Orthonormal polynomials with exponentialtype

Size: px
Start display at page:

Download "Orthonormal polynomials with exponentialtype"

Transcription

1 Joural of Approxiatio Theory ) Orthooral polyoials with expoetialtype weights H.S. Jug a,, R. Sakai b a Departet of Matheatics Educatio, Sugkyukwa Uiversity, Seoul , Republic of Korea b Fukai 675, Ichiba-cho, Toyota-city, Aichi , Japa Received 28 Deceber 2006; received i revised for 11 Deceber 2007; accepted 30 Deceber 2007 Couicated by Doro S Lubisky Available olie 5 Jauary 2008 Abstract Let R=, ) ad let w ρ x) := x ρ exp Qx)), where ρ > 2 1 ad Qx) C2 : R R + =[0, ) is a eve fuctio. I this paper we cosider the properties of the orthooral polyoials with respect to the weight w 2 ρ x), obtaiig bouds o the orthooral polyoials ad spacig o their zeros. Moreover, we estiate A x) ad B x) defied i Sectio 4, which are used i represetig the derivative of the orthooral polyoials with respect to the weight w 2 ρ x) Elsevier Ic. All rights reserved. MSC: 41A10; 41A17 Keywords: Expoetial weight; Orthooral polyoials; Zeros 1. Itroductio ad preliiaries Let R =, ). Let Qx) C 2 : R R + =[0, ) be a eve fuctio ad wx) = exp Qx)) be such that 0 x w 2 x) dx for all = 0, 1, 2,...Forρ > 2 1,weset w ρ x) := x ρ wx), x R. The we ca costruct the orthooral polyoials p,ρ x) = p wρ 2 ; x) of degree with respect to wρ 2 x). That is, p,ρ x)p,ρ x)w 2 ρ x) dx = δ Kroecker s delta) Correspodig author. E-ail addresses: hsu90@skku.edu H.S. Jug), ryozi@crest.oc.e.jp R. Sakai) /$ - see frot atter 2008 Elsevier Ic. All rights reserved. doi: /j.jat

2 216 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) ad p,ρ x) = γ x +, γ = γ,ρ > 0. Moreover, we deote the zeros of p,ρ x) by x,,ρ x 1,,ρ x 2,,ρ x 1,,ρ. A fuctio f : R + R + is said to be quasi-icreasig if there exists C > 0 such that fx) Cf y) for 0 xy. For ay two sequeces {b } =1 ad {c } =1 of o-zero real ubers or fuctios), we write b c if there exists a costat C>0idepedet of or x) such that b Cc for large eough. We write b c if b c ad c b. We deote the class of polyoials of degree at ost by P. Throughout C, C 1,C 2,... deote positive costats idepedet of, x, t, ad polyoials of degree at ost. The sae sybol does ot ecessarily deote the sae costat i differet occurreces. We shall be iterested i the followig subclass of weights fro [3]. Defiitio 1.1. Let Qx) : R R + be eve cotiuous fuctio ad satisfies the followig properties: a) Q x) is cotiuous i R, with Q0) = 0. b) Q x) exists ad is positive i R\{0}. c) li Qx) =. x d) The fuctio Tx):= xq x) Qx), x = 0 is quasi-icreasig i 0, ) with Tx) Λ > 1, x R + \{0}. e) There exists C 1 > 0 such that Q x) Q x) C Q x) 1 Qx) a.e.x R\{0}. The we write wx) FC 2 ). If there also exist a copact subiterval J 0) of R, ad C 2 > 0 such that Q x) Q x) C Q x) 2 a.e.x R\J, Qx) the we write wx) FC 2 +). Here are soe typical exaples of FC 2 +). Defie for α + >1, 0, ad α 0 Q l,α, x) := x exp l x α ) α exp l 0)),

3 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) where α = 0ifα = 0, otherwise α = 1 ad exp l x) := expexp...expx))...)) deotes the lth iterated expoetial. We also defie Q α x) := 1 + x ) x α 1, α > 1. The the expoets exp Q l,α, x)) ad exp Q α x)) belog to FC 2 +). I R +, we cosider aother expoetial weights. Defiitio 1.2. Let wt) = e Rt) where R : R + R +. Let Qx) = Rt), t = x 2 ad satisfies the followig properties: a) t 1/2 R t) is cotiuous i R + with liit 0 at 0 ad R0) = 0. b) R t) exists i 0, ) while Q x) is positive 0, ). c) li Rt) =. t d) The fuctio Tt):= tr t), t 0, ) Rt) is quasi-icreasig i 0, ) with Tt) Λ > 1 2, t 0, ). e) There exists C 1 > 0 such that R t) R t) C R t) 1 Rt) a.e.t 0, ). The we write w LC 2 ). If there also exist a copact subiterval J 0) of R ad C 2 > 0 such that Q x) Q x) C Q x) 2 Qx) a.e.x R\J, the we write w LC 2 +). Siilarly for ρ > 1 2,weset w ρ t) := t ρ wt), t R +. The the orthooral polyoial of degree with respect to w 2 ρ t) is deoted by p,ρt) = p w 2 ρ ; t). More precisely, p,ρt) satisfies that ad 0 p,ρ t) p,ρ t) w 2 ρ t) dt = δ p,ρ t) = γ t +, γ = γ,ρ > 0.

4 218 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) The zeros of p,ρ t) are deoted by 0 t,,ρ t 1,,ρ t 2,,ρ t 1,,ρ. Let 0 p. The L p Christoffel fuctios λ,p w ρ ; x) with a weight w ρ x) are defied by λ,p w ρ ; x) = if P P 1 Especially if p = 2, we have λ wρ 2 ; x) := if P P 1 Pw ρ p u) du/ P p x). P w ρ ) 2 u) du/p 2 x) = 1 1 j=0 p2 j,ρ x). The correspodig Christoffel fuctios λ,p w ρ ; t) with a weight w ρ are defied siilarly. The ubers λ,j = λ x j,,ρ ) ad λ,j = λ t j,,ρ ), j = 1, 2,..., are called the Christoffel ubers. Levi ad Lubisky [3] ivestigated the weight wx) FC 2 ) ad the orthooral polyoials with respect to w 2 x). IR +, they [4,5] cosidered the weight fuctios w ρ t) = t ρ wt) where wt) = e Rt) LC 2 ), Rt) = Qx), t = x 2 ad estiate the orthooral polyoials p,ρ t) with respect to the weights w ρ t). Furtherore, they proved w FC 2 ), wx) = e Qx) w LC 2 ), wt) = e Rt), Rt) = Qx), t = x 2 i [4, Defiitio 1.1 ad Lea 2.2]. If Qx) satisfies 1 Λ 1 xq x)) Q Λ 2, x) where Λ i, i = 1, 2 are costats, the we call exp Qx)) the Freud-type weight. The the class FC 2 ) cotais the Freud-type weights. For certai geeralized Freud-type weight wx), Kasuga ad Sakai [2] ivestigated the orthooral polyoials associated with w ρ x) = x ρ wx), obtaiig bouds o the orthooral polyoials, zeros, Christoffel fuctios, ad the restricted rage iequalities. I [1], we ivestigated the ifiite fiite rage iequality, a estiate for the Christoffel fuctio ad the Markov Berstei iequality with respect to the weights w ρ x) = x ρ wx), wx) FC 2 ). I this paper we cosider the properties of the orthooral polyoials with respect to the weight w ρ x) = x ρ wx) o R, wx) FC 2 ). First, we prove the relatios betwee p,ρ x) ad p,ρ t), which are siilar to the relatio betwee Herite polyoials ad Laguerre polyoials. Fro this relatios, we ivestigate the bouds o the orthooral polyoials p,ρ x) ad spacig o their zeros. Moreover, we estiate A x) ad B x) defied i Sectio 4, which are used i represetig the derivative of the orthooral polyoials with respect to the weight wρ 2x). I the followig we itroduce useful otatios. a) Mhaskar Rahaov Saff MRS) ubers a x ad ã t are defied as the positive roots of the followig equatios: x = 2 π 1 0 a x uq a x u) 1 u 2 ) 1/2 du, x > 0, t = 1 π 1 0 ã t vr ã t v) dv, t > 0. {v1 v)} 1/2

