCS and CSAIL, MIT 1 Plan 1. Introduction/Notation. 2. Examples of successful Bayesian models. 3. Basic Sampling Algorithms. 4. Markov

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bayesian Nonparametric Learning of Complex Dynamical Phenomena

Bayesian Nonparametric Learning of Complex Dynamical Phenomena Duke University Department of Statistical Science Bayesian Nonparametric Learning of Complex Dynamical Phenomena Emily Fox Joint work with Erik Sudderth (Brown University), Michael Jordan (UC Berkeley),

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Bayesian Nonparametric Regression for Diabetes Deaths

Bayesian Nonparametric Regression for Diabetes Deaths Bayesian Nonparametric Regression for Diabetes Deaths Brian M. Hartman PhD Student, 2010 Texas A&M University College Station, TX, USA David B. Dahl Assistant Professor Texas A&M University College Station,

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

Pitfalls in the use of Parallel Inference for the Dirichlet Process

Pitfalls in the use of Parallel Inference for the Dirichlet Process Yarin Gal University of Cambridge Zoubin Ghahramani University of Cambridge YG279@CAM.AC.UK ZOUBIN@ENG.CAM.AC.UK Abstract Recent work done by Lovell, Adams, and Mansingka (2012) and Williamson, Dubey,

More information

Collapsed Variational Dirichlet Process Mixture Models

Collapsed Variational Dirichlet Process Mixture Models Collapsed Variational Dirichlet Process Mixture Models Kenichi Kurihara Dept. of Computer Science Tokyo Institute of Technology, Japan kurihara@mi.cs.titech.ac.jp Max Welling Dept. of Computer Science

More information

Infinite-State Markov-switching for Dynamic. Volatility Models : Web Appendix

Infinite-State Markov-switching for Dynamic. Volatility Models : Web Appendix Infinite-State Markov-switching for Dynamic Volatility Models : Web Appendix Arnaud Dufays 1 Centre de Recherche en Economie et Statistique March 19, 2014 1 Comparison of the two MS-GARCH approximations

More information

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17 MCMC for big data Geir Storvik BigInsight lunch - May 2 2018 Geir Storvik MCMC for big data BigInsight lunch - May 2 2018 1 / 17 Outline Why ordinary MCMC is not scalable Different approaches for making

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

David B. Dahl. Department of Statistics, and Department of Biostatistics & Medical Informatics University of Wisconsin Madison

David B. Dahl. Department of Statistics, and Department of Biostatistics & Medical Informatics University of Wisconsin Madison AN IMPROVED MERGE-SPLIT SAMPLER FOR CONJUGATE DIRICHLET PROCESS MIXTURE MODELS David B. Dahl dbdahl@stat.wisc.edu Department of Statistics, and Department of Biostatistics & Medical Informatics University

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

Stochastic Variational Inference for the HDP-HMM

Stochastic Variational Inference for the HDP-HMM Stochastic Variational Inference for the HDP-HMM Aonan Zhang San Gultekin John Paisley Department of Electrical Engineering & Data Science Institute Columbia University, New York, NY Abstract We derive

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems

Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems Scott W. Linderman Matthew J. Johnson Andrew C. Miller Columbia University Harvard and Google Brain Harvard University Ryan

More information

17 : Optimization and Monte Carlo Methods

17 : Optimization and Monte Carlo Methods 10-708: Probabilistic Graphical Models Spring 2017 17 : Optimization and Monte Carlo Methods Lecturer: Avinava Dubey Scribes: Neil Spencer, YJ Choe 1 Recap 1.1 Monte Carlo Monte Carlo methods such as rejection

More information

Bayesian Nonparametric Modeling of Driver Behavior using HDP Split-Merge Sampling Algorithm

Bayesian Nonparametric Modeling of Driver Behavior using HDP Split-Merge Sampling Algorithm Bayesian Nonparametric Modeling of Driver Behavior using HDP Split-Merge Sampling Algorithm Vadim Smolyakov 1, and Julian Straub 2 and Sue Zheng 3 and John W. Fisher III 4 Abstract Modern vehicles are

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

A permutation-augmented sampler for DP mixture models

A permutation-augmented sampler for DP mixture models Percy Liang University of California, Berkeley Michael Jordan University of California, Berkeley Ben Taskar University of Pennsylvania Abstract We introduce a new inference algorithm for Dirichlet process

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Inference in Explicit Duration Hidden Markov Models

Inference in Explicit Duration Hidden Markov Models Inference in Explicit Duration Hidden Markov Models Frank Wood Joint work with Chris Wiggins, Mike Dewar Columbia University November, 2011 Wood (Columbia University) EDHMM Inference November, 2011 1 /

