The convergence limit of the temporal difference learning

Size: px
Start display at page:

Download "The convergence limit of the temporal difference learning"

Transcription

1 The convergence limit of the temporal difference learning Ryosuke Nomura the University of Tokyo September 3,

2 Outline Reinforcement Learning Convergence limit Construction of the feature vector Numerical experiments Conclusion References 2

3 Reinforcement Learning Reinforcement learning is one of machine learning, which deals with a problem that an agent decides an optimal policy in an environment. We consider a finite state space, and an agent gets a reward when he moves from a state to next state. Our purpose is to evaluate an expectation of a cumulative reward and to find an optimal policy which maximizes or minimizes the reward. 3

4 Setting S: finite state space state sequence (s t ) t=0,1,... : Markov chain on S s 0 : follows some probability distribution on S P M S (R): transition probability matrix has a stationary distribution d(s) reward sequence (r t ) t N : sequence of uniformly bounded random variables p(r t+1 s 0, s 1,..., s t+1 ) = p(r t+1 s t, s t+1 ) E[r t+1 s t = s] is independent of t cumulative reward: R t = γ k 1 r t+k k=1 where, γ: discount rate (0 γ 1) 4

5 Setting value function: [ ] V (s) = E [R t s t = s] = E γ k 1 r t+k s t = s Here, let k=1 R(s) = E[r t+1 s t = s], we have V = R + γp V. We solve this problem when observations are given, and R and P are unknown. 5

6 Temporal difference learning ϕ k R S, k = 1,..., K: feature vectors Φ = (ϕ 1,..., ϕ K ) R S K : feature matrix w 0 R K : initial values of parameters V t : estimator of V defined as follows K V t = w t (k)ϕ k = Φw t k=1 w t = (w t (k)) k=1,...,k is updated as the following rules: δ t = r t + γv t 1 (s t ) V t 1 (s t 1 ) w t = w t 1 + a t δ t ϕ(s t 1 ) where, ϕ(s t ) = (ϕ k (s t )) k=1,...,k. cf. 0 = R + γp V V 6

7 Notation and Assumption Notation: D M S (R): diagonal matrix whose elements are d(s) s ϕ k (s) = ϕ k (s) γ s P (s, s )ϕ k (s ) Φ = ( ϕ 1,..., ϕ K ) = (I S γp )Φ R S K Assumption: Φ T D Φ: invertible 7

8 Convergence limit Consider next rules: ) w t = w t 1 + α (Φ T DR Φ T D Φw t 1 = w t 1 + αφ T D Φ(ŵ w t 1 ) where, ŵ = (Φ T D Φ) 1 Φ T DR. Then, we have w t ŵ = ( I K αφ T D Φ) t (w0 ŵ) where, I K is a K K identity matrix. 8

9 Convergence limit Theorem. Under Assumption, w t converges to ŵ for small enough α > 0 as t. outline of proof. Lemma 1. Under Assumption, every eigenvalue of Φ T D Φ has positive real part. Lemma 2. There exists some positive number α such that the absolute value of every eigenvalue of I K αφ T D Φ is less than 1. 9

10 Motivation The limit V of an estimator V t is the form of V = Φŵ = Φ(Φ T D Φ) 1 Φ T DR, and if the true value V is expressed as linear combination of feature vectors, then the limit consists with the true value, but it is not true in general. Then, I propose the construction of the feature vector related to this limit to converge the true value. 10

11 Property of the limit Fact. The limit V satisfies the following equation: proof. V T D(I γp )(V V ) = 0 V T D(I γp )V = ŵ T Φ T D(I γp )Φ(Φ T D Φ) 1 Φ T DR = ŵ T Φ T DR = V T D(I γp )V 11

12 Construction of the feature vector Here, consider the following algorithm: 1. Let a limit V 1 0 be an initial vector. 2. Obtain D(I γp )(V V 1 ). 3. Obtain the limit V 2 for two feature vectors, V 1 and D(I γp )(V V 1 ). 4. Repeat 2 and 3. Then, the limit V t converges to the true value V as t. 12