5 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) b) Let η x = xt a x )) 2/3, x > 0, η t = t Tã t )) 2/3, t > 0. c) The fuctios φ u x) ad φ u t) are defied as the followig: a2u 2 x2 φ u x) = u[a u + x + a u η u )a u x + a u η u )] 1/2, x a u, φ u a u ), a u x, t +ã u u 2 ) 1/2 ã 2u t) φ u t) = uã u t +ã u η u ) 1/2, t ã u, φ u ã u ), ã u t, φ u 0), t 0. This paper is orgaized as follows. I Sectio 2, we state the relatios betwee p,ρ x) ad p,ρ t) ad the bouds o the orthooral polyoials ad spacig o their zeros. I Sectio 3, we prove the results of Sectio 2. I Sectio 4, we estiate A x) ad B x) defied i Sectio 4, which are used i represetig the derivative of the orthooral polyoials with respect to the weight wρ 2 x). Fially Sectio 5 is a appedix cotaiig various estiates ad well kow theores fro [1,3 5]. 2. Theores I the followig theore, we state the relatios betwee p,ρ x) ad p,ρ t). Theore 2.1. Let wx) = wt) with t = x 2. The the orthooral polyoials p,ρ x) with ρ > 1 2 o R ca be etirely reduced to the orthooral polyoials i R+ as follows: For = 0, 1, 2,..., p 2,ρ x) = p,1/2ρ 1/2) t) ad p 2+1,ρ x) = x p,1/2ρ+1/2) t). These forulas are i soe respects the aalogues of [6, 5.6.1) ad 4.1.5)]. Especially, [6, 5.6.1)] shows that Herite polyoials ca be reduced to Laguerre polyoials with the paraeter α =± 2 1. Moreover, these forulas are used alost everywhere i provig the other results of Sectio 2. For zeros, we prove: Theore 2.2. Let ρ > 2 1 ad wx) FC2 +). The a) For the iiu positive zero x [/2],,ρ, x [/2],,ρ a 1 ad for the axiu zero x 1,,ρ, 1 x 1,,ρ η a. b) For 1 ad 1 j 1, x j,,ρ x j+1,,ρ φ x j,,ρ ). 2.1)

6 220 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) If we assue that wx) FC 2 ) istead, the i a), for soe costat C>0 x [/2],,ρ a 1, a 1 Cη ) x 1,,ρ a +ρ/2, ad b) holds with replaced by. I the followig theores, we ivestigate the bouds o the orthooral polyoials p,ρ x). Theore 2.3 cf. Levi ad Lubisky [3, Theore 1.17]). Let ρ > 2 1 ad let wx) FC2 ). The uiforly for 1, sup p,ρ x)wx) x + a ) ρ x 2 a 2 x R 1/4 1. Theore 2.4 cf. Levi ad Lubisky [3, Theore 1.18]). Let ρ > 2 1 ad let wx) FC2 +). The uiforly for 1 we have the followig: sup p,ρ x)wx) x + a ) ρ 1/2 a T a )) 1/6. x R If wx) FC 2 ), this estiate holds with replaced by. Recall that the Lagrage fudaetal polyoials at the zeros of p,ρ x) are polyoials l j,,ρ x) P 1, give by l j,,ρ x) = p,ρ x) x x j,,ρ )p,ρ x j,,ρ). Theore 2.5 cf. Levi ad Lubisky [3, Theore 1.19 a) ad b)]). Let wx) FC 2 +) ad ρ > 1 2. The there exists 0 such that uiforly for 0 ad 1 j, a) b) c) p,ρ w x j,,ρ) x j,,ρ + a ) ρ φ x j,,ρ ) 1 [a 2 x2 j,,ρ ] 1/4. p 1,ρ x j,,ρ ) wx j,,ρ ) ax x R l j,,ρ x)wx) x + a x j,,ρ + a ) ρ w 1 x j,,ρ ) ) ρ a 1 [a2 x2 j,,ρ ]1/4. x j,,ρ + a ) ρ 1. d) For j 1 ad x [x j+1,,ρ,x j,,ρ ], p,ρ x) wx) x + a ) ρ i{ x x j,,ρ, x x j+1,,ρ }φ x j,,ρ ) 1 [a 2 x2 j,,ρ ] 1/4. 2.2) If we assue that wx) FC 2 ) istead, the a) holds with replaced by C ad b) holds with replaced by >.

7 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) Theore 2.6 cf. Levi ad Lubisky [3, Theore 13.6]). Let wx) FC 2 ). Assue pρ > 1/2 if 0 p ad ρ 0 if p =. The we have for 1, p,ρ x)wx) x + a ) ρ 1, p 4, a LpR) 1/p 1/2 log1 + T a )) 1/4, p = 4, T a )) p 1 ), p > 4. Let { Φ x) := ax η, 1 x } a ad x + := { x, x > 0, 0, x 0. Theore 2.7. Let wx) FC 2 +) ad 0 s t. Assue pρ > 2 1 if 0 p ad ρ 0 if p =. The we have for 2, Φt/4 1/p)+ x) p,ρ w)x) x + a ) ρ s L p R) Φt/4 1/p)+ x) p,ρ w)x) x + a ) ρ s L p a /2 x a 1 η )) a 1/p t/2 log if s = t ad 4 pt, a 1/p s/2 if st ad 4 pt or if pt 4, if p =. a s/2 3. Proofs of theores To prove our theores we use the results of [3 5]. Proof of Theore 2.1. For k = 0, 1, 2,..., 1, p,1/2ρ 1/2) x 2 )x 2k wρ 2 x) dx = 2 0 = 0 p,1/2ρ 1/2) x 2 )x 2k wρ 2 x) dx p,1/2ρ 1/2) t)t k w 1/2ρ 1/2) 2 t) dt = 0. I the above equatio, we have the first equality by the itegratio of eve fuctio, the secod equality by the substitutio t = x 2, ad the fial equality by the orthogoality for the polyoials of degree at ost 1. For k = 0, 1, 2,..., 1, we have p,1/2ρ 1/2) x 2 )x 2k+1 wρ 2 x) dx = 0 sice the itegrad is odd by the defiitios. O the other had, we have p 2,1/2ρ 1/2) x2 )wρ 2 x) dx = 2 0 = 0 p 2,1/2ρ 1/2) x2 )wρ 2 x) dx p 2,1/2ρ 1/2) t) w2 1/2ρ 1/2) t) dt = 1.

8 222 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) Siilarly, we have for k = 0, 1, 2,...,2 ad x p,1/2ρ+1/2) x 2 )x k wρ 2 x) dx = 0 x p,1/2ρ+1/2) x 2 )) 2 w 2 ρ x) dx = 1. Therefore, the result is proved. Proof of Theore 2.2. Fro Theore 2.1 we have the followig: p 2,ρ x) = p,1/2ρ 1/2) t), p 2+1,ρ x) = xp 2,ρ+1 x) = t 1/2 p,1/2ρ+1/2) t). We oly give the proof of the case of p 2,ρ x), because for the case of p 2+1,ρ x) we see that 1 2 ρ 2 1 ) ay be replaced with 2 1 ρ ). a) Sice x,2,ρ 2 = t,,1/2ρ 1/2) ad x1,2,ρ 2 = t 1,,1/2ρ 1/2), we have the results by A.1) ad a) of Theore A.3. b) By A.9), A.2), ad A.1), we have for j = 1, 2,..., 1, x 2 j,2,ρ x2 j+1,2,ρ = t j,,1/2ρ 1/2) t j+1,,1/2ρ 1/2) φ tj,,1/2ρ 1/2) ) φ2 x j,2,ρ ) Sice for j = 1, 2,..., 1bya) x j,2,ρ + a ) x j,2,ρ ) x j,2,ρ + x j+1,2,ρ ad x,2,ρ x +1,2,ρ = 2x,2,ρ a φ 2x,2,ρ ), we have for j = 1, 2,...,, ) 1/2 xj,2,ρ 2 + a2 2. x j,2,ρ x j+1,2,ρ φ 2 x j,2,ρ ). 3.1) For j = + 1,+ 2,...,2 we also obtai 3.1) by the syetry of x j,2,ρ. For the case wx) FC 2 ), the proof is the sae as the above. Proof of Theore 2.3. First we prove the result for the eve case. Let ρ > 2 1 ad γ = 2 1 ρ 2 1 ). The γ > 2 1 ad we have by A.1) p 2,ρ x) wx) x + a ) ρ x 2 a2 2 1/4 ) ρ/2 p 2,ρ x) wx) x 2 + a2 2 x 2 a2 2 1/4 2 ) γ ) 1/4 = p,γ t) wt) t + ã 2 t + ã 2 t ã 1/4.