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Nonparametric Bayesian Models --Learning/Reasoning in Open Possible Worlds Eric Xing Lecture 7, August 4, 2009 Reading: Eric Xing Eric Xing @ CMU, 2006-2009 Clustering Eric Xing

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Hierarchical Dirichlet Processes with Random Effects

Hierarchical Dirichlet Processes with Random Effects Hierarchical Dirichlet Processes with Random Effects Seyoung Kim Department of Computer Science University of California, Irvine Irvine, CA 92697-34 sykim@ics.uci.edu Padhraic Smyth Department of Computer

More information

Bayesian Hidden Markov Models and Extensions

Bayesian Hidden Markov Models and Extensions Bayesian Hidden Markov Models and Extensions Zoubin Ghahramani Department of Engineering University of Cambridge joint work with Matt Beal, Jurgen van Gael, Yunus Saatci, Tom Stepleton, Yee Whye Teh Modeling

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 18-16th March Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 18-16th March Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 18-16th March 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Trans-dimensional Markov chain Monte Carlo. Bayesian model for autoregressions.

More information

Hierarchical Dirichlet Processes

Hierarchical Dirichlet Processes Hierarchical Dirichlet Processes Yee Whye Teh, Michael I. Jordan, Matthew J. Beal and David M. Blei Computer Science Div., Dept. of Statistics Dept. of Computer Science University of California at Berkeley

More information

A Brief Overview of Nonparametric Bayesian Models

A Brief Overview of Nonparametric Bayesian Models A Brief Overview of Nonparametric Bayesian Models Eurandom Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin Also at Machine

More information

Bayesian Nonparametrics: Models Based on the Dirichlet Process

Bayesian Nonparametrics: Models Based on the Dirichlet Process Bayesian Nonparametrics: Models Based on the Dirichlet Process Alessandro Panella Department of Computer Science University of Illinois at Chicago Machine Learning Seminar Series February 18, 2013 Alessandro

More information

Distance dependent Chinese restaurant processes

Distance dependent Chinese restaurant processes David M. Blei Department of Computer Science, Princeton University 35 Olden St., Princeton, NJ 08540 Peter Frazier Department of Operations Research and Information Engineering, Cornell University 232

More information

Markov chain Monte Carlo Lecture 9

Markov chain Monte Carlo Lecture 9 Markov chain Monte Carlo Lecture 9 David Sontag New York University Slides adapted from Eric Xing and Qirong Ho (CMU) Limitations of Monte Carlo Direct (unconditional) sampling Hard to get rare events

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

IPSJ SIG Technical Report Vol.2014-MPS-100 No /9/25 1,a) 1 1 SNS / / / / / / Time Series Topic Model Considering Dependence to Multiple Topics S

IPSJ SIG Technical Report Vol.2014-MPS-100 No /9/25 1,a) 1 1 SNS / / / / / / Time Series Topic Model Considering Dependence to Multiple Topics S 1,a) 1 1 SNS /// / // Time Series Topic Model Considering Dependence to Multiple Topics Sasaki Kentaro 1,a) Yoshikawa Tomohiro 1 Furuhashi Takeshi 1 Abstract: This pater proposes a topic model that considers

More information

Gaussian Mixture Model

Gaussian Mixture Model Case Study : Document Retrieval MAP EM, Latent Dirichlet Allocation, Gibbs Sampling Machine Learning/Statistics for Big Data CSE599C/STAT59, University of Washington Emily Fox 0 Emily Fox February 5 th,

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang Chapter 4 Dynamic Bayesian Networks 2016 Fall Jin Gu, Michael Zhang Reviews: BN Representation Basic steps for BN representations Define variables Define the preliminary relations between variables Check

More information

Bayesian Statistics. Debdeep Pati Florida State University. April 3, 2017

Bayesian Statistics. Debdeep Pati Florida State University. April 3, 2017 Bayesian Statistics Debdeep Pati Florida State University April 3, 2017 Finite mixture model The finite mixture of normals can be equivalently expressed as y i N(µ Si ; τ 1 S i ), S i k π h δ h h=1 δ h

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 10-708 Probabilistic Graphical Models Homework 3 (v1.1.0) Due Apr 14, 7:00 PM Rules: 1. Homework is due on the due date at 7:00 PM. The homework should be submitted via Gradescope. Solution to each problem

More information

Part IV: Monte Carlo and nonparametric Bayes

Part IV: Monte Carlo and nonparametric Bayes Part IV: Monte Carlo and nonparametric Bayes Outline Monte Carlo methods Nonparametric Bayesian models Outline Monte Carlo methods Nonparametric Bayesian models The Monte Carlo principle The expectation

