Model Verification Using Gaussian Mixture Models

Size: px
Start display at page:

Download "Model Verification Using Gaussian Mixture Models"

Transcription

1 Model Verification Using Gaussian Mixture Models A Parametric, Feature-Based Method Valliappa Lakshmanan 1,2 John Kain 2 1 Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma 2 Radar Research and Development Division National Severe Storms Laboratory Jan Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 1 / 20

2 What is a GMM? Introduction Intuitively: find an optimal way to place Gaussian functions at various points in the image such that the sum of these Gaussians mimics the input gridded field. Original 5 Gaussians Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 2 / 20

3 Number of Gaussians Introduction The accuracy of fit gets better as you increase number of Gaussians. Original 10 Gaussians Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 3 / 20

4 Introduction Number of Gaussians Gaussians 50 Gaussians Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 4 / 20

5 Diminishing Returns Introduction Keeps getting more and more accurate: but at some point, the benefits of a parametric model are lost and you might as well just use the pixel values. Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 5 / 20

6 The GMM GMM The GMM is defined as a weighted sum of K two-dimensional Gaussians: K G(x, y) = π k f k (x, y) (1) Σ xy is: 1 f (x, y) = 2π Σ xy k=1 1 )(y µy ))Σ e ((x µx xy ((x µ x )(y µ y )) T /2 ( ) σ 2 x σ xy σ xy Solved using an iterative approach [Lakshmanan and Kain, 2009]. σ 2 y (2) (3) Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 6 / 20

7 GMM Intensity? The GMM is defined so as to sum to 1, and the iterative method optimizes the likelihood of the parameters given the positions of the pixels (and not the intensity). Two minor changes: 1 The total intensity associated with all the pixels in the image is used to scale the GMM 2 More intensive locations are repeated several (m) times: m = 1 + γround( CDF(I xy) freq(i mode ) ) I xy < I mode (4) Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 7 / 20

8 Synthetic case Example Verification: Geometric Geometric dataset from [Ahijevych et al., 2009]. Chose 3 Gaussians without much intensity correction geom000 geom003 Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 8 / 20

9 Synthetic case Geometric: why is the fit so bad? 1 Abrupt changes in intensity: need more Gaussians 2 Fewer high-intensity pixels: need intensity correction Orig γ = 0 γ = 0.5 γ = 1 γ = 3 γ = 5 GMM fit better on real-world images Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 9 / 20

10 Synthetic case Example Verification: Geometric µ x µ y σx 2 σ xy σy 2 π k 0 Original pts right pts right pts right too big Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 10 / 20

11 Synthetic case Example Verification: Geometric µ x µ y σx 2 σ xy σy 2 π k pts right turned pts right huge Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 11 / 20

12 Perturbed dataset Perturbed cases 2km WRF from CAPS perturbed (See [Ahijevych et al., 2009]). fake000 fake003 fake007 Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 12 / 20

13 Perturbed cases GMM parameters for perturbed cases µ x µ y σx 2 σ xy σy 2 π k Original pts. right pts. down pts. right pts. down pts. right pts. down Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 13 / 20

14 Perturbed cases GMM parameters for perturbed cases Description µ x µ y σx 2 σ xy σy 2 π k 24 pts. right pts. down pts. right pts. down pts. right pts. down times pts. right pts. down minus 2 mm Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 14 / 20

15 Error measures Error measures Translation error: e tr = (µ xf µ xo ) 2 + (µ yf µ yo ) 2 (5) Rotation error: e rot = 180 π cos 1 (v f.v o ) (6) v f and v o are the maximum-variance eigen vectors of the covariance matrices (Σ) Scaling error: e sc = π k f π ko (7) Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 15 / 20

16 Associating Gaussians Error measures For each Gaussian in the forecast field, compute the overall error with each Gaussian of observed field and pick the one with the lowest error. e = 0.3 min( e tr 100, 1)+ 0.2 min(e rot, 180 e rot )/ (max(e sc, 1/e sc ) 1) This can also be used to rank model forecasts. The weights are subjective. (8) Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 16 / 20

17 Error measures Synthetic images: Rank Description e tr e rot e sc e 1 50 pts. right pts. right pts. right, too big pts. right, wrong orient pts. right, huge Rotation error on circular objects is undefined. Ranking: geom001, geom002, geom004, geom003 and finally geom005. Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 17 / 20

18 Error measures June 1, 2005 Model runs Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 18 / 20

19 Acknowledgements Error measures Funding for this research was provided under NOAA-OU Cooperative Agreement NA17RJ1227. The GMM fitting technique described in this paper has been implemented within the Warning Decision Support System Integrated Information (WDSSII; [Lakshmanan et al., 2007]) as part of the w2smooth process. It is available for download at Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 19 / 20

20 Error measures References Ahijevych, D., Gilleland, E., Brown, B., and Ebert, E. (2009). Application of spatial verification methods to idealized and NWP gridded precipitation forecasts. Weather and Forecasting, 0(0):InPress. Lakshmanan, V. and Kain, J. (2009). A Gaussian mixture model approach to forecast verification. Weather and Forecasting, 0(0):subm. Lakshmanan, V., Smith, T., Stumpf, G. J., and Hondl, K. (2007). The warning decision support system integrated information. Weather and Forecasting, 22(3): Lakshmanan et. al (OU/NSSL) Verification using GMM AMS Prob. and Stats. Conf. 20 / 20