13 Numerical experiments Consider the model as follows: R = , P = 1/2 1/ /2 0 1/ /2 0 1/ /2 1/2, γ = 0.8 and we use an initial feature vector ϕ T = (1, 0, 0, 0). 13

14 Numerical experiments Black line is a theoretical line and the value of y-axis is V t V 2. Red points are obtained by 100 simulations, and 500 observations are given in each simulation. The value of y-axis is V t ˆV 2, where ˆV = (I γ ˆP ) 1 R and ˆP is an estimator of P. 14

15 Numerical experiments 15

16 Numerical experiments Iteration Error S.D Iteration Error S.D

17 Conclusion When the true value is not expressed as linear combination of feature vectors, I constructed the feature vector based on the limit vector, and proposed the algorithm where the estimator converges to the true value. 17

18 References [1] R. S. Sutton (1988). Learning to predict by the methods of temporal differences. Machine learning, 3:9 44. [2] R. S. Sutton, A. G. Barto (1998). Reinforcement Learning: An Introduction. MIT Press. [3] T. Ueno, S. Maeda, M. Kawanabe, S. Ishii (2011). Generalized TD learning. Journal of Machine Learning Research, pages [4] H. Yu and D. P. Bertsekas (2006). Convergence results for some temporal difference methods based on least squares. Technical report, LIDS REPORT

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING REINFORCEMENT LEARNING Larry Page: Where s Google going next? DeepMind's DQN playing Breakout Contents Introduction to Reinforcement Learning Deep Q-Learning INTRODUCTION TO REINFORCEMENT LEARNING Contents

More information

CSE250A Fall 12: Discussion Week 9

CSE250A Fall 12: Discussion Week 9 CSE250A Fall 12: Discussion Week 9 Aditya Menon (akmenon@ucsd.edu) December 4, 2012 1 Schedule for today Recap of Markov Decision Processes. Examples: slot machines and maze traversal. Planning and learning.

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning Daniel Hennes 4.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Reinforcement learning Model based and

More information

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396 Machine Learning Reinforcement learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1396 1 / 32 Table of contents 1 Introduction

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Reinforcement Learning and Deep Reinforcement Learning

Reinforcement Learning and Deep Reinforcement Learning Reinforcement Learning and Deep Reinforcement Learning Ashis Kumer Biswas, Ph.D. ashis.biswas@ucdenver.edu Deep Learning November 5, 2018 1 / 64 Outlines 1 Principles of Reinforcement Learning 2 The Q

More information

Temporal Difference Learning & Policy Iteration

Temporal Difference Learning & Policy Iteration Temporal Difference Learning & Policy Iteration Advanced Topics in Reinforcement Learning Seminar WS 15/16 ±0 ±0 +1 by Tobias Joppen 03.11.2015 Fachbereich Informatik Knowledge Engineering Group Prof.

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

ilstd: Eligibility Traces and Convergence Analysis

ilstd: Eligibility Traces and Convergence Analysis ilstd: Eligibility Traces and Convergence Analysis Alborz Geramifard Michael Bowling Martin Zinkevich Richard S. Sutton Department of Computing Science University of Alberta Edmonton, Alberta {alborz,bowling,maz,sutton}@cs.ualberta.ca

More information

Least squares policy iteration (LSPI)

Least squares policy iteration (LSPI) Least squares policy iteration (LSPI) Charles Elkan elkan@cs.ucsd.edu December 6, 2012 1 Policy evaluation and policy improvement Let π be a non-deterministic but stationary policy, so p(a s; π) is the

More information

Temporal difference learning

Temporal difference learning Temporal difference learning AI & Agents for IET Lecturer: S Luz http://www.scss.tcd.ie/~luzs/t/cs7032/ February 4, 2014 Recall background & assumptions Environment is a finite MDP (i.e. A and S are finite).

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

Linear Least-squares Dyna-style Planning

Linear Least-squares Dyna-style Planning Linear Least-squares Dyna-style Planning Hengshuai Yao Department of Computing Science University of Alberta Edmonton, AB, Canada T6G2E8 hengshua@cs.ualberta.ca Abstract World model is very important for

More information

Reinforcement Learning In Continuous Time and Space

Reinforcement Learning In Continuous Time and Space Reinforcement Learning In Continuous Time and Space presentation of paper by Kenji Doya Leszek Rybicki lrybicki@mat.umk.pl 18.07.2008 Leszek Rybicki lrybicki@mat.umk.pl Reinforcement Learning In Continuous

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Temporal Difference Learning Temporal difference learning, TD prediction, Q-learning, elibigility traces. (many slides from Marc Toussaint) Vien Ngo Marc Toussaint University of

More information

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B.

