Gaussian Processes for Big Data. James Hensman

Size: px
Start display at page:

Download "Gaussian Processes for Big Data. James Hensman"

Transcription

1 Gaussian Processes for Big Data James Hensman

2 Overview Motivation Sparse Gaussian Processes Stochastic Variational Inference Examples

3 Overview Motivation Sparse Gaussian Processes Stochastic Variational Inference Examples

4 Motivation Inference in a GP has the following demands: Complexity: O(n 3 ) Storage: O(n 2 ) Inference in a sparse GP has the following demands: Complexity: O(nm 2 ) Storage: O(nm) where we get to pick m!

5 Still not good enough! Big Data In parametric models, stochastic optimisation is used. This allows for application to Big Data. This work Show how to use Stochastic Variational Inference in GPs Stochastic optimisation scheme: each step requires O(m 3 )

6 Overview Motivation Sparse Gaussian Processes Stochastic Variational Inference Examples

7 Computational savings K nn Q nn = K nm K 1 mmk mn Instead of inverting K nn, we make a low rank (or Nyström) approximation, and invert K mm instead.

8 Information capture Everything we want to do with a GP involves marginalising f Predictions Marginal likelihood Estimating covariance parameters The posterior of f is the central object. This means inverting K nn.

9 X, y function values input space (X)

10 X, y f (x) GP function values input space (X)

11 X, y f (x) GP function values p(f) = N (0, K nn ) input space (X)

12 X, y f (x) GP p(f) = N (0, K nn ) function values p(f y, X) input space (X)

13 Introducing u Take and extra M points on the function, u = f (Z). p(y, f, u) = p(y f)p(f u)p(u)

14 Introducing u

15 Introducing u Take and extra M points on the function, u = f (Z). p(y, f, u) = p(y f)p(f u)p(u) p(y f) = N ( y f, σ 2 I ) p(f u) = N ( f K nm K mm ıu, K ) p(u) = N (u 0, K mm )

16 X, y f (x) GP function values p(f) = N (0, K nn ) p(f y, X) Z, u p(u) = N (0, K mm ) input space (X)

17 X, y f (x) GP p(f) = N (0, K nn ) p(f y, X) p(u) = N (0, K mm ) function values p(u y, X) input space (X)

18 The alternative posterior Instead of doing p(f y, X) = p(y f)p(f X) p(y f)p(f X)df We ll do p(u y, Z) = p(y u)p(u Z) p(y u)p(u Z)du

19 The alternative posterior Instead of doing p(f y, X) = p(y f)p(f X) p(y f)p(f X)df We ll do p(u y, Z) = p(y u)p(u Z) p(y u)p(u Z)du but p(y u) involves inverting K nn

20 Variational marginalisation of f p(y u) = p(y f)p(f u) p(f y, u)

21 Variational marginalisation of f p(y u) = p(y f)p(f u) p(f y, u) ln p(y u) = ln p(y f) + ln p(f u) p(f y, u)

22 Variational marginalisation of f p(y u) = p(y f)p(f u) p(f y, u) ln p(y u) = ln p(y f) + ln p(f u) p(f y, u) [ ] [ p(f u) ] ln p(y u) = E p(f u) ln p(y f) + Ep(f u) ln p(f y, u)

23 Variational marginalisation of f p(y u) = p(y f)p(f u) p(f y, u) ln p(y u) = ln p(y f) + ln p(f u) p(f y, u) [ ] [ p(f u) ] ln p(y u) = E p(f u) ln p(y f) + Ep(f u) ln p(f y, u) ln p(y u) = p(y u) + KL[p(f u) p(f y, u)] No inversion of K nn required

24 An approximate likelihood p(y u) = n i=1 N ( y i k mnk 1 mmu, σ 2) exp { 1 2σ 2 ( knn k mnk 1 mmk mn )} A straightforward likelihood approximation, and a penalty term

25 Now we can marginalise u p(u y, Z) = p(y u)p(u Z) p(y u)p(u Z)du Computing the (approximate) posterior costs O(nm 2 ) We also get a lower bound of the marginal likelihood This is the standard variational sparse GP [Titsias, 2009].