A Gaussian Mixture Model Approach to

A Gaussian Mixture Model Approach to A Gaussian Mixture Model Approach to A Parametric, Feature-Based Method Valliappa 1,2 John Kain 2 1 Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma 2 Radar Research and

More information

6.4 Model Verification Using Gaussian Mixture Models

6.4 Model Verification Using Gaussian Mixture Models 6.4 Model Verification Using Gaussian Mixture Models Valliappa Lakshmanan 1,2, John S. Kain 2 20th Conference on Probability and Statistics in the Atmospheric Sciences, Atlanta, GA, Jan. 2010 ABSTRACT

More information

An Algorithm to Nowcast Lightning Initiation and Cessation in Real-time

An Algorithm to Nowcast Lightning Initiation and Cessation in Real-time An Algorithm to Nowcast Initiation and Cessation in Real-time An Data Mining Model Valliappa 1,2 Travis Smith 1,2 1 Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma 2 Radar

More information

Venugopal, Basu, and Foufoula-Georgiou, 2005: New metric for comparing precipitation patterns

Venugopal, Basu, and Foufoula-Georgiou, 2005: New metric for comparing precipitation patterns Venugopal, Basu, and Foufoula-Georgiou, 2005: New metric for comparing precipitation patterns Verification methods reading group April 4, 2008 D. Ahijevych Forecast Quality Index useful for ensembles uses

More information

Atmospheric Research

Atmospheric Research ATMOS-02515; No of Pages 12 Atmospheric Research xxx (2011) xxx xxx Contents lists available at SciVerse ScienceDirect Atmospheric Research journal homepage: www.elsevier.com/locate/atmos Spatial verification

More information

Verification Methods for High Resolution Model Forecasts

Verification Methods for High Resolution Model Forecasts Verification Methods for High Resolution Model Forecasts Barbara Brown (bgb@ucar.edu) NCAR, Boulder, Colorado Collaborators: Randy Bullock, John Halley Gotway, Chris Davis, David Ahijevych, Eric Gilleland,

More information

Identifying skilful spatial scales using the Fractions Skill Score

Identifying skilful spatial scales using the Fractions Skill Score Identifying skilful spatial scales using the Fractions Skill Score Marion Mittermaier and Nigel Roberts Outline 1. Brief overview of the method 2. Synthetic cases Geometric cases Perturbed cases 3. Domain

More information

13A. 4 Analysis and Impact of Super-obbed Doppler Radial Velocity in the NCEP Grid-point Statistical Interpolation (GSI) Analysis System

13A. 4 Analysis and Impact of Super-obbed Doppler Radial Velocity in the NCEP Grid-point Statistical Interpolation (GSI) Analysis System 13A. 4 Analysis and Impact of Super-obbed Doppler Radial Velocity in the NCEP Grid-point Statistical Interpolation (GSI) Analysis System Shun Liu 1, Ming Xue 1,2, Jidong Gao 1,2 and David Parrish 3 1 Center

More information

Three Spatial Verification Techniques: Cluster Analysis, Variogram, and Optical Flow

Three Spatial Verification Techniques: Cluster Analysis, Variogram, and Optical Flow VOLUME 24 W E A T H E R A N D F O R E C A S T I N G DECEMBER 2009 Three Spatial Verification Techniques: Cluster Analysis, Variogram, and Optical Flow CAREN MARZBAN Applied Physics Laboratory, and Department

More information

Estimating the Impact of a 3-dB Sensitivity Loss on WSR-88D Data

Estimating the Impact of a 3-dB Sensitivity Loss on WSR-88D Data P12R.9 Estimating the Impact of a 3-dB Sensitivity Loss on WSR-88D Data Kevin A. Scharfenberg*, Kim L. Elmore, Eddie Forren, and Valery Melnikov Cooperative Institute for Mesoscale Meteorology Studies,

More information

Upscaled and fuzzy probabilistic forecasts: verification results

Upscaled and fuzzy probabilistic forecasts: verification results 4 Predictability and Ensemble Methods 124 Upscaled and fuzzy probabilistic forecasts: verification results Zied Ben Bouallègue Deutscher Wetterdienst (DWD), Frankfurter Str. 135, 63067 Offenbach, Germany

More information

Kevin L. Manross CURRICULUM VITAE :: KEVIN L. MANROSS

Kevin L. Manross CURRICULUM VITAE :: KEVIN L. MANROSS CURRICULUM VITAE :: KEVIN L. MANROSS Research Associate University of Oklahoma Cooperative Institute for Mesoscale Meteorological Studies and NOAA/National Severe Storms Laboratory 120 David L. Boren Blvd.

