Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Size: px
Start display at page:

Download "Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References"

Transcription

1 24th March 2011 Update

2 Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained by Bayesian inference in a cortical hierarchy. y = W 1 x 1 + e 1 x 1 = W 2 x 2 + e 2 Update

3 The corresponding graphical model is The joint likelihood of data and model parameters is p(y, W 1, W 2, x 1, x 2 ) = p(y W 1, x 1 )p(w 1 )p(x 1 x 2, W 2 )p(w 2 )p(x 2 ) Update The first and second level prediction errors are assumed isotropic Gaussian with precisions λ 1 and λ 2. The priors over W 1 and W 2 are zero mean Gaussian, having isotropic covariances with precisions α 1 and α 2.

4 All parameters W 1, W 2, x 1 and x 2 are learnt by gradient ascent of the relevant part of the the joint likelihood. For example, for x 1 we have L(x 1 ) = log[p(y W 1, x 1 )p(x 1 x 2, W 2 )] as all other terms do not depend on x 1. Maximising this function will implicitly maximise the posterior probability p(x 1 y). Update

5 The joint log-likelihood as a function of first layer activity is L(x 1 ) = λ 1 2 (y ŷ)t (y ŷ) λ 2 2 (x 1 ˆx 1 ) T (x 1 ˆx 1 ) with image predictions ŷ = W 1 x 1 and predictions of first layer activity ˆx 1 = W 2 x 2 Update L(x 1 ) comprises precision weighted prediction error terms from both levels.

6 The activity is then updated by gradient ascent which gives τ x dx 1 dt τ x dx 1 dt = dl(x 1) dx 1 = λ 1 W T 1 (y W 1x 1 ) + λ 2 (ˆx 1 x 1 ) This is the same as online Bayesian learning for linear systems (last lecture). These updates have a simple predictive coding implementation. Update

7 Architecture Mumford (1992) I put forward a hypothesis on the role of the reciprocal, topographic pathways between two cortical areas, one often a higher area dealing with more abstract information about the world, the other lower dealing with more concrete data. The higher area attempts to fit its abstractions to the data it receives from lower areas by sending back to them from its deep pyramidal cells a template reconstruction best fitting the lower level view. The lower area attempts to reconcile the Update reconstruction of its view that it receives from higher areas with what it knows, sending back from its superficial pyramidal cells the features in its data which are not predicted by the higher area.

8 Update Update e 1 = y W 1 x 1 e 2 = x 1 W 2 x 2

9 Update τ x ẋ 1 = λ 1 W T 1 e 1 +λ 2 e 2 τ x ẋ 2 = λ 2 W T 2 e 2

10 Update τ w Ẇ 1 = λ 1 e 1 x T 1 α 1W 1 τ w Ẇ 2 = λ 2 e 2 x T 2 α 2W 2

11 Each second level unit effectively sees the whole image. Increasing Receptive Field Size In Rao and Ballard (1999) a Gaussian weighting was applied to the input of each first level node, so that it only sees a localised portion of the input image. Update

12 Increasing Receptive Field Size The images y (5 shown) are modelled with j = 1..3 first level modules with overlapping receptive fields. y j = W 1j x 1j + e 1 (256 1) = (256 32)(32 1) + (256 1) Each module is a linear expansion of a basis set W, with coefficients x which are different for each image. Each module predicts activity in a pixel patch. One can think of the ith row of W 1j as the projective field of the ith neuron in the jth module. And the ith entry in x 1j as the activity or firing rate of the ith neuron in the jth module. These coefficients are then constrained by a second level model Update x 1 = W 2 x 2 + e 2 (96 1) = (96 128)(128 1) + (96 1)

13 Update e 1j = y j W 1j x 1j e 2j = x 1j W 2j x 2 (j)

14 Update τ x ẋ 1j = λ 1 W T 1j e 1j + λ 2 e 2j

15 Update τ w Ẇ 1j = λ 1 e 1j x T 1j α 1 W 1j

16 Receptive Fields Level 1 receptive fields are reminiscent of Difference-of-Gaussian (DOG) filters that have been used to model simple-cell RFs in primary visual cortex. Update Level 2 cells respond to more complex features.