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B. Advanced Topics in Machine Learning, GI13, 2010/11 Advanced Topics in Machine Learning, GI13, 2010/11 Answer any THREE questions. Each question is worth 20 marks. Use separate answer books Answer any THREE

More information

Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction Introduction Betreuer: Freek Stulp Hauptseminar Intelligente Autonome Systeme (WiSe 04/05) Forschungs- und Lehreinheit Informatik IX Technische Universität München November 24, 2004 Introduction What is

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 23: Markov Decision Processes Policy Iteration Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology December

More information

Reading Response: Due Wednesday. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Reading Response: Due Wednesday. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Reading Response: Due Wednesday R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Another Example Get to the top of the hill as quickly as possible. reward = 1 for each step where

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Internet Monetization

Internet Monetization Internet Monetization March May, 2013 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition

More information

Lecture 3: Markov Decision Processes

Lecture 3: Markov Decision Processes Lecture 3: Markov Decision Processes Joseph Modayil 1 Markov Processes 2 Markov Reward Processes 3 Markov Decision Processes 4 Extensions to MDPs Markov Processes Introduction Introduction to MDPs Markov

More information

Reinforcement Learning with Function Approximation. Joseph Christian G. Noel

Reinforcement Learning with Function Approximation. Joseph Christian G. Noel Reinforcement Learning with Function Approximation Joseph Christian G. Noel November 2011 Abstract Reinforcement learning (RL) is a key problem in the field of Artificial Intelligence. The main goal is

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

The Fixed Points of Off-Policy TD

The Fixed Points of Off-Policy TD The Fixed Points of Off-Policy TD J. Zico Kolter Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Cambridge, MA 2139 kolter@csail.mit.edu Abstract Off-policy

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

The Reinforcement Learning Problem

The Reinforcement Learning Problem The Reinforcement Learning Problem Slides based on the book Reinforcement Learning by Sutton and Barto Formalizing Reinforcement Learning Formally, the agent and environment interact at each of a sequence

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Introduction to Reinforcement Learning Part 1: Markov Decision Processes

Introduction to Reinforcement Learning Part 1: Markov Decision Processes Introduction to Reinforcement Learning Part 1: Markov Decision Processes Rowan McAllister Reinforcement Learning Reading Group 8 April 2015 Note I ve created these slides whilst following Algorithms for

More information

MDP Preliminaries. Nan Jiang. February 10, 2019

MDP Preliminaries. Nan Jiang. February 10, 2019 MDP Preliminaries Nan Jiang February 10, 2019 1 Markov Decision Processes In reinforcement learning, the interactions between the agent and the environment are often described by a Markov Decision Process

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

Approximate Dynamic Programming

Approximate Dynamic Programming Approximate Dynamic Programming A. LAZARIC (SequeL Team @INRIA-Lille) Ecole Centrale - Option DAD SequeL INRIA Lille EC-RL Course Value Iteration: the Idea 1. Let V 0 be any vector in R N A. LAZARIC Reinforcement

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

A Convergent O(n) Algorithm for Off-policy Temporal-difference Learning with Linear Function Approximation

A Convergent O(n) Algorithm for Off-policy Temporal-difference Learning with Linear Function Approximation A Convergent O(n) Algorithm for Off-policy Temporal-difference Learning with Linear Function Approximation Richard S. Sutton, Csaba Szepesvári, Hamid Reza Maei Reinforcement Learning and Artificial Intelligence

More information

Minimal Residual Approaches for Policy Evaluation in Large Sparse Markov Chains

Minimal Residual Approaches for Policy Evaluation in Large Sparse Markov Chains Minimal Residual Approaches for Policy Evaluation in Large Sparse Markov Chains Yao Hengshuai Liu Zhiqiang School of Creative Media, City University of Hong Kong at Chee Avenue, Kowloon, Hong Kong, S.A.R.,