More information

Slice Sampling Mixture Models

Slice Sampling Mixture Models Slice Sampling Mixture Models Maria Kalli, Jim E. Griffin & Stephen G. Walker Centre for Health Services Studies, University of Kent Institute of Mathematics, Statistics & Actuarial Science, University

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

Image segmentation combining Markov Random Fields and Dirichlet Processes

Image segmentation combining Markov Random Fields and Dirichlet Processes Image segmentation combining Markov Random Fields and Dirichlet Processes Jessica SODJO IMS, Groupe Signal Image, Talence Encadrants : A. Giremus, J.-F. Giovannelli, F. Caron, N. Dobigeon Jessica SODJO

More information

Hidden Markov models: from the beginning to the state of the art

Hidden Markov models: from the beginning to the state of the art Hidden Markov models: from the beginning to the state of the art Frank Wood Columbia University November, 2011 Wood (Columbia University) HMMs November, 2011 1 / 44 Outline Overview of hidden Markov models

More information

an introduction to bayesian inference

an introduction to bayesian inference with an application to network analysis http://jakehofman.com january 13, 2010 motivation would like models that: provide predictive and explanatory power are complex enough to describe observed phenomena

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Sparse Stochastic Inference for Latent Dirichlet Allocation

Sparse Stochastic Inference for Latent Dirichlet Allocation Sparse Stochastic Inference for Latent Dirichlet Allocation David Mimno 1, Matthew D. Hoffman 2, David M. Blei 1 1 Dept. of Computer Science, Princeton U. 2 Dept. of Statistics, Columbia U. Presentation

More information

18 : Advanced topics in MCMC. 1 Gibbs Sampling (Continued from the last lecture)

18 : Advanced topics in MCMC. 1 Gibbs Sampling (Continued from the last lecture) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 18 : Advanced topics in MCMC Lecturer: Eric P. Xing Scribes: Jessica Chemali, Seungwhan Moon 1 Gibbs Sampling (Continued from the last lecture)

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

Latent Dirichlet Allocation Based Multi-Document Summarization

Latent Dirichlet Allocation Based Multi-Document Summarization Latent Dirichlet Allocation Based Multi-Document Summarization Rachit Arora Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai - 600 036, India. rachitar@cse.iitm.ernet.in

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Sharing Clusters Among Related Groups: Hierarchical Dirichlet Processes

Sharing Clusters Among Related Groups: Hierarchical Dirichlet Processes Sharing Clusters Among Related Groups: Hierarchical Dirichlet Processes Yee Whye Teh (1), Michael I. Jordan (1,2), Matthew J. Beal (3) and David M. Blei (1) (1) Computer Science Div., (2) Dept. of Statistics

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes MAD-Bayes: MAP-based Asymptotic Derivations from Bayes Tamara Broderick Brian Kulis Michael I. Jordan Cat Clusters Mouse clusters Dog 1 Cat Clusters Dog Mouse Lizard Sheep Picture 1 Picture 2 Picture 3

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Lecture 3a: Dirichlet processes

Lecture 3a: Dirichlet processes Lecture 3a: Dirichlet processes Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk Advanced Topics

More information

A marginal sampler for σ-stable Poisson-Kingman mixture models

A marginal sampler for σ-stable Poisson-Kingman mixture models A marginal sampler for σ-stable Poisson-Kingman mixture models joint work with Yee Whye Teh and Stefano Favaro María Lomelí Gatsby Unit, University College London Talk at the BNP 10 Raleigh, North Carolina

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Infinite Feature Models: The Indian Buffet Process Eric Xing Lecture 21, April 2, 214 Acknowledgement: slides first drafted by Sinead Williamson

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

Tree-Based Inference for Dirichlet Process Mixtures

Tree-Based Inference for Dirichlet Process Mixtures Yang Xu Machine Learning Department School of Computer Science Carnegie Mellon University Pittsburgh, USA Katherine A. Heller Department of Engineering University of Cambridge Cambridge, UK Zoubin Ghahramani

More information

A Nonparametric Model for Stationary Time Series

A Nonparametric Model for Stationary Time Series A Nonparametric Model for Stationary Time Series Isadora Antoniano-Villalobos Bocconi University, Milan, Italy. isadora.antoniano@unibocconi.it Stephen G. Walker University of Texas at Austin, USA. s.g.walker@math.utexas.edu

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Bayesian Nonparametric Hidden Semi-Markov Models