26 Overview Motivation Sparse Gaussian Processes Stochastic Variational Inference Examples

27 Variational Bayes Approximate the true posterior distribution with a simpler one. Usually assume factorisation in the approximation Iterative update procedure (like EM) Can be seen as a coordinate-wise steepest ascent method

28 Stochastic Variational Inference Combine the ideas of stochastic optimisation with Variational inference example: apply Latent Dirichlet allocation to project Gutenberg Can apply variational techniques to Big Data How could this work in GPs?

29 Maintain the factorisation! The variational marginalisation of f introduced factorisation across the datapoints (conditioned on u) Marginalising u re-introdcuced dependencies between the data Solution: a variational treatment of u

30 log p(y X) L 1 + log p(u) log q(u) q(u) L 3. (1) L 3 = n i=1 { log N ( y i k mnk 1 mmm, β 1) 1 2 β k i,i 1 } 2 tr (SΛ i) KL ( q(u) p(u) ) (2)

31 Optimisation The variational objective L 3 is a function of the parameters of the covariance function the parameters of q(u) the inducing inputs, Z Strategy: set Z. Take the data in small minibatches, take stochastic gradient steps in the covariance function parameters, stochastic natural gradient steps in the parameters of q(u).

32 Natural Gradients g(θ) = G(θ) 1 L 3 θ = L 3 η. θ 2(t+1) = 1 2 Sı (t+1) = 1 2 Sı (t) + l θ 1(t+1) = Sı (t+1) m (t+1) ( 1 2 Λ + 1 ) 2 Sı (t), = Sı (t) m (t) + l ( βk mm ık mn y Sı (t) m (t) ),

33 Overview Motivation Sparse Gaussian Processes Stochastic Variational Inference Examples

34

35 UK apartment prices Monthly price paid data for February to October 2012 (England and Wales) from land-registry-monthly-price-paid-data/ 75,000 entries Cross referenced against a postcode database to get lattitude and longitude Regressed the normalised logarithm of the apartment prices

36

37

38 Airline data Flight delays for every commercial flight in the USA from January to April Average delay was 30 minutes. We randomly selected 800,000 datapoints (we have limited memory!) Inverse lengthscale Month DayOfMonth DayOfWeek DepTime ArrTime AirTime Distance PlaneAge 700,000 train, 100,000 test

39 37 GPs on subsets 37 SVI GP RMSE N=800 N=1000 N= iteration

40

41 Download the code! github.com/sheffieldml/gpy Cite our paper! Hensman, Fusi and Lawrence, Gaussian Processes for Big Data Proceedings of UAI 2013

42 Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In David van Dyk and Max Welling, editors, Proceedings of the Twelfth International Workshop on Artificial Intelligence and Statistics, volume 5, pages , Clearwater Beach, FL, April JMLR W&CP 5.

Deep Gaussian Processes

Deep Gaussian Processes Deep Gaussian Processes Neil D. Lawrence 8th April 2015 Mascot Num 2015 Outline Introduction Deep Gaussian Process Models Variational Methods Composition of GPs Results Outline Introduction Deep Gaussian

More information

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Thang D. Bui Richard E. Turner tdb40@cam.ac.uk ret26@cam.ac.uk Computational and Biological Learning

More information

Deep Gaussian Processes

Deep Gaussian Processes Deep Gaussian Processes Neil D. Lawrence 30th April 2015 KTH Royal Institute of Technology Outline Introduction Deep Gaussian Process Models Variational Approximation Samples and Results Outline Introduction

More information

Tree-structured Gaussian Process Approximations

Tree-structured Gaussian Process Approximations Tree-structured Gaussian Process Approximations Thang Bui joint work with Richard Turner MLG, Cambridge July 1st, 2014 1 / 27 Outline 1 Introduction 2 Tree-structured GP approximation 3 Experiments 4 Summary

More information

arxiv: v1 [stat.ml] 7 Nov 2014

arxiv: v1 [stat.ml] 7 Nov 2014 James Hensman Alex Matthews Zoubin Ghahramani University of Sheffield University of Cambridge University of Cambridge arxiv:1411.2005v1 [stat.ml] 7 Nov 2014 Abstract Gaussian process classification is