9 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) Therefore, we have by Theore A.4 sup p 2,ρ x) wx) x + a ) ρ x 2 a2 2 x R 1/4 1. Now, we show the result for the odd case. Let γ = 2 1 ρ ). The sice p 2+1,ρ x) = xp 2,ρ+1 x) ad x + a ) 2+1 x + a ) 2, we obtai p 2+1,ρ x) wx) p 2,ρ+1 x) wx) x + a p,γ t) wt) t + ã 2 ) ρ x 2 a /4 By Theores A.4 ad A.5 ) γ+1/4 p,γ t) wt) t + ã 2 t ã 1/4 1 ad ) γ+1/4 p,γ t) wt) t + ã ã +1 ã 1/4 1, 2 x + a ) 2 ρ+1 x 2 a /4 + a2+2 2 a2 2 1/4) ) γ+1/4 t ã 1/4 + ã +1 ã 1/4). { ã t 1/4 ã +1 ã 1/4, 0 t ã /2,t ã 2, ã 1/2 Tã )) 1/6 ã 1/4 ã +1 ã 1/4, ã /2 tã 2, because ã +1 ã ã / Tã )) by A.8). O the other had, fro A.11) we have for x j,2+2,ρ+1 with ε 1 a 2 x j,2+2,ρ+1 ε 2 a 2,0ε 1 ε 2 1, p 2+1,ρ w)x j,2+2,ρ+1 ) x j,2+2,ρ+1 + a ) ρ 2+1 xj,2+2,ρ a /4 a 3/2+ρ p 2,ρ+1 w)x j,2+2,ρ+1 ) a 3/2+ρ p,γ wt j,+1,γ ) > a 3/2+ρ ã 1/2 γ 1, because ε1ã 2 t j,+1,γ ε2ã 2 by b) of Theore A.6 ad A.1). Therefore, we have sup p 2+1,ρ x) wx) x + a ) ρ 2+1 x 2 a2+1 2 x R /4 1. Proof of Theore 2.4. Let γ = 2 1 ρ 2 1 ). The A := sup p 2,ρ x) wx) x R x + a 2 2 ) ) ρ γ+1/4 sup p,γ t) wt) t + ã t R + 2.

10 224 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) Now we estiate A. By Theore A.2, Theore A.4, A.1), ad A.2), there exists soe costat L>0such that ) γ+1/4 A sup p,γ t) wt) t + ã t ã 1 L η ) 2 ax ã t) 1/4 ã η ) 1/4 ) ã 1/4 1/6 Tã ) t ã 1 L η ) a 1/2 2 2T a 2 )) 1/6. For the lower bouds, we use the Berstei iequality [5, Theore )]. The ) t 1/4 1,,γ p,γ w γ t 1,,γ ) φ t 1,,γ ) = p,γ w ) t1,,γ ) φ t 1,,γ )t γ+1/4 1,,γ sup p,γ w ) ) γ+1/4 t) t + ã t R + 2 A. O the other had, we have by A.10) ad a) of Theore A.3 t 1/4 1,,γ p,γ t 1,,γ) w γ t 1,,γ ) φ t 1,,γ ) ã t 1,,γ ) 1/4 ã η ) 1/4 ã 1/4 { Tã )} 1/6 a 1/2 {T a )} 1/6. Cosequetly, we have A a 1/2 {T a )} 1/6. The case of p 2+1,ρ x) is siilar. Lea 3.1. Let w LC 2 +) ad ρ > 2 1. The uiforly for 1 2 ) ρ ) 1/2 p,ρ 0) 3.2) ã ad for t [0,t,,ρ ], ã 2 ) ρ+1 ) 1/2 p,ρ t) t t,,ρ. 3.3) ã Proof. By Theore A.5, we kow that p,ρ 0) 2 ) ρ ) 1/2. ã ã ã O the other had, sice p,ρ t) is decreasig o [0,t,,ρ] we have by the ea value property, A.10), ad a) of Theore A.3, p,ρ 0) p,ρ 2 ) ρ ) 1/2 t,,ρ) t,,ρ. ã Therefore, 3.2) is proved. Siilarly for t [0,t,,ρ ], we have by the ea value property p,ρ t) t t,,ρ p,ρ 2 ) ρ+1 t,,ρ) t t,,ρ ã ã ã ) 1/2

11 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) ad we have by A.12), p,ρ t) t t,,ρ p,ρ 2 ) ρ+1 ) 1/2 t,,ρ) t t,,ρ. ã ã Therefore, 3.3) is also proved. Proof of Theore 2.5. a) To prove a), we use A.10). Let γ = 2 1 ρ 2 1 ). The for j = 1, 2,...,2 p 2,ρ x j,2,ρ) wx j,2,ρ ) x j,2,ρ + a ) 2 ρ 2 p 2,ρ x j,2,ρ) wx j,2,ρ ) x j,2,ρ ρ = 2 p,γ w γ t j,,γ )t 3/4 j,,γ φ t j,,γ ) 1 [t j,,γ ã t j,,γ )] 1/4 t 3/4 j,γ φ 2 x j,2,ρ ) 1 xj,2,ρ 1 [x2 j,2,ρ a2 2 x2 j,2,ρ )] 1/4 x 3/2 j,2,ρ φ 2 x j,2,ρ ) 1 [a 2 2 x2 j,2,ρ ] 1/4. Here, we used a) of Theores 2.2, 2.1, A.10), A.1) A.3), ad so o. Now, let γ = 1 2 ρ ). The sice x j,2+1,ρ = x j,2,ρ+1 for j = 1, 2,...,ad p 2+1,ρ x) = xp 2,ρ+1 x) + p 2,ρ+1x), we have for j = 1, 2,...,,+ 2,...,2 + 1 by the eve case p 2+1,ρ w)x j,2+1,ρ) x j,2+1,ρ + a ρ ) p 2,ρ+1 w)x j,2,ρ+1) x j,2,ρ+1 + a ) ρ φ 2+1 x j,2+1,ρ ) 1 a x2 j,2+1,ρ ) 1/4. For x +1,2+1,ρ = 0, we obtai by Lea 3.1 ) ρ p 2+1,ρ w)0) a2+1 p 2,ρ+10) a φ 2+1 0) 1 a2+1 2 ) 1/4. a 3/2 Therefore, a) is proved. b) By the defiitio of λ x) = λ wρ 2 ; x) we have ) ρ = p,γ 0) a ) ρ λ 1 x j,,ρ) = γ 1,ρ γ,ρ p,ρ x j,,ρ)p 1,ρ x j,,ρ ).