More information

Quality Control of Weather Radar Data Using Texture Features and a Neural Network

Quality Control of Weather Radar Data Using Texture Features and a Neural Network 1 Quality Control of Weather Radar Data Using Texture Features and a Neural Network V Lakshmanan 1, Kurt Hondl 2, Gregory Stumpf 1, Travis Smith 1 Abstract Weather radar data is subject to many contaminants,

More information

Verifying Ensemble Forecasts Using A Neighborhood Approach

Verifying Ensemble Forecasts Using A Neighborhood Approach Verifying Ensemble Forecasts Using A Neighborhood Approach Craig Schwartz NCAR/MMM schwartz@ucar.edu Thanks to: Jack Kain, Ming Xue, Steve Weiss Theory, Motivation, and Review Traditional Deterministic

More information

Spatial Forecast Verification Methods

Spatial Forecast Verification Methods Spatial Forecast Verification Methods Barbara Brown Joint Numerical Testbed Program Research Applications Laboratory, NCAR 22 October 2014 Acknowledgements: Tara Jensen, Randy Bullock, Eric Gilleland,

More information

10.3 PROBABILISTIC FORECASTS OF LOCATION AND TIMING OF CONVECTION DURING THE 2012 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT

10.3 PROBABILISTIC FORECASTS OF LOCATION AND TIMING OF CONVECTION DURING THE 2012 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT 10.3 PROBABILISTIC FORECASTS OF LOCATION AND TIMING OF CONVECTION DURING THE 2012 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT Stuart D. Miller, Jr.*,3,4,6, John S. Kain 1, Patrick T. Marsh

More information

P1.36 IMPACT OF MESOSCALE DATA, CLOUD ANALYSIS ON THE EXPLICIT PREDICTION OF AN MCS DURING IHOP Daniel T. Dawson II and Ming Xue*

P1.36 IMPACT OF MESOSCALE DATA, CLOUD ANALYSIS ON THE EXPLICIT PREDICTION OF AN MCS DURING IHOP Daniel T. Dawson II and Ming Xue* P1.36 IMPACT OF MESOSCALE DATA, CLOUD ANALYSIS ON THE EXPLICIT PREDICTION OF AN MCS DURING IHOP 2002 Daniel T. Dawson II and Ming Xue* School of Meteorology and Center for the Analysis and Prediction of

More information

WDSS-II Overview. Valliappa Lakshmanan (Lak) University of Oklahoma & National Severe Storms Laboratory

WDSS-II Overview. Valliappa Lakshmanan (Lak) University of Oklahoma & National Severe Storms Laboratory WDSS-II Overview Valliappa Lakshmanan (Lak) lakshman@ou.edu University of Oklahoma & National Severe Storms Laboratory 1 What is WDSS-II? Second-generation of Warning Decision Support System (WDSS), primarily

More information

An Algorithm to Identify and Track Objects on Spatial Grids

An Algorithm to Identify and Track Objects on Spatial Grids An Algorithm to Identify and Track Objects on Spatial Grids VA L L I A P PA L A K S H M A N A N N AT I O N A L S E V E R E S T O R M S L A B O R AT O R Y / U N I V E R S I T Y O F O K L A H O M A S E P,

More information

NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS

NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS David D NOAA / Earth System Research Laboratory / Global Systems Division Nowcasting and Mesoscale Research Working Group Meeting World Meteorological

More information

Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data

Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data David Dowell and Wiebke Deierling National Center for Atmospheric Research, Boulder, CO Ensemble Data Assimilation

More information

Object-oriented verification of WRF forecasts from 2005 SPC/NSSL Spring Program

Object-oriented verification of WRF forecasts from 2005 SPC/NSSL Spring Program Object-oriented verification of WRF forecasts from 2005 SPC/NSSL Spring Program Mike Baldwin Purdue University References Baldwin et al. (2005): Development of an automated classification procedure for

More information

UCAR Award No.: S

UCAR Award No.: S Using Lightning Data To Better Identify And Understand Relationships Between Thunderstorm Intensity And The Underlying Topography Of The Lower Mississippi River Valley UCAR Award No.: S08-68830 University:

More information

Monitoring and characterizing offshore wind variability with weather radars for wind energy applications

Monitoring and characterizing offshore wind variability with weather radars for wind energy applications Monitoring and characterizing offshore wind variability with weather radars for wind energy applications Pierre-Julien Trombe (pmtr@dtu.dk) & Pierre Pinson 2 (ppin@elektro.dtu.dk) Dpt. of Applied Mathematics

More information

10A.1 The Model Evaluation Tool

10A.1 The Model Evaluation Tool 10A.1 The Model Evaluation Tool Lacey Holland, John Halley Gotway, Barbara Brown, Randy Bullock, Eric Gilleland, and David Ahijevych National Center for Atmospheric Research Boulder, CO 80307 1. INTRODUCTION

More information

P1.10 Synchronization of Multiple Radar Observations in 3-D Radar Mosaic

P1.10 Synchronization of Multiple Radar Observations in 3-D Radar Mosaic Submitted for the 12 th Conf. on Aviation, Range, and Aerospace Meteor. 29 Jan. 2 Feb. 2006. Atlanta, GA. P1.10 Synchronization of Multiple Radar Observations in 3-D Radar Mosaic Hongping Yang 1, Jian

More information

Aaron Johnson* and Xuguang Wang. University of Oklahoma School of Meteorology and Center for Analysis and Prediction of Storms (CAPS), Norman, OK

Aaron Johnson* and Xuguang Wang. University of Oklahoma School of Meteorology and Center for Analysis and Prediction of Storms (CAPS), Norman, OK 3.1 VERIFICATION AND CALIBRATION OF PROBABILISTIC PRECIPITATION FORECASTS DERIVED FROM NEIGHBORHOOD AND OBJECT BASED METHODS FOR A MULTI-MODEL CONVECTION-ALLOWING ENSEMBLE Aaron Johnson* and Xuguang Wang