17 Update The response of level-1 prediction error units diminishes for bars that go beyond the end of each level-1 receptive field. So-called end stopping.

18 Error unit activity naturally arises from difference in bottom-up activity and top down predictions. Update The network was trained on natural images for which short bars seldom occur in isolation. Short bars are generally part of longer bars.

19 End Stopping disappears if feedback in the model is disabled or if layer 6 activity is inactivated in squirrel monkey (Sandell and Schiller, 1982). Update

20 Nonlinear models Friston (2003) considers nonlinear hierarchical models of the form x 1 = g(x 2, w 1 ) + e 1 x 2 = g(x 3, w 2 ) + e 2.. =.. x R 1 = g(x R, w R 1 ) + e R 1 where y = x 1 is the observed data, g(x i+1, w i ) is some nonlinear function of hidden causes x i+1 and parameters w i, and e i is zero mean additive Gaussian noise with covariance C i and i indexes the level in the hierarchy. C i is parameterised by λ i. These equations embody structural priors. The generative model is not dynamic. The recognition model is. Update

21 There are no priors over w or λ. Update The joint probability of activities in all regions r = 1..R is therefore R p(x w, λ) = p(x i x i+1, w i, λ i ) = i=1 R N(x i ; g(x i+1, w i ), C i ) i=1

22 Joint Log Likelihood The joint log likelihood is L(x, w, λ) = R log p(x i x i+1, w i, λ i ) i=1 This can be written as (dropping constant terms) L(x, w, λ) = R i=1 ( 1 2 et i e i 1 ) 2 log C i where the prediction errors are given by Update e i = C 1/2 i [x i g i (x i+1, w i )] The hidden causes, parameters and variance components can be estimated using a gradient ascent scheme to find their MAP values.

23 In the univariate case, if the error covariances have the form C 1/2 i = 1 + λ i then the prediction errors can be written. The last term acts as a decay with time constant λ i. Hence e i = (1 + λ i ) 1 [x i g(x i+1, w i )] Rearranging gives Update e i = [x i g(x i+1, w i )] λ i e i

24 The joint log-likelihood is where Hence so dl(x i ) x i L(x) = i 1 2 et i e i +... e i = (1 + λ i ) 1 [x i g(x i+1, w i )] L(x i ) = 1 2 et i 1 e i et i e i = ( dei 1 dx i ) T ( ) T dei e i 1 e i dx i Update

25 For the hidden causes we have Update τ x ẋ i = dl dx i = ( ) T ( ) T dei 1 dei e i 1 dx e i i dx i The first term is instantiated via forward recognition effects and the second term via lateral connections. These lateral connections embody the prior at each level. Connections are reciprocal.

26 Top-down synapses For the top-down connections we have Update τ w w i = dl dw i = ( ) T dei e i dw i This reduces to Hebbian learning for linear models τ w ẇ i = (1 + λ i )e i x i+1

27 Recurrent synapses on error units For the variance components τ λ λ i = dl dλ i = < ( ) T dei e i > 1 dλ i 1 + λ i Update The self-connections whiten the errors τ λ λi = (1 + λ i ) 1 (e i e T i 1)

28 K. Friston (2003) Learning and inference in the brain. Neural Networks 16, M. Mesulam (1998) From sensation to cognition. Brain (121), D. Mumford (1992) On the computational architecture of the neocortex II The role of cortico-cortical loops. Biological Cybernetics 66, R. Rao and D. Ballard (1999) Nature Neuroscience 2, Update G. Shepherd (2004). The Synaptic Organisation of the Brain. Oxford.

Principles of DCM. Will Penny. 26th May Principles of DCM. Will Penny. Introduction. Differential Equations. Bayesian Estimation.