12 226 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) So, we have p 1,ρ x j,,ρ ) = γ,ρ γ 1,ρ λ 1 x j,,ρ)p,ρ x j,,ρ)) 1. The we have by a) ad Theore A.9 p 1,ρ w)x j,,ρ ) x j,,ρ + a ) ρ = γ,ρ λ 1 γ x j,,ρ)w 2 x j,,ρ ) x j,,ρ + a ) 2ρ 1,ρ p,ρ w)x j,,ρ) x j,,ρ + a ) ρ 1 γ,ρ 1/4 a 2 γ j) x2. 1,ρ Here γ 1,ρ /γ,ρ a see Lea 4.7 i Sectio 4, ad ote that its proof is idepedet of Theore 2.5). Therefore, b) is proved. To prove c) ad d), let 1 ρ 1 ) γ := ρ + 1 ) 2 2 if is eve if is odd ad := [ 2 ]. c) First, we easily have ax l j,,ρ w)x) x + a ) ρ w 1 x j,,ρ ) x j,,ρ + a ) ρ x R l j,,ρw)x j,,ρ ) x j,,ρ + a ) ρ w 1 x j,,ρ ) x j,,ρ + a ) ρ = 1. Therefore, it reais to obtai the upper bouds. By Theore A.8, it suffices to prove the upper bouds for x a. First, suppose 1 j. The we have by Theore 2.1 B := l j,,ρ x) wx) x + a ) ρ w 1 x j,,ρ ) x j,,ρ + a ) ρ l j,,γ t) wt) t + ã 2 ) γ w 1 t j,,γ) t j,,γ + ã 2 x + x j,,ρ ) x +a /) 1/2 x 3/2 j,,ρ if = 2, x x + x j,,ρ ) x +a /) 1/2 ) γ x 5/2 j,,ρ if = For x a if x 2 x j,,ρ or x j,,ρ a /2, the x / x j,,ρ 1. Therefore, for these cases we have B 1 by A.12). Now, suppose 2 x j,,ρ x a ad x j,,ρ a /2. The

13 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) sice x x j,,ρ x j,,ρ ad x x j,,ρ x, we also have by a) ad A.4) p,ρ x) B = x x j,,ρ )p,ρ x j,,ρ) wx) x + a ) ρ w 1 x j,,ρ ) x j,,ρ + a ) ρ p,ρ x)wx) x + a ) ρ x x j,,ρ φ x j,,ρ )a 2 x2 j,,ρ )1/4 a3/2 p,ρ x)wx) x + a ) ρ x x j,,ρ. The for x a /2, we have by Theore 2.3 ad a) of Theore 2.2 B a3/2 a 2 x2 ) 1/4 1 x j,,ρ ad for x a /2, we have by Theore 2.4 ad A.5), B a3/2 x a a 1/2 T a )) 1/6 x 1. Therefore, we also have B 1 for these case. Thus, we proved for 1 j sup l j,,ρ w)x) x + a ) ρ w 1 x j,,ρ ) x j,,ρ + a ) ρ 1. Moreover, whe = 2 + 1, we have by b), A.6), Theores 2.3 ad 2.4 l +1,2+1,ρ x) wx) x + a ) ρ w 1 x +1,2+1,ρ ) x +1,2+1,ρ + a ) ρ = p 2,ρ+1x)wx) x + a ) ρ 2+1 p 2,ρ+1w) 1 a ) ρ 0) a3/2 a 3/2, x a /2 1. a 3/2 T a )) 1/6, x a /2 If we use the syetry of the zeros, the c) ca be proved for all j1 j ). d) To prove d), we use A.13), Leas A.1 ad 3.1. Suppose 1 j 1 ad let x [x j+1,,ρ,x j,,ρ ]. The we have by A.13) p,ρ x) wx) x + a ) ρ p,γ t) w γ t)t 1/4 i{ t t j,,γ, t t j+1,,γ } φ 1 t j,,γ)ã t j,,γ ) 1/4 i{ x 2 xj,,ρ 2, x2 xj+1,,ρ 2 }φ 1 x j,,ρ) x j,,ρ 1 a 2 x2 j,,ρ ) 1/4 i{ x x j,,ρ, x x j+1,,ρ }φ 1 x j,,ρ) a 2 x2 j,,ρ ) 1/4.

14 228 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) Moreover, whe = 2 + 1, fro 3.3) we have for x [x +1,2+1,ρ,x,2+1,ρ ], p 2+1,ρ x) wx) x + a ) ρ = xp 2,ρ+1 x) wx) x + a ) ρ ) ρ/2 t 1/2 p,γ t) wt) t + ã t 1/2 t t 3,,γ a 3/2 2 i{ x, x x,2+1,ρ } a 3/2 ã 7/4 i{ x x +1,2+1,ρ, x x,2+1,ρ }. Whe = 2, sice fro 3.3) we have for x [0,x,2,ρ ], p 2,ρ x) wx) x + a ) 2 ρ p,1/2ρ 1/2) t) wt) t + ã ) 3/4 t t,,1/2ρ 1/2) a 3/2 ã x x,2+1,ρ, ) ρ/2 ã ) 1/2 we obtai i this case that for x [x +1,2,ρ,x,2,ρ ], p 2,ρ x) wx) x + a ) 2 ρ i{ x x +1,2,ρ, x x,2,ρ }. 2 a 3/2 If we use the syetric property d) ca be proved for + 1 j. Therefore, d) is proved copletely. Proof of Theore 2.6. Fro Theores A.8 ad 2.3 we have p,ρ w)x) x + a ) ρ p,ρ w)x) x + LpR) a ) ρ LpLa/ x a1 Lη)) a 1/2 1 x ) 1/4 a Lp La / x a 1 Lη )) 1, p 4, a 1/p 1/2 log1 + T a )) 1/4, p = 4, T a )) p 1 ), p > 4. Now, we estiate the lower bouds of p,ρ w)x) x + a ) ρ Lp. Sice by 2.2), 2.1), ad R) Lea A.1 xj,,ρ ) ρ p dx x j+1,,ρ xj,,ρ p,ρ w)x) x + a x j+1,,ρ i{ x x j,,ρ, x x j+1,,ρ } p dxφ x j,,ρ ) p x j,,ρ x j+1,,ρ p+1 φ x j,,ρ ) p a 2 x2 j,,ρ p/4 x j,,ρ x j+1,,ρ a j,,ρ) 2 x2, ) p/4 ) p/4 a 2 x2 j,,ρ

15 we have fro a) of Theore 2.2 p,ρ w)x) H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) x + a Therefore, we have the result. ) ρ LpR) > ) 1/p x1,,ρ a 2 x2) p/4 dx x,,ρ a 1 η ) a 1/p 1/2 a 1 η ) a 2 x2) p/4 dx ) 1/p 1, p 4, log1 + T a )) 1/4, p = 4, T a )) p 1 ), p > 4. Proof of Theore 2.7. First, assue 4 pt. Sice by Theore A.8 Φt/4 1/p) x) p,ρ w)x) x + a ) ρ s L p a 1 η ) x ) η t/4 1/p) p,ρ w)x) x + a ) ρ s L ps a 1 η ) x ) η t/4 1/p) p,ρ w)x) x + a ) ρ s L ps x a 1 η ))) Φt/4 1/p) x) p,ρ w)x) x + a ) ρ s ad fro Theore 2.3 for x a 1 η ), we have Φ t/4 1/p) Φt/4 1/p) x) p,ρ w)x) x) p,ρ w)x) x + a x + a ) ρ s a s/2 ) ρ s L p R) L p x a 1 η ))) 1 x ) t s)/4 1/p, a { a 1/p t/2 a 1/p s/2 1 u t s)/4 1/p log, s = t, Lp u 1 η ) a 1/p s/2, s t. Now, we estiate the lower bouds. Siilarly to the proof of Theore 2.6, sice by 2.2), 2.1), ad Lea A.1, xj,,ρ Φt/4 1/p) x) p,ρ w)x) x + a ) ρ s p dx x j+1,,ρ x j,,ρ x j+1,,ρ a sp/2 1 x ) t s)p/4 1 j,,ρ, a we have fro a) of Theore 2.2, Φt/4 1/p) x) p,ρ w)x) x + a ) ρ s L p a /2 x a 1 η )) a > a s/2 1 η ) 1 x ) ) t s)p/4 1 1/p { a 1/p t/2 log, s = t, dx a /2 a a 1/p s/2, s t.