More information

Reinforcement Learning and NLP

Reinforcement Learning and NLP 1 Reinforcement Learning and NLP Kapil Thadani kapil@cs.columbia.edu RESEARCH Outline 2 Model-free RL Markov decision processes (MDPs) Derivative-free optimization Policy gradients Variance reduction Value

More information

Q-Learning for Markov Decision Processes*

Q-Learning for Markov Decision Processes* McGill University ECSE 506: Term Project Q-Learning for Markov Decision Processes* Authors: Khoa Phan khoa.phan@mail.mcgill.ca Sandeep Manjanna sandeep.manjanna@mail.mcgill.ca (*Based on: Convergence of

More information

arxiv: v1 [cs.lg] 23 Oct 2017

arxiv: v1 [cs.lg] 23 Oct 2017 Accelerated Reinforcement Learning K. Lakshmanan Department of Computer Science and Engineering Indian Institute of Technology (BHU), Varanasi, India Email: lakshmanank.cse@itbhu.ac.in arxiv:1710.08070v1

More information

Off-Policy Actor-Critic

Off-Policy Actor-Critic Off-Policy Actor-Critic Ludovic Trottier Laval University July 25 2012 Ludovic Trottier (DAMAS Laboratory) Off-Policy Actor-Critic July 25 2012 1 / 34 Table of Contents 1 Reinforcement Learning Theory

More information

Biasing Approximate Dynamic Programming with a Lower Discount Factor

Biasing Approximate Dynamic Programming with a Lower Discount Factor Biasing Approximate Dynamic Programming with a Lower Discount Factor Marek Petrik, Bruno Scherrer To cite this version: Marek Petrik, Bruno Scherrer. Biasing Approximate Dynamic Programming with a Lower

More information

Lecture 23: Reinforcement Learning

Lecture 23: Reinforcement Learning Lecture 23: Reinforcement Learning MDPs revisited Model-based learning Monte Carlo value function estimation Temporal-difference (TD) learning Exploration November 23, 2006 1 COMP-424 Lecture 23 Recall:

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ Task Grasp the green cup. Output: Sequence of controller actions Setup from Lenz et. al.

More information

Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation

Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation Hamid R. Maei University of Alberta Edmonton, AB, Canada Csaba Szepesvári University of Alberta Edmonton, AB, Canada

More information

Least-Squares Temporal Difference Learning based on Extreme Learning Machine

Least-Squares Temporal Difference Learning based on Extreme Learning Machine Least-Squares Temporal Difference Learning based on Extreme Learning Machine Pablo Escandell-Montero, José M. Martínez-Martínez, José D. Martín-Guerrero, Emilio Soria-Olivas, Juan Gómez-Sanchis IDAL, Intelligent

More information

Emphatic Temporal-Difference Learning

Emphatic Temporal-Difference Learning Emphatic Temporal-Difference Learning A Rupam Mahmood Huizhen Yu Martha White Richard S Sutton Reinforcement Learning and Artificial Intelligence Laboratory Department of Computing Science, University

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Based on [Kaelbling et al., 1996, Bertsekas, 2000] Bert Kappen Reinforcement learning Reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error

More information

Deep Reinforcement Learning. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017

Deep Reinforcement Learning. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017 Deep Reinforcement Learning STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017 Outline Introduction to Reinforcement Learning AlphaGo (Deep RL for Computer Go)

More information

Reinforcement Learning. George Konidaris

Reinforcement Learning. George Konidaris Reinforcement Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

Artificial Intelligence & Sequential Decision Problems

Artificial Intelligence & Sequential Decision Problems Artificial Intelligence & Sequential Decision Problems (CIV6540 - Machine Learning for Civil Engineers) Professor: James-A. Goulet Département des génies civil, géologique et des mines Chapter 15 Goulet

More information

Dual Temporal Difference Learning

Dual Temporal Difference Learning Dual Temporal Difference Learning Min Yang Dept. of Computing Science University of Alberta Edmonton, Alberta Canada T6G 2E8 Yuxi Li Dept. of Computing Science University of Alberta Edmonton, Alberta Canada