More information

Variational Model Selection for Sparse Gaussian Process Regression

Variational Model Selection for Sparse Gaussian Process Regression Variational Model Selection for Sparse Gaussian Process Regression Michalis K. Titsias School of Computer Science University of Manchester 7 September 2008 Outline Gaussian process regression and sparse

More information

Non-Factorised Variational Inference in Dynamical Systems

Non-Factorised Variational Inference in Dynamical Systems st Symposium on Advances in Approximate Bayesian Inference, 08 6 Non-Factorised Variational Inference in Dynamical Systems Alessandro D. Ialongo University of Cambridge and Max Planck Institute for Intelligent

More information

Probabilistic Models for Learning Data Representations. Andreas Damianou

Probabilistic Models for Learning Data Representations. Andreas Damianou Probabilistic Models for Learning Data Representations Andreas Damianou Department of Computer Science, University of Sheffield, UK IBM Research, Nairobi, Kenya, 23/06/2015 Sheffield SITraN Outline Part

More information

Probabilistic & Bayesian deep learning. Andreas Damianou

Probabilistic & Bayesian deep learning. Andreas Damianou Probabilistic & Bayesian deep learning Andreas Damianou Amazon Research Cambridge, UK Talk at University of Sheffield, 19 March 2019 In this talk Not in this talk: CRFs, Boltzmann machines,... In this

More information

Doubly Stochastic Inference for Deep Gaussian Processes. Hugh Salimbeni Department of Computing Imperial College London

Doubly Stochastic Inference for Deep Gaussian Processes. Hugh Salimbeni Department of Computing Imperial College London Doubly Stochastic Inference for Deep Gaussian Processes Hugh Salimbeni Department of Computing Imperial College London 29/5/2017 Motivation DGPs promise much, but are difficult to train Doubly Stochastic

More information

Distributed Gaussian Processes

Distributed Gaussian Processes Distributed Gaussian Processes Marc Deisenroth Department of Computing Imperial College London http://wp.doc.ic.ac.uk/sml/marc-deisenroth Gaussian Process Summer School, University of Sheffield 15th September

More information

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification N. Zabaras 1 S. Atkinson 1 Center for Informatics and Computational Science Department of Aerospace and Mechanical Engineering University

More information

Deep learning with differential Gaussian process flows

Deep learning with differential Gaussian process flows Deep learning with differential Gaussian process flows Pashupati Hegde Markus Heinonen Harri Lähdesmäki Samuel Kaski Helsinki Institute for Information Technology HIIT Department of Computer Science, Aalto

More information

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation Machine Learning - MT 2016 4 & 5. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford October 19 & 24, 2016 Outline Basis function expansion to capture non-linear relationships

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

The Automatic Statistician

The Automatic Statistician The Automatic Statistician Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ James Lloyd, David Duvenaud (Cambridge) and

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SOFT CLUSTERING VS HARD CLUSTERING

More information

arxiv: v2 [stat.ml] 29 Sep 2014

arxiv: v2 [stat.ml] 29 Sep 2014 Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models a Gentle Tutorial Yarin Gal, Mark van der Wilk October 1, 014 1 Introduction arxiv:140.141v [stat.ml] 9 Sep 014 In

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E483 Kernel Methods in Machine Learning Lecture : Gaussian processes Markus Heinonen 3. November, 26 Today s topic Gaussian processes: Kernel as a covariance function C. E. Rasmussen & C. K. I. Williams,

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data

Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data Yarin Gal Yutian Chen Zoubin Ghahramani yg279@cam.ac.uk Distribution Estimation Distribution estimation of categorical

More information

Click Prediction and Preference Ranking of RSS Feeds

Click Prediction and Preference Ranking of RSS Feeds Click Prediction and Preference Ranking of RSS Feeds 1 Introduction December 11, 2009 Steven Wu RSS (Really Simple Syndication) is a family of data formats used to publish frequently updated works. RSS

More information

Variational Gaussian Process Dynamical Systems

Variational Gaussian Process Dynamical Systems Variational Gaussian Process Dynamical Systems Andreas C. Damianou Department of Computer Science University of Sheffield, UK andreas.damianou@sheffield.ac.uk Michalis K. Titsias School of Computer Science

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Variational Dependent Multi-output Gaussian Process Dynamical Systems