More information

Charles Kuster Leadville, CO. Personal Overview

Charles Kuster Leadville, CO. Personal Overview Charles Kuster Leadville, CO Personal Overview Personal Overview Charles Kuster Leadville, CO OU to study meteorology Charles Kuster Leadville, CO Personal Overview OU to study meteorology Graduated in

More information

P4.8 PERFORMANCE OF A NEW VELOCITY DEALIASING ALGORITHM FOR THE WSR-88D. Arthur Witt* and Rodger A. Brown

P4.8 PERFORMANCE OF A NEW VELOCITY DEALIASING ALGORITHM FOR THE WSR-88D. Arthur Witt* and Rodger A. Brown P4.8 PERFORMANCE OF A NEW VELOCITY DEALIASING ALGORITHM FOR THE WSR-88D Arthur Witt* and Rodger A. Brown NOAA/National Severe Storms Laboratory, Norman, Oklahoma Zhongqi Jing NOAA/National Weather Service

More information

A Simple Data-Driven Model for Streamflow Prediction

A Simple Data-Driven Model for Streamflow Prediction A Simple Data-Driven Model for Streamflow Prediction Valliappa Lakshmanan 1,2, Jonathan J. Gourley 2,Zac Flamig 1,2,Scott Giangrande 3 Abstract It is sometimes useful to create a statistical model to simulate

More information

Chengsi Liu 1, Ming Xue 1, 2, Youngsun Jung 1, Lianglv Chen 3, Rong Kong 1 and Jingyao Luo 3 ISDA 2019

Chengsi Liu 1, Ming Xue 1, 2, Youngsun Jung 1, Lianglv Chen 3, Rong Kong 1 and Jingyao Luo 3 ISDA 2019 Development of Optimized Radar Data Assimilation Capability within the Fully Coupled EnKF EnVar Hybrid System for Convective Permitting Ensemble Forecasting and Testing via NOAA Hazardous Weather Testbed

More information

7 WSR-88D OBSERVATIONS OF AN EXTREME HAIL EVENT IMPACTING ABILENE, TX ON 12 JUNE 2014

7 WSR-88D OBSERVATIONS OF AN EXTREME HAIL EVENT IMPACTING ABILENE, TX ON 12 JUNE 2014 28TH CONFERENCE ON SEVERE LOCAL STORMS 7 WSR-88D OBSERVATIONS OF AN EXTREME HAIL EVENT IMPACTING ABILENE, TX ON 12 JUNE 2014 ARTHUR WITT * NOAA/National Severe Storms Laboratory, Norman, OK MIKE JOHNSON

More information

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM Mária Putsay, Zsófia Kocsis and Ildikó Szenyán Hungarian Meteorological Service, Kitaibel Pál u. 1, H-1024, Budapest, Hungary Abstract The

More information

4B.3 ENHANCED, HIGH-DENSITY SEVERE STORM VERIFICATION. Travis M. Smith, Kiel L. Ortega and Angelyn G. Kolodziej

4B.3 ENHANCED, HIGH-DENSITY SEVERE STORM VERIFICATION. Travis M. Smith, Kiel L. Ortega and Angelyn G. Kolodziej 4B.3 ENHANCED, HIGH-DENSITY SEVERE STORM VERIFICATION Travis M. Smith, Kiel L. Ortega and Angelyn G. Kolodziej Cooperate Institute for Mesoscale Meteorological Studies, University of Oklahoma (also affiliated

More information

International Desks: African Training Desk and Projects

International Desks: African Training Desk and Projects The Climate Prediction Center International Desks: African Training Desk and Projects Wassila M. Thiaw Team Leader Climate Prediction Center National Centers for Environmental Predictions 1 African Desk

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 Discriminative vs Generative Models Discriminative: Just learn a decision boundary between your

More information

NOAA Research and Development Supporting NextGen. Darien Davis NOAA Office of Oceanic and Atmospheric Research June 22, 2009

NOAA Research and Development Supporting NextGen. Darien Davis NOAA Office of Oceanic and Atmospheric Research June 22, 2009 NOAA Research and Development Supporting NextGen Darien Davis Darien.l.davis@noaa.gov NOAA Office of Oceanic and Atmospheric Research June 22, 2009 FAA/NOAA Coordination Developing an integrated science

More information

Using the LEAD Portal for Customized Weather Forecasts on the TeraGrid

Using the LEAD Portal for Customized Weather Forecasts on the TeraGrid Using the LEAD Portal for Customized Weather Forecasts on the TeraGrid Keith Brewster Center for Analysis and Prediction of Storms, Univ. of Oklahoma Dan Weber, Suresh Marru, Kevin Thomas, Dennis Gannon,

More information

WARNING DECISION SUPPORT SYSTEM INTEGRATED INFORMATION (WDSS-II). PART I: MULTIPLE-SENSOR SEVERE WEATHER APPLICATIONS DEVELOPMENT AT NSSL DURING 2002