More information

Convergence of Synchronous Reinforcement Learning. with linear function approximation

Convergence of Synchronous Reinforcement Learning. with linear function approximation Convergence of Synchronous Reinforcement Learning with Linear Function Approximation Artur Merke artur.merke@udo.edu Lehrstuhl Informatik, University of Dortmund, 44227 Dortmund, Germany Ralf Schoknecht

More information

On the Convergence of Optimistic Policy Iteration

On the Convergence of Optimistic Policy Iteration Journal of Machine Learning Research 3 (2002) 59 72 Submitted 10/01; Published 7/02 On the Convergence of Optimistic Policy Iteration John N. Tsitsiklis LIDS, Room 35-209 Massachusetts Institute of Technology

More information

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina Reinforcement Learning Introduction Introduction Unsupervised learning has no outcome (no feedback). Supervised learning has outcome so we know what to predict. Reinforcement learning is in between it

More information

Basis Construction from Power Series Expansions of Value Functions

Basis Construction from Power Series Expansions of Value Functions Basis Construction from Power Series Expansions of Value Functions Sridhar Mahadevan Department of Computer Science University of Massachusetts Amherst, MA 3 mahadeva@cs.umass.edu Bo Liu Department of

More information

Lecture 8: Policy Gradient

Lecture 8: Policy Gradient Lecture 8: Policy Gradient Hado van Hasselt Outline 1 Introduction 2 Finite Difference Policy Gradient 3 Monte-Carlo Policy Gradient 4 Actor-Critic Policy Gradient Introduction Vapnik s rule Never solve

More information

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan Some slides borrowed from Peter Bodik and David Silver Course progress Learning

More information

Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning

Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning Neural Networks, vol.22, no.0, pp.399 40, 2009. Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning Hirotaka Hachiya (hachiya@sg.cs.titech.ac.jp) Department

More information

An online kernel-based clustering approach for value function approximation

An online kernel-based clustering approach for value function approximation An online kernel-based clustering approach for value function approximation N. Tziortziotis and K. Blekas Department of Computer Science, University of Ioannina P.O.Box 1186, Ioannina 45110 - Greece {ntziorzi,kblekas}@cs.uoi.gr

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague Sequential decision making under uncertainty Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

Elements of Reinforcement Learning

Elements of Reinforcement Learning Elements of Reinforcement Learning Policy: way learning algorithm behaves (mapping from state to action) Reward function: Mapping of state action pair to reward or cost Value function: long term reward,

More information

Value Function Approximation in Zero-Sum Markov Games

Value Function Approximation in Zero-Sum Markov Games Value Function Approximation in Zero-Sum Markov Games Michail G. Lagoudakis and Ronald Parr Department of Computer Science Duke University Durham, NC 27708 {mgl,parr}@cs.duke.edu Abstract This paper investigates

More information

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))]

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))] Review: TD-Learning function TD-Learning(mdp) returns a policy Class #: Reinforcement Learning, II 8s S, U(s) =0 set start-state s s 0 choose action a, using -greedy policy based on U(s) U(s) U(s)+ [r

More information

In Advances in Neural Information Processing Systems 6. J. D. Cowan, G. Tesauro and. Convergence of Indirect Adaptive. Andrew G.

In Advances in Neural Information Processing Systems 6. J. D. Cowan, G. Tesauro and. Convergence of Indirect Adaptive. Andrew G. In Advances in Neural Information Processing Systems 6. J. D. Cowan, G. Tesauro and J. Alspector, (Eds.). Morgan Kaufmann Publishers, San Fancisco, CA. 1994. Convergence of Indirect Adaptive Asynchronous

More information

Analyzing Feature Generation for Value-Function Approximation

Analyzing Feature Generation for Value-Function Approximation Ronald Parr Christopher Painter-Wakefield Department of Computer Science, Duke University, Durham, NC 778 USA Lihong Li Michael Littman Department of Computer Science, Rutgers University, Piscataway, NJ

More information

Payments System Design Using Reinforcement Learning: A Progress Report

Payments System Design Using Reinforcement Learning: A Progress Report Payments System Design Using Reinforcement Learning: A Progress Report A. Desai 1 H. Du 1 R. Garratt 2 F. Rivadeneyra 1 1 Bank of Canada 2 University of California Santa Barbara 16th Payment and Settlement