Bayesian Nonparametric Hidden Semi-Markov Models Journal of Machine Learning Research 14 (2013) 673-701 Submitted 12/11; Revised 9/12; Published 2/13 Bayesian Nonparametric Hidden Semi-Markov Models Matthew J. Johnson Alan S. Willsky Laboratory for Information

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Fast Inference and Learning for Modeling Documents with a Deep Boltzmann Machine

Fast Inference and Learning for Modeling Documents with a Deep Boltzmann Machine Fast Inference and Learning for Modeling Documents with a Deep Boltzmann Machine Nitish Srivastava nitish@cs.toronto.edu Ruslan Salahutdinov rsalahu@cs.toronto.edu Geoffrey Hinton hinton@cs.toronto.edu

More information

Topic Modelling and Latent Dirichlet Allocation

Topic Modelling and Latent Dirichlet Allocation Topic Modelling and Latent Dirichlet Allocation Stephen Clark (with thanks to Mark Gales for some of the slides) Lent 2013 Machine Learning for Language Processing: Lecture 7 MPhil in Advanced Computer

More information

19 : Bayesian Nonparametrics: The Indian Buffet Process. 1 Latent Variable Models and the Indian Buffet Process

19 : Bayesian Nonparametrics: The Indian Buffet Process. 1 Latent Variable Models and the Indian Buffet Process 10-708: Probabilistic Graphical Models, Spring 2015 19 : Bayesian Nonparametrics: The Indian Buffet Process Lecturer: Avinava Dubey Scribes: Rishav Das, Adam Brodie, and Hemank Lamba 1 Latent Variable

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Online Learning of Nonparametric Mixture Models via Sequential Variational Approximation

Online Learning of Nonparametric Mixture Models via Sequential Variational Approximation Online Learning of Nonparametric Mixture Models via Sequential Variational Approximation Dahua Lin Toyota Technological Institute at Chicago dhlin@ttic.edu Abstract Reliance on computationally expensive

More information

Construction of Dependent Dirichlet Processes based on Poisson Processes

Construction of Dependent Dirichlet Processes based on Poisson Processes Construction of Dependent Dirichlet Processes based on Poisson Processes Dahua Lin CSAIL, MIT dhlin@mit.edu Eric Grimson CSAIL, MIT welg@csail.mit.edu John Fisher CSAIL, MIT fisher@csail.mit.edu Abstract

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

Hmms with variable dimension structures and extensions

Hmms with variable dimension structures and extensions Hmm days/enst/january 21, 2002 1 Hmms with variable dimension structures and extensions Christian P. Robert Université Paris Dauphine www.ceremade.dauphine.fr/ xian Hmm days/enst/january 21, 2002 2 1 Estimating

More information

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition.

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition. Christian P. Robert The Bayesian Choice From Decision-Theoretic Foundations to Computational Implementation Second Edition With 23 Illustrations ^Springer" Contents Preface to the Second Edition Preface

More information

Bayesian Nonparametric Models

Bayesian Nonparametric Models Bayesian Nonparametric Models David M. Blei Columbia University December 15, 2015 Introduction We have been looking at models that posit latent structure in high dimensional data. We use the posterior

More information

Nonparametric Bayesian Methods - Lecture I

Nonparametric Bayesian Methods - Lecture I Nonparametric Bayesian Methods - Lecture I Harry van Zanten Korteweg-de Vries Institute for Mathematics CRiSM Masterclass, April 4-6, 2016 Overview of the lectures I Intro to nonparametric Bayesian statistics

More information

Sequentially-Allocated Merge-Split Sampler for Conjugate and Nonconjugate Dirichlet Process Mixture Models

Sequentially-Allocated Merge-Split Sampler for Conjugate and Nonconjugate Dirichlet Process Mixture Models Sequentially-Allocated Merge-Split Sampler for Conjugate and Nonconjugate Dirichlet Process Mixture Models David B. Dahl* Texas A&M University November 18, 2005 Abstract This paper proposes a new efficient

More information

Non-parametric Clustering with Dirichlet Processes

Non-parametric Clustering with Dirichlet Processes Non-parametric Clustering with Dirichlet Processes Timothy Burns SUNY at Buffalo Mar. 31 2009 T. Burns (SUNY at Buffalo) Non-parametric Clustering with Dirichlet Processes Mar. 31 2009 1 / 24 Introduction

More information

Nonparametric Bayesian Models for Sparse Matrices and Covariances

Nonparametric Bayesian Models for Sparse Matrices and Covariances Nonparametric Bayesian Models for Sparse Matrices and Covariances Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Bayes

More information