WARNING DECISION SUPPORT SYSTEM INTEGRATED INFORMATION (WDSS-II). PART I: MULTIPLE-SENSOR SEVERE WEATHER APPLICATIONS DEVELOPMENT AT NSSL DURING 2002 14.8 WARNING DECISION SUPPORT SYSTEM INTEGRATED INFORMATION (WDSS-II). PART I: MULTIPLE-SENSOR SEVERE WEATHER APPLICATIONS DEVELOPMENT AT NSSL DURING 2002 Travis M. Smith 1,2, *, Gregory J. Stumpf 1,2,

More information

Automated Storm-based Scheduling on the National Weather Radar Testbed Phased Array Radar

Automated Storm-based Scheduling on the National Weather Radar Testbed Phased Array Radar P41 Automated Storm-based Scheduling on the National Weather Radar Testbed Phased Array Radar David L. Priegnitz Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman,

More information

15B.7 A SEQUENTIAL VARIATIONAL ANALYSIS APPROACH FOR MESOSCALE DATA ASSIMILATION

15B.7 A SEQUENTIAL VARIATIONAL ANALYSIS APPROACH FOR MESOSCALE DATA ASSIMILATION 21st Conference on Weather Analysis and Forecasting/17th Conference on Numerical Weather Prediction 15B.7 A SEQUENTIAL VARIATIONAL ANALYSIS APPROACH FOR MESOSCALE DATA ASSIMILATION Yuanfu Xie 1, S. E.

More information

DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION

DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION ECCV 12 Bharath Hariharan, Jitandra Malik, and Deva Ramanan MOTIVATION State-of-the-art Object Detection HOG Linear SVM Dalal&Triggs Histograms

More information

Tornado and Severe Thunderstorm Warning Forecast Skill and its Relationship to Storm Type

Tornado and Severe Thunderstorm Warning Forecast Skill and its Relationship to Storm Type Tornado and Severe Thunderstorm Warning Forecast Skill and its Relationship to Storm Type Eric M. Guillot National Weather Center Research Experience for Undergraduates, University of Oklahoma, Norman,

More information

Operational use of ensemble hydrometeorological forecasts at EDF (french producer of energy)

Operational use of ensemble hydrometeorological forecasts at EDF (french producer of energy) Operational use of ensemble hydrometeorological forecasts at EDF (french producer of energy) M. Le Lay, P. Bernard, J. Gailhard, R. Garçon, T. Mathevet & EDF forecasters matthieu.le-lay@edf.fr SBRH Conference

More information

Data Mining Storm Attributes from Spatial Grids

Data Mining Storm Attributes from Spatial Grids NOVEMBER 2009 L A K S H M A N A N A N D S M I T H 2353 Data Mining Storm Attributes from Spatial Grids VALLIAPPA LAKSHMANAN AND TRAVIS SMITH Cooperative Institute of Mesoscale Meteorological Studies, University

More information

Convection-Permitting Ensemble Forecasts at CAPS for Hazardous Weather Testbed (HWT)

Convection-Permitting Ensemble Forecasts at CAPS for Hazardous Weather Testbed (HWT) Convection-Permitting Ensemble Forecasts at CAPS for Hazardous Weather Testbed (HWT) Ming Xue Center for Analysis and Prediction of Storms and School of Meteorology University of Oklahoma mxue@ou.edu August,

More information

Radar data assimilation using a modular programming approach with the Ensemble Kalman Filter: preliminary results

Radar data assimilation using a modular programming approach with the Ensemble Kalman Filter: preliminary results Radar data assimilation using a modular programming approach with the Ensemble Kalman Filter: preliminary results I. Maiello 1, L. Delle Monache 2, G. Romine 2, E. Picciotti 3, F.S. Marzano 4, R. Ferretti

More information

Using Convection-Allowing Models to Produce Forecast Guidance For Severe Thunderstorm Hazards via a Surrogate-Severe Approach!

Using Convection-Allowing Models to Produce Forecast Guidance For Severe Thunderstorm Hazards via a Surrogate-Severe Approach! Using Convection-Allowing Models to Produce Forecast Guidance For Severe Thunderstorm Hazards via a Surrogate-Severe Approach! Ryan Sobash! University of Oklahoma, School of Meteorology, Norman, OK! J.

More information

Extracting probabilistic severe weather guidance from convection-allowing model forecasts. Ryan Sobash 4 December 2009 Convection/NWP Seminar Series

Extracting probabilistic severe weather guidance from convection-allowing model forecasts. Ryan Sobash 4 December 2009 Convection/NWP Seminar Series Extracting probabilistic severe weather guidance from convection-allowing model forecasts Ryan Sobash 4 December 2009 Convection/NWP Seminar Series Identification of severe convection in high-resolution

More information

LIGHTNING ACTIVITY AND CHARGE STRUCTURE OF MICROBURST PRODUCING STORMS

LIGHTNING ACTIVITY AND CHARGE STRUCTURE OF MICROBURST PRODUCING STORMS LIGHTNING ACTIVITY AND CHARGE STRUCTURE OF MICROBURST PRODUCING STORMS Kristin M. Kuhlman, Travis M. Smith Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma and NOAA/National