More information

Reinforcement Learning

Reinforcement Learning 1 Reinforcement Learning Chris Watkins Department of Computer Science Royal Holloway, University of London July 27, 2015 2 Plan 1 Why reinforcement learning? Where does this theory come from? Markov decision

More information

Approximate Dynamic Programming

Approximate Dynamic Programming Master MVA: Reinforcement Learning Lecture: 5 Approximate Dynamic Programming Lecturer: Alessandro Lazaric http://researchers.lille.inria.fr/ lazaric/webpage/teaching.html Objectives of the lecture 1.

More information

Reinforcement Learning: the basics

Reinforcement Learning: the basics Reinforcement Learning: the basics Olivier Sigaud Université Pierre et Marie Curie, PARIS 6 http://people.isir.upmc.fr/sigaud August 6, 2012 1 / 46 Introduction Action selection/planning Learning by trial-and-error

More information

Reinforcement Learning. Machine Learning, Fall 2010

Reinforcement Learning. Machine Learning, Fall 2010 Reinforcement Learning Machine Learning, Fall 2010 1 Administrativia This week: finish RL, most likely start graphical models LA2: due on Thursday LA3: comes out on Thursday TA Office hours: Today 1:30-2:30

More information

arxiv: v1 [cs.ai] 1 Jul 2015

arxiv: v1 [cs.ai] 1 Jul 2015 arxiv:507.00353v [cs.ai] Jul 205 Harm van Seijen harm.vanseijen@ualberta.ca A. Rupam Mahmood ashique@ualberta.ca Patrick M. Pilarski patrick.pilarski@ualberta.ca Richard S. Sutton sutton@cs.ualberta.ca

More information

Trust Region Policy Optimization

Trust Region Policy Optimization Trust Region Policy Optimization Yixin Lin Duke University yixin.lin@duke.edu March 28, 2017 Yixin Lin (Duke) TRPO March 28, 2017 1 / 21 Overview 1 Preliminaries Markov Decision Processes Policy iteration

More information

Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning

Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning Abstract Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Regularized Least Squares Temporal Difference learning with nested l 2 and l 1 penalization

Regularized Least Squares Temporal Difference learning with nested l 2 and l 1 penalization Regularized Least Squares Temporal Difference learning with nested l 2 and l 1 penalization Matthew W. Hoffman 1, Alessandro Lazaric 2, Mohammad Ghavamzadeh 2, and Rémi Munos 2 1 University of British

More information

Open Theoretical Questions in Reinforcement Learning

Open Theoretical Questions in Reinforcement Learning Open Theoretical Questions in Reinforcement Learning Richard S. Sutton AT&T Labs, Florham Park, NJ 07932, USA, sutton@research.att.com, www.cs.umass.edu/~rich Reinforcement learning (RL) concerns the problem

More information

Hidden Markov Models (HMM) and Support Vector Machine (SVM)

Hidden Markov Models (HMM) and Support Vector Machine (SVM) Hidden Markov Models (HMM) and Support Vector Machine (SVM) Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Hidden Markov Models (HMM)

More information

Least-Squares λ Policy Iteration: Bias-Variance Trade-off in Control Problems

Least-Squares λ Policy Iteration: Bias-Variance Trade-off in Control Problems : Bias-Variance Trade-off in Control Problems Christophe Thiery Bruno Scherrer LORIA - INRIA Lorraine - Campus Scientifique - BP 239 5456 Vandœuvre-lès-Nancy CEDEX - FRANCE thierych@loria.fr scherrer@loria.fr

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL)

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL) 15-780: Graduate Artificial Intelligence Reinforcement learning (RL) From MDPs to RL We still use the same Markov model with rewards and actions But there are a few differences: 1. We do not assume we

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning Introduction to Reinforcement Learning Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/ munos/ INRIA Lille - Nord Europe Machine Learning Summer School, September 2011,