16 230 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) For the case 0 pt 4, the result ca be proved siilarly. Especially, whe p =, we kow easily the result fro Theore 2.3. Cosequetly, we proved the result. 4. Further properties of p,ρ x) I the rest of this paper we let p x) = p,ρ x) siply ad we assue that ρ > 1 2. Theore 4.1. We have a represetatio: Here where p x) = A p x) x)p 1 x) B x)p x) 2ρ. 4.1) x A x) = 2b p 2 u)qx, u)w2 ρ u) du, B x) = 2b p u)p 1 u)qx, u)wρ 2 u) du, Qx, t) = Q x) Q u), b = γ { 1 ρ, is odd, ad ρ x u γ = 0, is eve. Proof. Usig the reproducig kerel K x, u) = b {p x)p 1 u) p u)p 1 x)}/x u) we have easily the results by the sae ethod as [2, Theore 1.6]. Theore 4.2 cf. Levi ad Lubisky [3, Theore 13.7]). Let wx) FC 2 ), L>0, ad γ>0. The there exist C, 0 > 0 such that for 0 ad γ a x a 1 + Lη ), A x) φ 2b x) 1 {a Lη ) 2 x 2 } 1/2, B x) A x), 4.2) ad for γ a x εa with 0 ε1sall eough, there exists 0 λε) 1 such that B x) λε)a x). 4.3) Reark 4.3. Let wx) FC 2 ).Ifρ 0orΛ 2the 4.2) ad 4.3) holds for x a 1+Lη ). For 1 Λ 2, if Q x) is bouded o a certai iterval 0,c], or if there exist 0 δ 2 ad a positive costat C such that Q x) Cx δ o a certai iterval 0,c] ad ρ δ 1 2 the 4.2) ad 4.3) holds for x a 1 + Lη ). Moreover, for 1 Λ 2, if Q x) is o-icreasig a certai iterval 0,c] ad Λ + 2ρ 1 0, the 4.2) ad 4.3) holds for x a 1 + Lη ). Proof of Theore 4.2. First we ca show 4.2) by repeatig the ethods of the proof of [3, Theore 13.7; 5, Theore 4.1]. The secod iequality i 4.2) is show by the Cauchy Schwarz iequality. Forula 4.2) is proved by dividig ito two parts, that is, the upper bouds part ad the lower bouds part. Let us defie Θ,ρ x) = A x) 2b φ x) a 2 x2 1/2.

17 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) To prove Theore 4.2 we eed soe leas. Lea 4.4. Assue that wx) FC 2 ). The a) b) c) d) 0 0 p w ρ ) 2 u)uq u) du = + ρ p w ρ ) 2 u) Q u) du = p w ρ ) 2 u)q u) du. 0 a p w) 2 u) u + a ) 2ρ uq u) du. p w) 2 u) u + a ) 2ρ Q u) du. a Proof. Sice a) ad b) are siilar results to [3, Lea 12.7], we ca prove the by repeatig the ethods of the proof of [3, Lea 12.7; 5, Theore 4.2]. Moreover, c) ad d) ca be obtaied easily, usig a), b), ad their proofs. Lea 4.5 cf. Levi ad Lubisky [3, Theore 12.11]). Let wx) FC 2 ). For γ a x Γ we have Θ,ρ x) 1, where Γ = a 1 Mη ) ad M>0 is chose such that x 1,,ρ >a 1 M/2)η ). Proof. We split Θ,ρ x) ito two parts as the followig; [ ] p ) 2 Θ,ρ x) = w ρ u)qx, u) duφ x) a 2 x2 1/2 + u γa /2 u γa /2 =: A + B. Here, if we use the ethod of [3, Chapter 12] with Lea 4.4 ad Theore 2.3, the we ca show B 1 by replacig ψ x) with p w) 2 x) x + a ) 2ρ a 2 x 2 1/2. O the other had, we kow by Theore 2.3 that A 1 u 2ρ a u +a /) 2ρ Qx, u) duφ x) a 2 x2 1/2. u γa /2 The sice for γ a x a /2 ad u γa 2 Qx, u) a 4.4) ad for a /2 x Γ ad u γa 2 Qx, u) Q a 2 )/a Ta ) a 2, we have A 1. So, the lea is proved. Now we prove 4.2).

18 232 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) Proof of the upper bouds of A x). Let γ a x a 1+Lη ). If we distiguish three rages of x; i) γ a x Γ, ii) Γ x a 1 + Lη ), ad iii) a 1 + Lη ) x Γ, the the upper bouds for A x) ca be proved easily by repeatig ethods of proofs of [3, Theore 13.7; 5, Theore 4.1] for upper bouds. Proof of the lower bouds of A x). Siilarly to the ethods of [3, Lea 13.8; 5, Theore 4.2], we ca choose the ubers θ 0, 1) ad α > 1 satisfyig that uiforly for r [0, 2], p w ρ ) 2 u)q u) du. [a θ,a 2 ]\[a r/α,a αr ] a If we use these ubers θ 0, 1) ad α > 1, the the lower bouds for A x) ca be proved easily by repeatig ethods of [3, Theore 13.7; 5, Theore 4.1] for lower bouds. I the followig, we will prove 4.3). Let γ a x εa for 0 ε 2 1 sall eough. By 4.4) we obtai u γa /2 u 2ρ u +a /) 2ρ Qx, u) a 2 u2 ) 1/2 du a 2 O a u γa /2 ) a 2. Choose 0 θ 1 satisfyig that Qx, u) u a θ aθ 2 u2 1/2 du C σ θ x) Cθ aθ 2 x2 1/2 a2θ 2 Cθ x2 a 2. Here, u 2ρ du u +a /) 2ρ σ u x) = 1 au π 2 a2 u x2 ) 1/2 Qx, s) a u au 2 s2 ) 1/2 ds, x [ a u,a u ] is the desity of the equilibriu easure of total ass for the field Q. It is show i [3, Theore 5.3] that for L>1 σ t x) ta2 t x 2 ) 1/2 alt 2 x2 ), x a t. The usig Theore 2.3, p w ρ ) 2 u)qx, u) du u a θ + Sice for x [0,a /2], Q x) C a x a ) Λ 1 O u γa /2 a γa /2 u a θ u 2ρ Qx, u) u +a /) 2ρ a 2 u2 ) u 2ρ 1/2 du Qx, u) u +a /) 2ρ a 2 u2 ) 1/2 du ) a 2 + Cθ a )

19 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) see [3, Lea )]), we have for a θ u a 2, Qx, u) Qx, u) = 2 uq x) xq u) x 2 u 2 Q εa ) +ε Q u) ε Λ 1 a a 2 + ε Q u). 4.6) a The usig Cauchy Schwartz iequality, 4.6), ad b) of Lea 4.4, we have p u)p 1 u)w 2 ρ u)qx, u) du a θ u a 2 p u)p 1 u)wρ 2 u) Qx, u) Qx, u) du ε a 0 a θ u a 2 p u)p 1 u) w 2 ρ u) Q u) du +ε Λ 1 a 2 p u)p 1 u) wρ 2 u) du 0 ε a 2 + ε Λ 1 a ) O the other had, sice Qx, u) Q u) for u a 2, usig Cauchy Schwartz iequality ad Theore A.7 we have for soe costat C>0 p u)p 1 u)w 2 ρ u)qx, u) du u a 2 Here we ote that if γ a x 1 2 a, the A x) b a 2. Oe C ). Therefore, if we take θ > 0i4.5) ad ε>0i 4.7) sall eough the by 4.5), 4.7), ad 4.8), we kow that there exists 0 λε) 1 such that B x) λε) A x). b b Sice b > 0, 4.3) follows. Therefore, Theore 4.2 is proved copletely. To prove Reark 4.3, we restate it i the followig: Reark 4.6. Let wx) FC 2 ). The 4.2) ad 4.3) holds for x a 1 + Lη ) if oe of the followig coditios is satisfied: a) ρ 0; b) Λ 2; c) 1 Λ 2, Q x) is bouded o a certai iterval 0,c]; d) 1 Λ 2, there exist 0 δ 2 ad a positive costat C such that Q x) Cx δ o a certai iterval 0,c] ad ρ δ 1 2 ; e) 1 Λ 2, Q x) is o-icreasig a certai iterval 0,c] ad Λ + 2ρ 1 0.