More information

THE IMPACT OF DIFFERENT DATA FIELDS ON STORM-SSCALE DATA ASSIMILATION

THE IMPACT OF DIFFERENT DATA FIELDS ON STORM-SSCALE DATA ASSIMILATION JP1J.3 THE IMPACT OF DIFFERENT DATA FIELDS ON STORM-SSCALE DATA ASSIMILATION Guoqing Ge 1,2,*, Jidong Gao 1, Kelvin Droegemeier 1,2 Center for Analysis and Prediction of Storms, University of Oklahoma,

More information

Spatial forecast verification

Spatial forecast verification Spatial forecast verification Manfred Dorninger University of Vienna Vienna, Austria manfred.dorninger@univie.ac.at Thanks to: B. Ebert, B. Casati, C. Keil 7th Verification Tutorial Course, Berlin, 3-6

More information

Stochastic Processes for Physicists

Stochastic Processes for Physicists Stochastic Processes for Physicists Understanding Noisy Systems Chapter 1: A review of probability theory Paul Kirk Division of Molecular Biosciences, Imperial College London 19/03/2013 1.1 Random variables

More information

Nesting and LBCs, Predictability and EPS

Nesting and LBCs, Predictability and EPS Nesting and LBCs, Predictability and EPS Terry Davies, Dynamics Research, Met Office Nigel Richards, Neill Bowler, Peter Clark, Caroline Jones, Humphrey Lean, Ken Mylne, Changgui Wang copyright Met Office

More information

Assimilation of Satellite Infrared Brightness Temperatures and Doppler Radar Observations in a High-Resolution OSSE

Assimilation of Satellite Infrared Brightness Temperatures and Doppler Radar Observations in a High-Resolution OSSE Assimilation of Satellite Infrared Brightness Temperatures and Doppler Radar Observations in a High-Resolution OSSE Jason Otkin and Becky Cintineo University of Wisconsin-Madison, Cooperative Institute

More information

Final Report on. Evaluating the new Weather Research and Forecasting (WRF) model at the Storm Prediction Center

Final Report on. Evaluating the new Weather Research and Forecasting (WRF) model at the Storm Prediction Center Final Report on Evaluating the new Weather Research and Forecasting (WRF) model at the Storm Prediction Center John S. Kain, Michael E. Baldwin, Steven J. Weiss, Frederick H. Carr, Geoffrey J. DiMego Time

More information

CAPS Storm-Scale Ensemble Forecast for the NOAA Hazardous Weather Testbed (HWT) Spring Experiment

CAPS Storm-Scale Ensemble Forecast for the NOAA Hazardous Weather Testbed (HWT) Spring Experiment CAPS Storm-Scale Ensemble Forecast for the NOAA Hazardous Weather Testbed (HWT) Spring Experiment Fanyou Kong, Ming Xue, Kevin W. Thomas, Yunheng Wang, Keith Brewster, Xuguang Wang (Center for Analysis

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition A Brief Mathematical Review Hamid R. Rabiee Jafar Muhammadi, Ali Jalali, Alireza Ghasemi Spring 2012 http://ce.sharif.edu/courses/90-91/2/ce725-1/ Agenda Probability theory

More information

Strong Lens Modeling (II): Statistical Methods

Strong Lens Modeling (II): Statistical Methods Strong Lens Modeling (II): Statistical Methods Chuck Keeton Rutgers, the State University of New Jersey Probability theory multiple random variables, a and b joint distribution p(a, b) conditional distribution

More information

Radar-Optical Observation Mix

Radar-Optical Observation Mix Radar-Optical Observation Mix Felix R. Hoots" April 2010! ETG Systems Engineering Division April 19, 10 1 Background" Deep space satellites are those with period greater than or equal to 225 minutes! Synchronous!

More information

The benefits and developments in ensemble wind forecasting

The benefits and developments in ensemble wind forecasting The benefits and developments in ensemble wind forecasting Erik Andersson Slide 1 ECMWF European Centre for Medium-Range Weather Forecasts Slide 1 ECMWF s global forecasting system High resolution forecast

More information

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Weiguang Chang and Isztar Zawadzki Department of Atmospheric and Oceanic Sciences Faculty

More information

Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now

Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now Michael Berechree National Manager Aviation Weather Services Australian Bureau of Meteorology

More information

Performance of a Probabilistic Cloud-to-Ground Lightning Prediction Algorithm

Performance of a Probabilistic Cloud-to-Ground Lightning Prediction Algorithm Performance of a Probabilistic Cloud-to-Ground Lightning Prediction Algorithm John Cintineo 1,2,3 * Valliappa Lakshmanan 1,2, Travis Smith 1,2 Abstract A probabilistic cloud- to- ground lightning algorithm

More information

Assimilate W88D Doppler Vr for Humberto 05

Assimilate W88D Doppler Vr for Humberto 05 Assimilate W88D Doppler Vr for Humberto 05 WRF/EnKF Forecast vs. Observations vs. 3DVAR Min SLP Max wind The WRF/3DVAR (as a surrogate of operational algorithm) assimilates the same radar data but without

More information

Thunderstorm Forecasting and Warnings in the US: Applications to the Veneto Region

Thunderstorm Forecasting and Warnings in the US: Applications to the Veneto Region Thunderstorm Forecasting and Warnings in the US: Applications to the Veneto Region Bill Conway Vice President Weather Decision Technologies Norman, Oklahoma, USA Andrea Rossa ARPAV Lead Scientist Centre