Variational Dependent Multi-output Gaussian Process Dynamical Systems Variational Dependent Multi-output Gaussian Process Dynamical Systems Jing Zhao and Shiliang Sun Department of Computer Science and Technology, East China Normal University 500 Dongchuan Road, Shanghai

More information

Non-Gaussian likelihoods for Gaussian Processes

Non-Gaussian likelihoods for Gaussian Processes Non-Gaussian likelihoods for Gaussian Processes Alan Saul University of Sheffield Outline Motivation Laplace approximation KL method Expectation Propagation Comparing approximations GP regression Model

More information

Contrastive Divergence

Contrastive Divergence Contrastive Divergence Training Products of Experts by Minimizing CD Hinton, 2002 Helmut Puhr Institute for Theoretical Computer Science TU Graz June 9, 2010 Contents 1 Theory 2 Argument 3 Contrastive

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Will Penny. SPM for MEG/EEG, 15th May 2012

Will Penny. SPM for MEG/EEG, 15th May 2012 SPM for MEG/EEG, 15th May 2012 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented using Bayes rule

More information

Variational Model Selection for Sparse Gaussian Process Regression

Variational Model Selection for Sparse Gaussian Process Regression Variational Model Selection for Sparse Gaussian Process Regression Michalis K. Titsias School of Computer Science, University of Manchester, UK mtitsias@cs.man.ac.uk Abstract Sparse Gaussian process methods

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Bayesian Support Vector Machines for Feature Ranking and Selection

Bayesian Support Vector Machines for Feature Ranking and Selection Bayesian Support Vector Machines for Feature Ranking and Selection written by Chu, Keerthi, Ong, Ghahramani Patrick Pletscher pat@student.ethz.ch ETH Zurich, Switzerland 12th January 2006 Overview 1 Introduction

More information

Explicit Rates of Convergence for Sparse Variational Inference in Gaussian Process Regression

Explicit Rates of Convergence for Sparse Variational Inference in Gaussian Process Regression JMLR: Workshop and Conference Proceedings : 9, 08. Symposium on Advances in Approximate Bayesian Inference Explicit Rates of Convergence for Sparse Variational Inference in Gaussian Process Regression

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

1 Bayesian Linear Regression (BLR)

1 Bayesian Linear Regression (BLR) Statistical Techniques in Robotics (STR, S15) Lecture#10 (Wednesday, February 11) Lecturer: Byron Boots Gaussian Properties, Bayesian Linear Regression 1 Bayesian Linear Regression (BLR) In linear regression,

More information

Linear Regression (9/11/13)

Linear Regression (9/11/13) STA561: Probabilistic machine learning Linear Regression (9/11/13) Lecturer: Barbara Engelhardt Scribes: Zachary Abzug, Mike Gloudemans, Zhuosheng Gu, Zhao Song 1 Why use linear regression? Figure 1: Scatter

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

How to build an automatic statistician

How to build an automatic statistician How to build an automatic statistician James Robert Lloyd 1, David Duvenaud 1, Roger Grosse 2, Joshua Tenenbaum 2, Zoubin Ghahramani 1 1: Department of Engineering, University of Cambridge, UK 2: Massachusetts

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes

Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes Journal of Machine Learning Research 17 (2016) 1-62 Submitted 9/14; Revised 7/15; Published 4/16 Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes Andreas C. Damianou

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Latent Variable Models and EM algorithm

Latent Variable Models and EM algorithm Latent Variable Models and EM algorithm SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic 3.1 Clustering and Mixture Modelling K-means and hierarchical clustering are non-probabilistic

More information

Latent Force Models. Neil D. Lawrence

Latent Force Models. Neil D. Lawrence Latent Force Models Neil D. Lawrence (work with Magnus Rattray, Mauricio Álvarez, Pei Gao, Antti Honkela, David Luengo, Guido Sanguinetti, Michalis Titsias, Jennifer Withers) University of Sheffield University

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

Will Penny. DCM short course, Paris 2012

Will Penny. DCM short course, Paris 2012 DCM short course, Paris 2012 Ten Simple Rules Stephan et al. Neuroimage, 2010 Model Structure Bayes rule for models A prior distribution over model space p(m) (or hypothesis space ) can be updated to a