20 234 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) Proof. It is sufficiet to prove Lea 4.5 for x γ a. a) Sice u 2ρ u + a ) 2ρ, we have siilarly to the estiate of B i Lea 4.5 Θ,ρ x) p w) 2 u) u + a ) 2ρ Qx, u) duφ x) a 2 x2 1/2 1. For the other cases we will prove that for x γ a u γa /2 ) 2 p w ρ u)qx, u) du a 2. This suffices for provig Lea 4.5. b) For x γ a ad u γa 2 there exists a certai ξ betwee x ad u such that we have by d), e) of Defiitio 1.1 ad [3, Lea )] Qx, u) = Q ξ) C Q ξ)) 2 Tξ) Q ξ) Qξ) ξ Tξ) ξ a Λ ξ Λ 1 Tξ) a Λ ξ Λ 2 a Λ a 2. Therefore, we have ) 2 ) 2 p w ρ u)qx, u) du p u γa /2 a 2 w ρ u) du a 2. c) The we have by Theore 2.3 ) 2 p w ρ u)qx, u) du p w ρ ) 2 u) du u γa /2 1 a u γa /2 u γa /2 u 2ρ u +a /) 2ρ du 1 a 2. d) Let x,u 0. First, we obtai Qx, u) = 1 x x u u Q s) ds C x u The by Theore 2.3, ) 2 p w ρ u)qx, u) du u γa /2 x u 1 a s δ ds = C x1 δ u 1 δ x u p w ρ ) 2 u) 1 u δ du C 1 u δ. u γa /2 u 2ρ δ u γa /2 u +a /) 2ρ du 1 a ) 1 δ a = a ) 2 δ a 2 a 2.

21 e) Sice Q u) u H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) ) Q u) u = Q u) Q u)/u u Q x) Q u) x u = Q u) Q ξ) u 0 for a certai ξ 0,u),wehave = x Q ) x) Q u) 0. u x x u The we have by Theore 2.3 ad [3, Lea )] ) 2 p w ρ u)qx, u) du u γa /2 1 a u γa /2 u γa /2 1 ) 2ρ a a 2 Λ a 2 a 2. Therefore, Lea 4.5 for x γ a is proved. ) 2 Q u) p w ρ u) du u u 2ρ Q u) u +a /) 2ρ du 1 ) 2ρ u 2ρ Q u) du u a a u γa /2 u u Λ+2ρ 2 du 1 ) 2ρ ) Λ+2ρ 1 u γa /2 a a a a Λ The followig lea is useful. Lea 4.7 cf. Levi ad Lubisky [5, Lea 5.2b)]). Let wx) FC 2 +). The b a. Proof. This is siilar to the proof of [5, Lea 5.2]. By Cauchy Schwartz iequality, Theores A.8 ad 2.3 b := γ 1,ρ γ,ρ = xp x)p 1 x)w 2 ρ x) dx a. For x j = x j,,ρ = 0, we kow that by 4.1) ad the Christoffel Darboux forula b 1 = λ j {p 1 x j )} 2 A x j ). Sice we kow fro 2.1) ad A.4) that the uber of zeros of p x) lyig i [a /4,a /2] is at least >, we have by 4.2) ad Gauss-quadrature forula, b 2 λ j {p 1 x j )} 2 A x j ) b x j [a /4,a /2] a 2 λ j {p 1 x j )} 2 a 2 x j [a /4,a /2] p 1 2 x)w2 ρ x) dx a 2. Therefore, we obtai the lea. a Λ

22 236 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) Fro Lea 4.7 we obtai the followig. Corollary 4.8. Let wx) FC 2 +), L>0ad γ > 0. The there exist C, 0 > 0 such that for 0 ad γ a x a 1 + Lη ), A x) a φ x) 1 {a Lη ) 2 x 2 } 1/2. 4.8) Moreover, if either of the coditios i Reark 4.6 is satisfied, the 4.8) holds for x a 1 + Lη ). Ackowledgets This paper was supported by Faculty Research Fud, Sugkyukwa Uiversity, Authors thak the referee for ay valuable coets ad correctios. Appedix A. Lea A.1. a) For u>0, we have au 2 =ã u/2, Ta u ) = 2 Tã u/2 ) ad η u = 2 1/3 η u/2. A.1) b) Uiforly for t [0, ã ] ad u>0, we have φ 2u φ t) u t) t +ã u u 2. A.2) ) 1/2 c) Uiforly for ad x φ +M φ x), M > 0, φ x j ) φ x j+1, ), 1 j 1, A.3) ad uiforly for x εa, 0 ε1, we have φ 2 x) φ x) a. d) For soe ε>0ad for large eough u, Ta u ) Cu 2 ε. e) There exists L 0 such that for ay fixed L>L 0 ad uiforly for u>0, 1 a u 1 a Lu Ta u ) ad Ta Lu ) Ta u ). f) For t>0ad 2 s t 2s, uiforly for u>0, 1 a s 1 s 1 t Ta s ). a t A.4) A.5) A.6) A.7) A.8) Proof. a) They are [4, 2.6), 2.5), 2.9)]. b) This is [5, 2.13)]. c) This is easily proved by the defiitio of φ x). d) This is [3, 3, 3.38)]. e) This is [3, Lea ), Lea )]. f) This is [3, 3.50)].

23 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) Theore A.2 Levi ad Lubisky [4, Theore 1.5]). Let w LC 2 ). Let 0 p ad L, λ > 0. Let β > p 1 if p, ad β 0 if p =. a) There exist C, 0 > 0 such that for 0 ad P P, P w)t)t β Lp R + ) P w)t)t β Lp [Lã 2,ã 1 λ η ]). b) Give r>1, there exist C, 0 > 0 ad α > 0 such that for 0 ad p P, P w)t)t β Lp ã r, ) exp C α ) P w)t)t β Lp [0,ã ]). Theore A.3 Levi ad Lubisky [4, Theore 1.4; 5, Theore 1.4). Let ρ > 2 1 ad let wx) LC 2 +). The a) For the iiu zero t,,ρ we have t,,ρ ã 2 ad the axiu zero t 1,,ρ, we have for soe C>0 1 t 1,,ρ η ã. b) For 1 ad 1 j 1, t j,,ρ t j+1,,ρ φ t j,,ρ ). A.9) If we assue that wx) LC 2 ) istead, the i a) for soe costat C>0 t,,ρ ã 2, ã 1 C η ) t 1,,ρ ã +ρ+1/4, ad b) holds with replaced by. Theore A.4 Levi ad Lubisky [4, Theore 1.2]). Let ρ > 2 1 ad let w LC2 ). Let p,ρ t) be the th orthooral polyoial for the weight w 2 ρ. The uiforly for 1, [ sup p ) ρ,ρt) wt) t + ã t R + 2 t +ã 2) ã t) 1/4] 1. Theore A.5 Levi ad Lubisky [5, Theore 1.2]). Let ρ > 2 1 ad let w LC2 +). Let p,ρ t) be the th orthooral polyoial for the weight w 2 ρ. The uiforly for 1, ad sup p,ρ t) ) ρ ) wt) t + ã 1/2 t R + 2 ã sup p,ρ t) ) ρ wt) t + ã t ã β 2 ã 1/2 T ã )) 1/6. If w LC 2 ), these estiates hold with replaced by.