More information

arxiv: v1 [cs.lg] 20 Sep 2018

arxiv: v1 [cs.lg] 20 Sep 2018 Predicting Periodicity with Temporal Difference Learning Kristopher De Asis, Brendan Bennett, Richard S. Sutton Reinforcement Learning and Artificial Intelligence Laboratory, University of Alberta {kldeasis,

More information

arxiv: v1 [cs.ai] 5 Nov 2017

arxiv: v1 [cs.ai] 5 Nov 2017 arxiv:1711.01569v1 [cs.ai] 5 Nov 2017 Markus Dumke Department of Statistics Ludwig-Maximilians-Universität München markus.dumke@campus.lmu.de Abstract Temporal-difference (TD) learning is an important

More information

Basis Adaptation for Sparse Nonlinear Reinforcement Learning

Basis Adaptation for Sparse Nonlinear Reinforcement Learning Basis Adaptation for Sparse Nonlinear Reinforcement Learning Sridhar Mahadevan, Stephen Giguere, and Nicholas Jacek School of Computer Science University of Massachusetts, Amherst mahadeva@cs.umass.edu,

More information

Bias-Variance Error Bounds for Temporal Difference Updates

Bias-Variance Error Bounds for Temporal Difference Updates Bias-Variance Bounds for Temporal Difference Updates Michael Kearns AT&T Labs mkearns@research.att.com Satinder Singh AT&T Labs baveja@research.att.com Abstract We give the first rigorous upper bounds

More information

Machine Learning. Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING. Slides adapted from Tom Mitchell and Peter Abeel

Machine Learning. Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING. Slides adapted from Tom Mitchell and Peter Abeel Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING Slides adapted from Tom Mitchell and Peter Abeel Machine Learning: Jordan Boyd-Graber UMD Machine Learning

More information

Learning Control for Air Hockey Striking using Deep Reinforcement Learning

Learning Control for Air Hockey Striking using Deep Reinforcement Learning Learning Control for Air Hockey Striking using Deep Reinforcement Learning Ayal Taitler, Nahum Shimkin Faculty of Electrical Engineering Technion - Israel Institute of Technology May 8, 2017 A. Taitler,

More information

Williams-Baird Counterexample for Q-Factor Asynchronous Policy Iteration

Williams-Baird Counterexample for Q-Factor Asynchronous Policy Iteration September 010 Williams-Baird Counterexample for Q-Factor Asynchronous Policy Iteration Dimitri P. Bertsekas Abstract A counterexample due to Williams and Baird [WiB93] (Example in their paper) is transcribed

More information

Q-Learning and SARSA: Machine learningbased stochastic control approaches for financial trading

Q-Learning and SARSA: Machine learningbased stochastic control approaches for financial trading Q-Learning and SARSA: Machine learningbased stochastic control approaches for financial trading Marco CORAZZA (corazza@unive.it) Department of Economics Ca' Foscari University of Venice CONFERENCE ON COMPUTATIONAL

More information

Machine Learning I Reinforcement Learning

Machine Learning I Reinforcement Learning Machine Learning I Reinforcement Learning Thomas Rückstieß Technische Universität München December 17/18, 2009 Literature Book: Reinforcement Learning: An Introduction Sutton & Barto (free online version:

More information

Bayesian Active Learning With Basis Functions

Bayesian Active Learning With Basis Functions Bayesian Active Learning With Basis Functions Ilya O. Ryzhov Warren B. Powell Operations Research and Financial Engineering Princeton University Princeton, NJ 08544, USA IEEE ADPRL April 13, 2011 1 / 29

More information

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 2778 mgl@cs.duke.edu

More information

Regularization and Feature Selection in. the Least-Squares Temporal Difference

Regularization and Feature Selection in. the Least-Squares Temporal Difference Regularization and Feature Selection in Least-Squares Temporal Difference Learning J. Zico Kolter kolter@cs.stanford.edu Andrew Y. Ng ang@cs.stanford.edu Computer Science Department, Stanford University,

More information

Reinforcement Learning II

Reinforcement Learning II Reinforcement Learning II Andrea Bonarini Artificial Intelligence and Robotics Lab Department of Electronics and Information Politecnico di Milano E-mail: bonarini@elet.polimi.it URL:http://www.dei.polimi.it/people/bonarini

More information