More information

Weather Analysis and Forecasting

Weather Analysis and Forecasting Weather Analysis and Forecasting An Information Statement of the American Meteorological Society (Adopted by AMS Council on 25 March 2015) Bull. Amer. Meteor. Soc., 88 This Information Statement describes

More information

Percentile-based Neighborhood Precipitation Verification and Its Application to a Landfalling Tropical Storm Case with Radar Data Assimilation

Percentile-based Neighborhood Precipitation Verification and Its Application to a Landfalling Tropical Storm Case with Radar Data Assimilation ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 32, NOVEMBER 215, 1449 1459 Percentile-based Neighborhood Precipitation Verification and Its Application to a Landfalling Tropical Storm Case with Radar Data Assimilation

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts

Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts Aaron Johnson School of Meteorology, University of Oklahoma and Center for Analysis and Prediction of Storms,

More information

David John Gagne II, NCAR

David John Gagne II, NCAR The Performance Impacts of Machine Learning Design Choices for Gridded Solar Irradiance Forecasting Features work from Evaluating Statistical Learning Configurations for Gridded Solar Irradiance Forecasting,

More information

The Effects of High Resolution Model Output on Severe Weather Forecasts as Evaluated in the SPC/NSSL Spring Program 2004

The Effects of High Resolution Model Output on Severe Weather Forecasts as Evaluated in the SPC/NSSL Spring Program 2004 The Effects of High Resolution Model Output on Severe Weather Forecasts as Evaluated in the SPC/NSSL Spring Program 2004 Adam French National Weather Center Research Experience for Undergraduates Valparaiso

More information

Probabilistic Winter Weather Nowcasting supporting Total Airport Management

Probabilistic Winter Weather Nowcasting supporting Total Airport Management Probabilistic Winter Weather Nowcasting supporting Total Airport Management Jaakko Nuottokari* Finnish Meteorological Institute *With Heikki Juntti, Elena Saltikoff, Harri Hohti, Seppo Pulkkinen, Alberto

More information

Numerical Weather Prediction: Data assimilation. Steven Cavallo

Numerical Weather Prediction: Data assimilation. Steven Cavallo Numerical Weather Prediction: Data assimilation Steven Cavallo Data assimilation (DA) is the process estimating the true state of a system given observations of the system and a background estimate. Observations

More information

Radar Data Quality Control and Assimilation at the National Weather Radar Testbed (NWRT)

Radar Data Quality Control and Assimilation at the National Weather Radar Testbed (NWRT) Radar Data Quality Control and Assimilation at the National Weather Radar Testbed (NWRT) Dr. Qin Xu CIMMS, University of Oklahoma, 100 E. Boyd (Rm 1110), Norman, OK 73019 phone: (405) 325-3041 fax: (405)

More information

Comparison of Convection-permitting and Convection-parameterizing Ensembles

Comparison of Convection-permitting and Convection-parameterizing Ensembles Comparison of Convection-permitting and Convection-parameterizing Ensembles Adam J. Clark NOAA/NSSL 18 August 2010 DTC Ensemble Testbed (DET) Workshop Introduction/Motivation CAMs could lead to big improvements

More information

A Hybrid ETKF 3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment

A Hybrid ETKF 3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment 5116 M O N T H L Y W E A T H E R R E V I E W VOLUME 136 A Hybrid ETKF 3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment XUGUANG WANG Cooperative Institute

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Approximating the Covariance Matrix with Low-rank Perturbations

Approximating the Covariance Matrix with Low-rank Perturbations Approximating the Covariance Matrix with Low-rank Perturbations Malik Magdon-Ismail and Jonathan T. Purnell Department of Computer Science Rensselaer Polytechnic Institute Troy, NY 12180 {magdon,purnej}@cs.rpi.edu

More information

VERIFICATION OF PROXY STORM REPORTS DERIVED FROM ENSEMBLE UPDRAFT HELICITY

VERIFICATION OF PROXY STORM REPORTS DERIVED FROM ENSEMBLE UPDRAFT HELICITY VERIFICATION OF PROXY STORM REPORTS DERIVED FROM ENSEMBLE UPDRAFT HELICITY MALLORY ROW 12,JAMES CORRIEA JR. 3, AND PATRICK MARSH 3 1 National Weather Center Research Experiences for Undergraduates Program

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework Due Oct 15, 10.30 am Rules Please follow these guidelines. Failure to do so, will result in loss of credit. 1. Homework is due on the due date

More information

APPLICATIONS OF DATA MINING TO PREDICT MESOSCALE WEATHER EVENTS (TORNADOES AND CLOUDBURSTS)

APPLICATIONS OF DATA MINING TO PREDICT MESOSCALE WEATHER EVENTS (TORNADOES AND CLOUDBURSTS) International Journal of Computer Engineering & Technology (IJCET) Volume 6, Issue 7, Jul 2015, pp. 20-26, Article ID: IJCET_06_07_003 Available online at http://www.iaeme.com/ijcet/issues.asp?jtypeijcet&vtype=6&itype=7