24 238 H.S. Jug, R. Sakai / Joural of Approxiatio Theory ) Theore A.6 Levi ad Lubisky [5, Theore 1.3]). Let w LC 2 +) ad ρ > 1 2. There exists 0 such that uiforly for 0, 1 j, a) p,ρ w ρ t j,,ρ ) φt j,,ρ ) 1 [t j,,ρ ã t j,,ρ )] 1/4. A.10) b) p 1,ρ w ρ t j,,ρ ) ã 1 [t j,,ρã t j,,ρ )] 1/4. A.11) ) ρ c) ax l j,ρ t) wt) t + ã t R + 2 w ρ 1 t j,,ρ) 1. A.12) d) For j 1 ad t [t j+1,,ρ,t j,,ρ ], p,ρ w ρ t) i{ t t j,,ρ, t t j+1,,ρ } φ t j,,ρ ) 1 [t j,,ρ ã t j,,ρ )] 1/4. A.13) If we assue istead that w LC 2 ), the a) holds with replaced by ad b) holds with replaced by. > Theore A.7 Jug ad Sakai [1, Theore 2.4]). Let wx) FC 2 ),0p ad L 0. Let β R. The give r > 1, there exists a positive costat C 2 such that we have for ay polyoial P P P w β )x) Lp a r x ) exp C 2 α ) P w β )x) Lp L a x a 1 Lη )). Theore A.8 Jug ad Sakai [1, Theore 2.5]). Let wx) FC 2 ),0p, β R, ad L 0. The we have for ay polyoial P P, P w)x) x + a ) β P w)x) x + a ) β. L p R) L p La / x a 1 Lη )) Theore A.9 Jug ad Sakai [1, Theore 2.7]). Let ρ > 1/p, 0 p ad let wx) FC 2 ). a) Let L>0. The uiforly for 1 ad x a 1 + Lη ), we have λ p w ρ ; x) φ x)w p x) x + a ) ρp. b) Moreover, uiforly for 1 ad x R, λ p w ρ ; x) > φ x)w p x) x + a ) ρp. Refereces [1] H.S. Jug, R. Sakai, Iequalities with expoetial weights, J. Coput. Appl. Math ) 2008) [2] T. Kasuga, R. Sakai, Orthooral polyoials for geeralized Freud-type weights, J. Approx. Theory ) [3] A.L. Levi, D.S. Lubisky, Orthogoal Polyoials for Expoetial Weights, Spriger, New York, [4] A.L. Levi, D.S. Lubisky, Orthogoal polyoials for expoetial weights x 2ρ e 2Qx) o [0,d), J. Approx. Theory ) [5] A.L. Levi, D.S. Lubisky, Orthogoal polyoials for expoetial weights x 2ρ e 2Qx) o [0,d),II, J. Approx. Theory ) [6] G. Szegő, Orthogoal Polyoials, Aerica Matheatical Society Colloquiu Publicatios, vol. 23, Aerica Matheatical Society, Providece, RI, 1975.

A New Type of q-szász-mirakjan Operators

A New Type of q-szász-mirakjan Operators Filoat 3:8 07, 567 568 https://doi.org/0.98/fil7867c Published by Faculty of Scieces ad Matheatics, Uiversity of Niš, Serbia Available at: http://www.pf.i.ac.rs/filoat A New Type of -Szász-Miraka Operators

More information

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces Lecture : Bouded Liear Operators ad Orthogoality i Hilbert Spaces 34 Bouded Liear Operator Let ( X, ), ( Y, ) i i be ored liear vector spaces ad { } X Y The, T is said to be bouded if a real uber c such

More information

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions ECE 9 Lecture 4: Estiatio of Lipschitz sooth fuctios R. Nowak 5/7/29 Cosider the followig settig. Let Y f (X) + W, where X is a rado variable (r.v.) o X [, ], W is a r.v. o Y R, idepedet of X ad satisfyig

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 3, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 3, ISSN: Available olie at http://scik.org J. Math. Coput. Sci. (1, No. 3, 9-5 ISSN: 197-537 ON SYMMETRICAL FUNCTIONS WITH BOUNDED BOUNDARY ROTATION FUAD. S. M. AL SARARI 1,, S. LATHA 1 Departet of Studies i Matheatics,

More information

Probability Theory. Exercise Sheet 4. ETH Zurich HS 2017

Probability Theory. Exercise Sheet 4. ETH Zurich HS 2017 ETH Zurich HS 2017 D-MATH, D-PHYS Prof. A.-S. Szita Coordiator Yili Wag Probability Theory Exercise Sheet 4 Exercise 4.1 Let X ) N be a sequece of i.i.d. rado variables i a probability space Ω, A, P ).

More information

Bertrand s postulate Chapter 2

Bertrand s postulate Chapter 2 Bertrad s postulate Chapter We have see that the sequece of prie ubers, 3, 5, 7,... is ifiite. To see that the size of its gaps is ot bouded, let N := 3 5 p deote the product of all prie ubers that are

More information

A PROBABILITY PROBLEM

A PROBABILITY PROBLEM A PROBABILITY PROBLEM A big superarket chai has the followig policy: For every Euros you sped per buy, you ear oe poit (suppose, e.g., that = 3; i this case, if you sped 8.45 Euros, you get two poits,

More information

f(1), and so, if f is continuous, f(x) = f(1)x.

f(1), and so, if f is continuous, f(x) = f(1)x. 2.2.35: Let f be a additive fuctio. i Clearly fx = fx ad therefore f x = fx for all Z+ ad x R. Hece, for ay, Z +, f = f, ad so, if f is cotiuous, fx = fx. ii Suppose that f is bouded o soe o-epty ope set.

More information

SZEGO S THEOREM STARTING FROM JENSEN S THEOREM

SZEGO S THEOREM STARTING FROM JENSEN S THEOREM UPB Sci Bull, Series A, Vol 7, No 3, 8 ISSN 3-77 SZEGO S THEOREM STARTING FROM JENSEN S THEOREM Cǎli Alexe MUREŞAN Mai îtâi vo itroduce Teorea lui Jese şi uele coseciţe ale sale petru deteriarea uǎrului

More information

A new sequence convergent to Euler Mascheroni constant

A new sequence convergent to Euler Mascheroni constant You ad Che Joural of Iequalities ad Applicatios 08) 08:7 https://doi.org/0.86/s3660-08-670-6 R E S E A R C H Ope Access A ew sequece coverget to Euler Mascheroi costat Xu You * ad Di-Rog Che * Correspodece:

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

On Some Properties of Tensor Product of Operators

On Some Properties of Tensor Product of Operators Global Joural of Pure ad Applied Matheatics. ISSN 0973-1768 Volue 12, Nuber 6 (2016), pp. 5139-5147 Research Idia Publicatios http://www.ripublicatio.co/gjpa.ht O Soe Properties of Tesor Product of Operators

More information

Approximation theorems for localized szász Mirakjan operators

Approximation theorems for localized szász Mirakjan operators Joural of Approximatio Theory 152 (2008) 125 134 www.elsevier.com/locate/jat Approximatio theorems for localized szász Miraja operators Lise Xie a,,1, Tigfa Xie b a Departmet of Mathematics, Lishui Uiversity,

More information

Measure and Measurable Functions

Measure and Measurable Functions 3 Measure ad Measurable Fuctios 3.1 Measure o a Arbitrary σ-algebra Recall from Chapter 2 that the set M of all Lebesgue measurable sets has the followig properties: R M, E M implies E c M, E M for N implies

More information

Some remarks on the paper Some elementary inequalities of G. Bennett

Some remarks on the paper Some elementary inequalities of G. Bennett Soe rears o the paper Soe eleetary iequalities of G. Beett Dag Ah Tua ad Luu Quag Bay Vieta Natioal Uiversity - Haoi Uiversity of Sciece Abstract We give soe couterexaples ad soe rears of soe of the corollaries

More information

Integrals of Functions of Several Variables

Integrals of Functions of Several Variables Itegrals of Fuctios of Several Variables We ofte resort to itegratios i order to deterie the exact value I of soe quatity which we are uable to evaluate by perforig a fiite uber of additio or ultiplicatio

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a Jacobi sybols efiitio Let be a odd positive iteger If 1, the Jacobi sybol : Z C is the costat fuctio 1 1 If > 1, it has a decopositio ( as ) a product of (ot ecessarily distict) pries p 1 p r The Jacobi

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT TR/46 OCTOBER 974 THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION by A. TALBOT .. Itroductio. A problem i approximatio theory o which I have recetly worked [] required for its solutio a proof that the