Principles of DCM. Will Penny. 26th May Principles of DCM. Will Penny. Introduction. Differential Equations. Bayesian Estimation. 26th May 2011 Dynamic Causal Modelling Dynamic Causal Modelling is a framework studying large scale brain connectivity by fitting differential equation models to brain imaging data. DCMs differ in their

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e January 1, 2010 Chapter 10: The cognitive brain Hierarchical maps and attentive vision A. Ventral visual pathway B. Layered cortical maps Receptive field size

More information

Convolutional networks. Sebastian Seung

Convolutional networks. Sebastian Seung Convolutional networks Sebastian Seung Convolutional network Neural network with spatial organization every neuron has a location usually on a grid Translation invariance synaptic strength depends on locations

More information

Natural Image Statistics

Natural Image Statistics Natural Image Statistics A probabilistic approach to modelling early visual processing in the cortex Dept of Computer Science Early visual processing LGN V1 retina From the eye to the primary visual cortex

More information

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 Linear Given probabilities p(a), p(b), and the joint probability p(a, B), we can write the conditional probabilities

More information

Higher Order Statistics

Higher Order Statistics Higher Order Statistics Matthias Hennig Neural Information Processing School of Informatics, University of Edinburgh February 12, 2018 1 0 Based on Mark van Rossum s and Chris Williams s old NIP slides

More information

Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces

Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces LETTER Communicated by Bartlett Mel Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces Aapo Hyvärinen Patrik Hoyer Helsinki University

More information

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico BIOLOGICALLY INSPIRED COMPUTER MODELS FOR VISUAL RECOGNITION Ângelo Cardoso 27 May, 2010 Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico Index Human Vision Retinal Ganglion Cells Simple

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Nonlinear reverse-correlation with synthesized naturalistic noise

Nonlinear reverse-correlation with synthesized naturalistic noise Cognitive Science Online, Vol1, pp1 7, 2003 http://cogsci-onlineucsdedu Nonlinear reverse-correlation with synthesized naturalistic noise Hsin-Hao Yu Department of Cognitive Science University of California

More information

How to do backpropagation in a brain. Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto

How to do backpropagation in a brain. Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto 1 How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto What is wrong with back-propagation? It requires labeled training data. (fixed) Almost

More information

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition NONLINEAR CLASSIFICATION AND REGRESSION Nonlinear Classification and Regression: Outline 2 Multi-Layer Perceptrons The Back-Propagation Learning Algorithm Generalized Linear Models Radial Basis Function

More information

Bayesian probability theory and generative models

Bayesian probability theory and generative models Bayesian probability theory and generative models Bruno A. Olshausen November 8, 2006 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using

More information

Bayesian Inference Course, WTCN, UCL, March 2013

Bayesian Inference Course, WTCN, UCL, March 2013 Bayesian Course, WTCN, UCL, March 2013 Shannon (1948) asked how much information is received when we observe a specific value of the variable x? If an unlikely event occurs then one would expect the information

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Probabilistic Models in Theoretical Neuroscience

Probabilistic Models in Theoretical Neuroscience Probabilistic Models in Theoretical Neuroscience visible unit Boltzmann machine semi-restricted Boltzmann machine restricted Boltzmann machine hidden unit Neural models of probabilistic sampling: introduction

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary discussion 1: Most excitatory and suppressive stimuli for model neurons The model allows us to determine, for each model neuron, the set of most excitatory and suppresive features. First,

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

Will Penny. 21st April The Macroscopic Brain. Will Penny. Cortical Unit. Spectral Responses. Macroscopic Models. Steady-State Responses

Will Penny. 21st April The Macroscopic Brain. Will Penny. Cortical Unit. Spectral Responses. Macroscopic Models. Steady-State Responses The The 21st April 2011 Jansen and Rit (1995), building on the work of Lopes Da Sliva and others, developed a biologically inspired model of EEG activity. It was originally developed to explain alpha activity