More information

Counterfactuals via Deep IV. Matt Taddy (Chicago + MSR) Greg Lewis (MSR) Jason Hartford (UBC) Kevin Leyton-Brown (UBC)

Counterfactuals via Deep IV. Matt Taddy (Chicago + MSR) Greg Lewis (MSR) Jason Hartford (UBC) Kevin Leyton-Brown (UBC) Counterfactuals via Deep IV Matt Taddy (Chicago + MSR) Greg Lewis (MSR) Jason Hartford (UBC) Kevin Leyton-Brown (UBC) Endogenous Errors y = g p, x + e and E[ p e ] 0 If you estimate this using naïve ML,

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

Multiple-step Time Series Forecasting with Sparse Gaussian Processes

Multiple-step Time Series Forecasting with Sparse Gaussian Processes Multiple-step Time Series Forecasting with Sparse Gaussian Processes Perry Groot ab Peter Lucas a Paul van den Bosch b a Radboud University, Model-Based Systems Development, Heyendaalseweg 135, 6525 AJ

More information

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc.

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Harsha Veeramachaneni Thomson Reuter Research and Development April 1, 2010 Harsha Veeramachaneni (TR R&D) Logistic Regression April 1, 2010

More information

Supervised Learning Coursework

Supervised Learning Coursework Supervised Learning Coursework John Shawe-Taylor Tom Diethe Dorota Glowacka November 30, 2009; submission date: noon December 18, 2009 Abstract Using a series of synthetic examples, in this exercise session

More information

Stochastic Variational Deep Kernel Learning

Stochastic Variational Deep Kernel Learning Stochastic Variational Deep Kernel Learning Andrew Gordon Wilson* Cornell University Zhiting Hu* CMU Ruslan Salakhutdinov CMU Eric P. Xing CMU Abstract Deep kernel learning combines the non-parametric

More information

Sparse Approximations for Non-Conjugate Gaussian Process Regression

Sparse Approximations for Non-Conjugate Gaussian Process Regression Sparse Approximations for Non-Conjugate Gaussian Process Regression Thang Bui and Richard Turner Computational and Biological Learning lab Department of Engineering University of Cambridge November 11,

More information

arxiv: v1 [stat.ml] 27 May 2017

arxiv: v1 [stat.ml] 27 May 2017 Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes arxiv:175.986v1 [stat.ml] 7 May 17 Zhenwen Dai zhenwend@amazon.com Mauricio A. Álvarez mauricio.alvarez@sheffield.ac.uk

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 5

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 5 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 5 Slides adapted from Jordan Boyd-Graber, Tom Mitchell, Ziv Bar-Joseph Machine Learning: Chenhao Tan Boulder 1 of 27 Quiz question For

More information

COMP 551 Applied Machine Learning Lecture 21: Bayesian optimisation

COMP 551 Applied Machine Learning Lecture 21: Bayesian optimisation COMP 55 Applied Machine Learning Lecture 2: Bayesian optimisation Associate Instructor: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp55 Unless otherwise noted, all material posted

More information

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM Pattern Recognition and Machine Learning Chapter 9: Mixture Models and EM Thomas Mensink Jakob Verbeek October 11, 27 Le Menu 9.1 K-means clustering Getting the idea with a simple example 9.2 Mixtures

More information

Study Notes on the Latent Dirichlet Allocation

Study Notes on the Latent Dirichlet Allocation Study Notes on the Latent Dirichlet Allocation Xugang Ye 1. Model Framework A word is an element of dictionary {1,,}. A document is represented by a sequence of words: =(,, ), {1,,}. A corpus is a collection

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Graphical LASSO Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox February 26 th, 2013 Emily Fox 2013 1 Multivariate Normal Models

More information

Posterior Regularization

Posterior Regularization Posterior Regularization 1 Introduction One of the key challenges in probabilistic structured learning, is the intractability of the posterior distribution, for fast inference. There are numerous methods

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

Notes on pseudo-marginal methods, variational Bayes and ABC

Notes on pseudo-marginal methods, variational Bayes and ABC Notes on pseudo-marginal methods, variational Bayes and ABC Christian Andersson Naesseth October 3, 2016 The Pseudo-Marginal Framework Assume we are interested in sampling from the posterior distribution

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Coping with Large Covariances: Latent Factor Models, Graphical Models, Graphical LASSO Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February