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

University of Oklahoma, Norman, OK INTRODUCTION

University of Oklahoma, Norman, OK INTRODUCTION Preprints, 22th Conf. on Weather Analysis and Forecasting and 18th Conf. on Numerical Weather Prediction Amer. Meteor. Soc., Park City, UT, 25-29 June 2007 3B.2 PRELIMINARY ANALYSIS ON THE REAL-TIME STORM-SCALE

More information

A technique for creating probabilistic spatio-temporal forecasts

A technique for creating probabilistic spatio-temporal forecasts 1 A technique for creating probabilistic spatio-temporal forecasts V Lakshmanan University of Oklahoma and National Severe Storms Laboratory lakshman@ou.edu Kiel Ortega Sch. of Meteorology University of

More information

Multi-Radar Multi-Sensor Vs Single Radar Severe Weather Observations

Multi-Radar Multi-Sensor Vs Single Radar Severe Weather Observations Meteorology Senior Theses 12-2016 Multi-Radar Multi-Sensor Vs Single Radar Severe Weather Observations Garrett W. Starr Iowa State University, gwstarr@iastate.edu Follow this and additional works at: http://lib.dr.iastate.edu/mteor_stheses

More information

Clustering using Mixture Models

Clustering using Mixture Models Clustering using Mixture Models The full posterior of the Gaussian Mixture Model is p(x, Z, µ,, ) =p(x Z, µ, )p(z )p( )p(µ, ) data likelihood (Gaussian) correspondence prob. (Multinomial) mixture prior

More information

TIFS DEVELOPMENTS INSPIRED BY THE B08 FDP. John Bally, A. J. Bannister, and D. Scurrah Bureau of Meteorology, Melbourne, Victoria, Australia

TIFS DEVELOPMENTS INSPIRED BY THE B08 FDP. John Bally, A. J. Bannister, and D. Scurrah Bureau of Meteorology, Melbourne, Victoria, Australia P13B.11 TIFS DEVELOPMENTS INSPIRED BY THE B08 FDP John Bally, A. J. Bannister, and D. Scurrah Bureau of Meteorology, Melbourne, Victoria, Australia 1. INTRODUCTION This paper describes the developments

More information

Some Applications of WRF/DART

Some Applications of WRF/DART Some Applications of WRF/DART Chris Snyder, National Center for Atmospheric Research Mesoscale and Microscale Meteorology Division (MMM), and Institue for Mathematics Applied to Geoscience (IMAGe) WRF/DART

More information

Weather Forecasting: Lecture 2

Weather Forecasting: Lecture 2 Weather Forecasting: Lecture 2 Dr. Jeremy A. Gibbs Department of Atmospheric Sciences University of Utah Spring 2017 1 / 40 Overview 1 Forecasting Techniques 2 Forecast Tools 2 / 40 Forecasting Techniques

More information

Model Error in the Forecast Ensemble System at Météo-France (PEARP)

Model Error in the Forecast Ensemble System at Météo-France (PEARP) 1. Model Error in the Forecast Ensemble System at Météo-France (PEARP) M. Boisserie L. Descamps P. Arbogast CNRM, Météo-France, Toulouse. 2 Introduction For a long time, it was assumed that model error

More information

AN ENSEMBLE STRATEGY FOR ROAD WEATHER APPLICATIONS

AN ENSEMBLE STRATEGY FOR ROAD WEATHER APPLICATIONS 11.8 AN ENSEMBLE STRATEGY FOR ROAD WEATHER APPLICATIONS Paul Schultz 1 NOAA Research - Forecast Systems Laboratory Boulder, Colorado 1. INTRODUCTION In 1999 the Federal Highways Administration (FHWA) initiated

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Interpretation of two error statistics estimation methods: 1 - the Derozier s method 2 the NMC method (lagged forecast)

Interpretation of two error statistics estimation methods: 1 - the Derozier s method 2 the NMC method (lagged forecast) Interpretation of two error statistics estimation methods: 1 - the Derozier s method 2 the NMC method (lagged forecast) Richard Ménard, Yan Yang and Yves Rochon Air Quality Research Division Environment

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

CAPS Storm-Scale Ensemble Forecasting (SSEF) System

CAPS Storm-Scale Ensemble Forecasting (SSEF) System CAPS Storm-Scale Ensemble Forecasting (SSEF) System Fanyou Kong, Ming Xue, Xuguang Wang, Keith Brewster Center for Analysis and Prediction of Storms University of Oklahoma (collaborated with NSSL, SPC,

More information

Problem Set 1. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 20

Problem Set 1. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 20 Problem Set MAS 6J/.6J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 0 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain a

More information

Integrating Nowcastingwith crisis management and risk prevention in a transnational framework (INCA-CE)

Integrating Nowcastingwith crisis management and risk prevention in a transnational framework (INCA-CE) Integrating Nowcastingwith crisis management and risk prevention in a transnational framework (INCA-CE) Yong Wang ZAMG, Austria This project is implemented through the CENTRAL EUROPE Programme co-financed

More information

Dimensionality Reduction by Unsupervised Regression

Dimensionality Reduction by Unsupervised Regression Dimensionality Reduction by Unsupervised Regression Miguel Á. Carreira-Perpiñán, EECS, UC Merced http://faculty.ucmerced.edu/mcarreira-perpinan Zhengdong Lu, CSEE, OGI http://www.csee.ogi.edu/~zhengdon

More information