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

Decoding conceptual representations

Decoding conceptual representations Decoding conceptual representations!!!! Marcel van Gerven! Computational Cognitive Neuroscience Lab (www.ccnlab.net) Artificial Intelligence Department Donders Centre for Cognition Donders Institute for

More information

Basic Principles of Unsupervised and Unsupervised

Basic Principles of Unsupervised and Unsupervised Basic Principles of Unsupervised and Unsupervised Learning Toward Deep Learning Shun ichi Amari (RIKEN Brain Science Institute) collaborators: R. Karakida, M. Okada (U. Tokyo) Deep Learning Self Organization

More information

Internal Covariate Shift Batch Normalization Implementation Experiments. Batch Normalization. Devin Willmott. University of Kentucky.

Internal Covariate Shift Batch Normalization Implementation Experiments. Batch Normalization. Devin Willmott. University of Kentucky. Batch Normalization Devin Willmott University of Kentucky October 23, 2017 Overview 1 Internal Covariate Shift 2 Batch Normalization 3 Implementation 4 Experiments Covariate Shift Suppose we have two distributions,

More information

Equivalence of Backpropagation and Contrastive Hebbian Learning in a Layered Network

Equivalence of Backpropagation and Contrastive Hebbian Learning in a Layered Network LETTER Communicated by Geoffrey Hinton Equivalence of Backpropagation and Contrastive Hebbian Learning in a Layered Network Xiaohui Xie xhx@ai.mit.edu Department of Brain and Cognitive Sciences, Massachusetts

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

RegML 2018 Class 8 Deep learning

RegML 2018 Class 8 Deep learning RegML 2018 Class 8 Deep learning Lorenzo Rosasco UNIGE-MIT-IIT June 18, 2018 Supervised vs unsupervised learning? So far we have been thinking of learning schemes made in two steps f(x) = w, Φ(x) F, x

More information

THE retina in general consists of three layers: photoreceptors

THE retina in general consists of three layers: photoreceptors CS229 MACHINE LEARNING, STANFORD UNIVERSITY, DECEMBER 2016 1 Models of Neuron Coding in Retinal Ganglion Cells and Clustering by Receptive Field Kevin Fegelis, SUID: 005996192, Claire Hebert, SUID: 006122438,

More information

Convolutional neural networks

Convolutional neural networks 11-1: Convolutional neural networks Prof. J.C. Kao, UCLA Convolutional neural networks Motivation Biological inspiration Convolution operation Convolutional layer Padding and stride CNN architecture 11-2:

More information

Annealed Importance Sampling for Neural Mass Models

Annealed Importance Sampling for Neural Mass Models for Neural Mass Models, UCL. WTCN, UCL, October 2015. Generative Model Behavioural or imaging data y. Likelihood p(y w, Γ). We have a Gaussian prior over model parameters p(w µ, Λ) = N (w; µ, Λ) Assume

More information

How to make computers work like the brain

How to make computers work like the brain How to make computers work like the brain (without really solving the brain) Dileep George a single special machine can be made to do the work of all. It could in fact be made to work as a model of any

More information

Machine Learning and Data Mining. Multi-layer Perceptrons & Neural Networks: Basics. Prof. Alexander Ihler

Machine Learning and Data Mining. Multi-layer Perceptrons & Neural Networks: Basics. Prof. Alexander Ihler + Machine Learning and Data Mining Multi-layer Perceptrons & Neural Networks: Basics Prof. Alexander Ihler Linear Classifiers (Perceptrons) Linear Classifiers a linear classifier is a mapping which partitions

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

Bayesian Concept Learning

Bayesian Concept Learning Learning from positive and negative examples Bayesian Concept Learning Chen Yu Indiana University With both positive and negative examples, it is easy to define a boundary to separate these two. Just with

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Stephan Dreiseitl University of Applied Sciences Upper Austria at Hagenberg Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Knowledge