More information

Optimization of Gaussian Process Hyperparameters using Rprop

Optimization of Gaussian Process Hyperparameters using Rprop Optimization of Gaussian Process Hyperparameters using Rprop Manuel Blum and Martin Riedmiller University of Freiburg - Department of Computer Science Freiburg, Germany Abstract. Gaussian processes are

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

Probabilistic Graphical Models Lecture 20: Gaussian Processes

Probabilistic Graphical Models Lecture 20: Gaussian Processes Probabilistic Graphical Models Lecture 20: Gaussian Processes Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 30, 2015 1 / 53 What is Machine Learning? Machine learning algorithms

More information

Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine

Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine Mike Tipping Gaussian prior Marginal prior: single α Independent α Cambridge, UK Lecture 3: Overview

More information

Building an Automatic Statistician

Building an Automatic Statistician Building an Automatic Statistician Zoubin Ghahramani Department of Engineering University of Cambridge zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ ALT-Discovery Science Conference, October

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

an author's https://oatao.univ-toulouse.fr/17504 http://dx.doi.org/10.5220/0005700504370445 Chiplunkar, Ankit and Rachelson, Emmanuel and Colombo, Michele and Morlier, Joseph Sparse Physics-based Gaussian

More information

Variational Inference for GPs: Presenters

Variational Inference for GPs: Presenters Variational Inference for GPs: Presenters Group1: Stochastic variational inference. Slides 2-28 Chaoqi Wang Sana Tonekaboni Will Grathwohl Group2: Variational inference for GPs. Slides 29-57 Trefor Evans

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Oliver Schulte - CMPT 726 Bishop PRML Ch. 4 Classification: Hand-written Digit Recognition CHINE INTELLIGENCE, VOL. 24, NO. 24, APRIL 2002 x i = t i = (0, 0, 0, 1, 0, 0,

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

Binary Principal Component Analysis in the Netflix Collaborative Filtering Task

Binary Principal Component Analysis in the Netflix Collaborative Filtering Task Binary Principal Component Analysis in the Netflix Collaborative Filtering Task László Kozma, Alexander Ilin, Tapani Raiko first.last@tkk.fi Helsinki University of Technology Adaptive Informatics Research

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

arxiv: v1 [stat.ml] 8 Sep 2014

arxiv: v1 [stat.ml] 8 Sep 2014 VARIATIONAL GP-LVM Variational Inference for Uncertainty on the Inputs of Gaussian Process Models arxiv:1409.2287v1 [stat.ml] 8 Sep 2014 Andreas C. Damianou Dept. of Computer Science and Sheffield Institute

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

Modelling local and global phenomena with sparse Gaussian processes

Modelling local and global phenomena with sparse Gaussian processes Modelling local and global phenomena with sparse Gaussian processes Jarno Vanhatalo Department of Biomedical Engineering and Computational Science Helsinki University of Technology 02015 TKK, Finland Abstract

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Gaussian Mixture Models

Gaussian Mixture Models Gaussian Mixture Models Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 Some slides courtesy of Eric Xing, Carlos Guestrin (One) bad case for K- means Clusters may overlap Some

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Lecture 1c: Gaussian Processes for Regression

Lecture 1c: Gaussian Processes for Regression Lecture c: Gaussian Processes for Regression Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk

More information

System identification and control with (deep) Gaussian processes. Andreas Damianou

System identification and control with (deep) Gaussian processes. Andreas Damianou System identification and control with (deep) Gaussian processes Andreas Damianou Department of Computer Science, University of Sheffield, UK MIT, 11 Feb. 2016 Outline Part 1: Introduction Part 2: Gaussian

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Linear classifiers: Overfitting and regularization

Linear classifiers: Overfitting and regularization Linear classifiers: Overfitting and regularization Emily Fox University of Washington January 25, 2017 Logistic regression recap 1 . Thus far, we focused on decision boundaries Score(x i ) = w 0 h 0 (x

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

The Gaussian process latent variable model with Cox regression

The Gaussian process latent variable model with Cox regression The Gaussian process latent variable model with Cox regression James Barrett Institute for Mathematical and Molecular Biomedicine (IMMB), King s College London James Barrett (IMMB, KCL) GP Latent Variable

More information