More information

Optimal In-Place Self-Organization for Cortical Development: Limited Cells, Sparse Coding and Cortical Topography

Optimal In-Place Self-Organization for Cortical Development: Limited Cells, Sparse Coding and Cortical Topography Optimal In-Place Self-Organization for Cortical Development: Limited Cells, Sparse Coding and Cortical Topography Juyang Weng and Matthew D. Luciw Department of Computer Science and Engineering Michigan

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Neural Networks. Textbook. Other Textbooks and Books. Course Info. (click on

Neural Networks. Textbook. Other Textbooks and Books. Course Info.  (click on 636-600 Neural Networks Textbook Instructor: Yoonsuck Choe Contact info: HRBB 322B, 45-5466, choe@tamu.edu Web page: http://faculty.cs.tamu.edu/choe Simon Haykin, Neural Networks: A Comprehensive Foundation,

More information

Is early vision optimised for extracting higher order dependencies? Karklin and Lewicki, NIPS 2005

Is early vision optimised for extracting higher order dependencies? Karklin and Lewicki, NIPS 2005 Is early vision optimised for extracting higher order dependencies? Karklin and Lewicki, NIPS 2005 Richard Turner (turner@gatsby.ucl.ac.uk) Gatsby Computational Neuroscience Unit, 02/03/2006 Outline Historical

More information

Lecture 4: State Estimation in Hidden Markov Models (cont.)

Lecture 4: State Estimation in Hidden Markov Models (cont.) EE378A Statistical Signal Processing Lecture 4-04/13/2017 Lecture 4: State Estimation in Hidden Markov Models (cont.) Lecturer: Tsachy Weissman Scribe: David Wugofski In this lecture we build on previous

More information

DATA MINING AND MACHINE LEARNING. Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Linear models for regression Regularized

More information

Regression. Machine Learning and Pattern Recognition. Chris Williams. School of Informatics, University of Edinburgh.

Regression. Machine Learning and Pattern Recognition. Chris Williams. School of Informatics, University of Edinburgh. Regression Machine Learning and Pattern Recognition Chris Williams School of Informatics, University of Edinburgh September 24 (All of the slides in this course have been adapted from previous versions

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

Do neural models scale up to a human brain?

Do neural models scale up to a human brain? Do neural models scale up to a human brain? Roman V. Belavkin (r.belavkin@mdx.ac.uk) School of Computing Science, Middlesex University, London NW4 4BT, UK August 27, 2007 oman Belavkin, Middlesex University,

More information

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU http://www.cns.nyu.edu/~pillow Oct 5, Course lecture: Computational Modeling of Neuronal Systems

More information

ATTRACTORS IN SONG. KARL FRISTON and STEFAN KIEBEL

ATTRACTORS IN SONG. KARL FRISTON and STEFAN KIEBEL Attractors in song: 1 New Mathematics and Natural Computation Vol. 5, No. 1 (9) 1-3 World Scientific Publishing Company ATTRACTORS IN SONG KARL FRISTON and STEFAN KIEBEL The Wellcome Trust Centre of Neuroimaging

More information

Informatics 2B: Learning and Data Lecture 10 Discriminant functions 2. Minimal misclassifications. Decision Boundaries

Informatics 2B: Learning and Data Lecture 10 Discriminant functions 2. Minimal misclassifications. Decision Boundaries Overview Gaussians estimated from training data Guido Sanguinetti Informatics B Learning and Data Lecture 1 9 March 1 Today s lecture Posterior probabilities, decision regions and minimising the probability

More information

An EM algorithm for Gaussian Markov Random Fields

An EM algorithm for Gaussian Markov Random Fields An EM algorithm for Gaussian Markov Random Fields Will Penny, Wellcome Department of Imaging Neuroscience, University College, London WC1N 3BG. wpenny@fil.ion.ucl.ac.uk October 28, 2002 Abstract Lavine

More information

Unsupervised Discovery of Nonlinear Structure Using Contrastive Backpropagation

Unsupervised Discovery of Nonlinear Structure Using Contrastive Backpropagation Cognitive Science 30 (2006) 725 731 Copyright 2006 Cognitive Science Society, Inc. All rights reserved. Unsupervised Discovery of Nonlinear Structure Using Contrastive Backpropagation Geoffrey Hinton,

More information

11. Learning graphical models

11. Learning graphical models Learning graphical models 11-1 11. Learning graphical models Maximum likelihood Parameter learning Structural learning Learning partially observed graphical models Learning graphical models 11-2 statistical

More information

An Adaptive Bayesian Network for Low-Level Image Processing

An Adaptive Bayesian Network for Low-Level Image Processing An Adaptive Bayesian Network for Low-Level Image Processing S P Luttrell Defence Research Agency, Malvern, Worcs, WR14 3PS, UK. I. INTRODUCTION Probability calculus, based on the axioms of inference, Cox

More information

Bayesian Methods for Sparse Signal Recovery

Bayesian Methods for Sparse Signal Recovery Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Motivation Motivation Sparse Signal Recovery

More information

Dynamic Modeling of Brain Activity

Dynamic Modeling of Brain Activity 0a Dynamic Modeling of Brain Activity EIN IIN PC Thomas R. Knösche, Leipzig Generative Models for M/EEG 4a Generative Models for M/EEG states x (e.g. dipole strengths) parameters parameters (source positions,

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

BACKPROPAGATION. Neural network training optimization problem. Deriving backpropagation

BACKPROPAGATION. Neural network training optimization problem. Deriving backpropagation BACKPROPAGATION Neural network training optimization problem min J(w) w The application of gradient descent to this problem is called backpropagation. Backpropagation is gradient descent applied to J(w)

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tim Sauer George Mason University Parameter estimation and UQ U. Pittsburgh Mar. 5, 2017 Partially supported by NSF Most of this work is due to: Tyrus Berry,

More information

CSC 411 Lecture 10: Neural Networks

CSC 411 Lecture 10: Neural Networks CSC 411 Lecture 10: Neural Networks Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 10-Neural Networks 1 / 35 Inspiration: The Brain Our brain has 10 11

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Gaussian Processes Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

More information

arxiv: v1 [q-bio.nc] 4 Jan 2016

arxiv: v1 [q-bio.nc] 4 Jan 2016 Nonlinear Hebbian learning as a unifying principle in receptive field formation Carlos S. N. Brito*, Wulfram Gerstner arxiv:1601.00701v1 [q-bio.nc] 4 Jan 2016 School of Computer and Communication Sciences

More information

Lateral organization & computation

Lateral organization & computation Lateral organization & computation review Population encoding & decoding lateral organization Efficient representations that reduce or exploit redundancy Fixation task 1rst order Retinotopic maps Log-polar

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC.

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC. Course on Bayesian Inference, WTCN, UCL, February 2013 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented

More information

Model of a Biological Neuron as a Temporal Neural Network

Model of a Biological Neuron as a Temporal Neural Network Model of a Biological Neuron as a Temporal Neural Network Sean D. Murphy and Edward W. Kairiss Interdepartmental Neuroscience Program, Department of Psychology, and The Center for Theoretical and Applied

More information

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton Motivation Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks Delivered by Mark Ebden With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable

More information

A Biologically-Inspired Model for Recognition of Overlapped Patterns

A Biologically-Inspired Model for Recognition of Overlapped Patterns A Biologically-Inspired Model for Recognition of Overlapped Patterns Mohammad Saifullah Department of Computer and Information Science Linkoping University, Sweden Mohammad.saifullah@liu.se Abstract. In

More information

Computational statistics

Computational statistics Computational statistics Lecture 3: Neural networks Thierry Denœux 5 March, 2016 Neural networks A class of learning methods that was developed separately in different fields statistics and artificial

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

Dropout as a Bayesian Approximation: Insights and Applications

Dropout as a Bayesian Approximation: Insights and Applications Dropout as a Bayesian Approximation: Insights and Applications Yarin Gal and Zoubin Ghahramani Discussion by: Chunyuan Li Jan. 15, 2016 1 / 16 Main idea In the framework of variational inference, the authors

More information

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera Intelligent Control Module I- Neural Networks Lecture 7 Adaptive Learning Rate Laxmidhar Behera Department of Electrical Engineering Indian Institute of Technology, Kanpur Recurrent Networks p.1/40 Subjects

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Unit University College London 27 Feb 2017 Outline Part I: Theory of ICA Definition and difference

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

Using Variable Threshold to Increase Capacity in a Feedback Neural Network

Using Variable Threshold to Increase Capacity in a Feedback Neural Network Using Variable Threshold to Increase Capacity in a Feedback Neural Network Praveen Kuruvada Abstract: The article presents new results on the use of variable thresholds to increase the capacity of a feedback

More information

Organization. I MCMC discussion. I project talks. I Lecture.

Organization. I MCMC discussion. I project talks. I Lecture. Organization I MCMC discussion I project talks. I Lecture. Content I Uncertainty Propagation Overview I Forward-Backward with an Ensemble I Model Reduction (Intro) Uncertainty Propagation in Causal Systems

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 9: A Bayesian model of concept learning Chris Lucas School of Informatics University of Edinburgh October 16, 218 Reading Rules and Similarity in Concept Learning

More information

Uncertainty, precision, prediction errors and their relevance to computational psychiatry

Uncertainty, precision, prediction errors and their relevance to computational psychiatry Uncertainty, precision, prediction errors and their relevance to computational psychiatry Christoph Mathys Wellcome Trust Centre for Neuroimaging at UCL, London, UK Max Planck UCL Centre for Computational

More information

Bayesian Computation in Recurrent Neural Circuits

Bayesian Computation in Recurrent Neural Circuits Bayesian Computation in Recurrent Neural Circuits Rajesh P. N. Rao Department of Computer Science and Engineering University of Washington Seattle, WA 98195 E-mail: rao@cs.washington.edu Appeared in: Neural

More information

A Monte Carlo Sequential Estimation for Point Process Optimum Filtering

A Monte Carlo Sequential Estimation for Point Process Optimum Filtering 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006 A Monte Carlo Sequential Estimation for Point Process Optimum Filtering

More information

Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks

Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks Jan Drchal Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science Topics covered

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

LoopSOM: A Robust SOM Variant Using Self-Organizing Temporal Feedback Connections

LoopSOM: A Robust SOM Variant Using Self-Organizing Temporal Feedback Connections LoopSOM: A Robust SOM Variant Using Self-Organizing Temporal Feedback Connections Rafael C. Pinto, Paulo M. Engel Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS) P.O. Box 15.064

More information

Variational Autoencoders

Variational Autoencoders Variational Autoencoders Recap: Story so far A classification MLP actually comprises two components A feature extraction network that converts the inputs into linearly separable features Or nearly linearly

More information

Lecture 17: Neural Networks and Deep Learning

Lecture 17: Neural Networks and Deep Learning UVA CS 6316 / CS 4501-004 Machine Learning Fall 2016 Lecture 17: Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Sargur Srihari srihari@cedar.buffalo.edu 1 Topics 1. What are probabilistic graphical models (PGMs) 2. Use of PGMs Engineering and AI 3. Directionality in

More information

arxiv:physics/ v1 [physics.bio-ph] 19 Feb 1999

arxiv:physics/ v1 [physics.bio-ph] 19 Feb 1999 Odor recognition and segmentation by coupled olfactory bulb and cortical networks arxiv:physics/9902052v1 [physics.bioph] 19 Feb 1999 Abstract Zhaoping Li a,1 John Hertz b a CBCL, MIT, Cambridge MA 02139

More information