More information

The Hypergeometric Coupon Collection Problem and its Dual

The Hypergeometric Coupon Collection Problem and its Dual Joural of Idustrial ad Systes Egieerig Vol., o., pp -7 Sprig 7 The Hypergeoetric Coupo Collectio Proble ad its Dual Sheldo M. Ross Epstei Departet of Idustrial ad Systes Egieerig, Uiversity of Souther

More information

The Degree of Shape Preserving Weighted Polynomial Approximation

The Degree of Shape Preserving Weighted Polynomial Approximation The Degree of Shape Preservig eighted Polyomial Approximatio Day Leviata School of Mathematical Scieces, Tel Aviv Uiversity, Tel Aviv, Israel Doro S Lubisky School of Mathematics, Georgia Istitute of Techology,

More information

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION MATHEMATICA MONTISNIGRI Vol XXVIII (013) 17-5 THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION GLEB V. FEDOROV * * Mechaics ad Matheatics Faculty Moscow State Uiversity Moscow, Russia

More information

Automated Proofs for Some Stirling Number Identities

Automated Proofs for Some Stirling Number Identities Autoated Proofs for Soe Stirlig Nuber Idetities Mauel Kauers ad Carste Scheider Research Istitute for Sybolic Coputatio Johaes Kepler Uiversity Altebergerstraße 69 A4040 Liz, Austria Subitted: Sep 1, 2007;

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

JORGE LUIS AROCHA AND BERNARDO LLANO. Average atchig polyoial Cosider a siple graph G =(V E): Let M E a atchig of the graph G: If M is a atchig, the a

JORGE LUIS AROCHA AND BERNARDO LLANO. Average atchig polyoial Cosider a siple graph G =(V E): Let M E a atchig of the graph G: If M is a atchig, the a MEAN VALUE FOR THE MATCHING AND DOMINATING POLYNOMIAL JORGE LUIS AROCHA AND BERNARDO LLANO Abstract. The ea value of the atchig polyoial is coputed i the faily of all labeled graphs with vertices. We dee

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Orthogonal Functions

Orthogonal Functions Royal Holloway Uiversity of odo Departet of Physics Orthogoal Fuctios Motivatio Aalogy with vectors You are probably failiar with the cocept of orthogoality fro vectors; two vectors are orthogoal whe they

More information

Gamma Distribution and Gamma Approximation

Gamma Distribution and Gamma Approximation Gamma Distributio ad Gamma Approimatio Xiaomig Zeg a Fuhua (Frak Cheg b a Xiame Uiversity, Xiame 365, Chia mzeg@jigia.mu.edu.c b Uiversity of Ketucky, Leigto, Ketucky 456-46, USA cheg@cs.uky.edu Abstract

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS

BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS STUDIA UNIV. BABEŞ BOLYAI MATHEMATICA Volue LIV Nuber 4 Deceber 2009 BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS PETRU BLAGA TEODORA CĂTINAŞ AND GHEORGHE COMAN Abstract. The ai of the paper is to costruct

More information

Orthogonal Dirichlet Polynomials with Arctangent Density

Orthogonal Dirichlet Polynomials with Arctangent Density Orthogoal Dirichlet Polyomials with Arctaget Desity Doro S. Lubisky School of Mathematics, Georgia Istitute of Techology, Atlata, GA 3033-060 USA. Abstract Let { j } j= be a strictly icreasig sequece of

More information

x !1! + 1!2!

x !1! + 1!2! 4 Euler-Maclauri Suatio Forula 4. Beroulli Nuber & Beroulli Polyoial 4.. Defiitio of Beroulli Nuber Beroulli ubers B (,,3,) are defied as coefficiets of the followig equatio. x e x - B x! 4.. Expreesio

More information

ITERATIONS AND FIXED POINTS FOR THE BERNSTEIN MAX-PRODUCT OPERATOR

ITERATIONS AND FIXED POINTS FOR THE BERNSTEIN MAX-PRODUCT OPERATOR Fixed Poit Theory, 14(2013), No. 1, 39-52 http://www.ath.ubbcluj.ro/ odeacj/sfptcj.htl ITERATIONS AND FIXED POINTS FOR THE BERNSTEIN MAX-PRODUCT OPERATOR MIRCEA BALAJ, LUCIAN COROIANU, SORIN G. GAL AND

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

ALMOST CONVERGENCE AND SOME MATRIX TRANSFORMATIONS

ALMOST CONVERGENCE AND SOME MATRIX TRANSFORMATIONS It. J. Cotep. Math. Sci., Vol. 1, 2006, o. 1, 39-43 ALMOST CONVERGENCE AND SOME MATRIX TRANSFORMATIONS Qaaruddi ad S. A. Mohiuddie Departet of Matheatics, Aligarh Musli Uiversity Aligarh-202002, Idia sdqaar@rediffail.co,

More information

1.2 AXIOMATIC APPROACH TO PROBABILITY AND PROPERTIES OF PROBABILITY MEASURE 1.2 AXIOMATIC APPROACH TO PROBABILITY AND

1.2 AXIOMATIC APPROACH TO PROBABILITY AND PROPERTIES OF PROBABILITY MEASURE 1.2 AXIOMATIC APPROACH TO PROBABILITY AND NTEL- robability ad Distributios MODULE 1 ROBABILITY LECTURE 2 Topics 1.2 AXIOMATIC AROACH TO ROBABILITY AND ROERTIES OF ROBABILITY MEASURE 1.2.1 Iclusio-Exclusio Forula I the followig sectio we will discuss

More information

Riemann Hypothesis Proof

Riemann Hypothesis Proof Riea Hypothesis Proof H. Vic Dao 43 rd West Coast Nuber Theory Coferece, Dec 6-0, 009, Asiloar, CA. Revised 0/8/00. Riea Hypothesis Proof H. Vic Dao vic0@cocast.et March, 009 Revised Deceber, 009 Abstract

More information

FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS. Dedicated to the memory of Paul Erdős. 1. Introduction. n k. f n,a =

FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS. Dedicated to the memory of Paul Erdős. 1. Introduction. n k. f n,a = FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS NEIL J. CALKIN Abstract. We prove divisibility properties for sus of powers of bioial coefficiets ad of -bioial coefficiets. Dedicated to the eory of

More information

Stanford Statistics 311/Electrical Engineering 377

Stanford Statistics 311/Electrical Engineering 377 I. Uiversal predictio ad codig a. Gae: sequecex ofdata, adwattopredict(orcode)aswellasifwekew distributio of data b. Two versios: probabilistic ad adversarial. I either case, let p ad q be desities or

More information

LOWER BOUNDS FOR MOMENTS OF ζ (ρ) 1. Introduction

LOWER BOUNDS FOR MOMENTS OF ζ (ρ) 1. Introduction LOWER BOUNDS FOR MOMENTS OF ζ ρ MICAH B. MILINOVICH AND NATHAN NG Abstract. Assuig the Riea Hypothesis, we establish lower bouds for oets of the derivative of the Riea zeta-fuctio averaged over the otrivial

More information

Riesz-Fischer Sequences and Lower Frame Bounds

Riesz-Fischer Sequences and Lower Frame Bounds Zeitschrift für Aalysis ud ihre Aweduge Joural for Aalysis ad its Applicatios Volume 1 (00), No., 305 314 Riesz-Fischer Sequeces ad Lower Frame Bouds P. Casazza, O. Christese, S. Li ad A. Lider Abstract.

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

SOME FINITE SIMPLE GROUPS OF LIE TYPE C n ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER

SOME FINITE SIMPLE GROUPS OF LIE TYPE C n ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER Joural of Algebra, Nuber Theory: Advaces ad Applicatios Volue, Nuber, 010, Pages 57-69 SOME FINITE SIMPLE GROUPS OF LIE TYPE C ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER School

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Journal of Mathematical Analysis and Applications 250, doi: jmaa , available online at http:

Journal of Mathematical Analysis and Applications 250, doi: jmaa , available online at http: Joural of Mathematical Aalysis ad Applicatios 5, 886 doi:6jmaa766, available olie at http:wwwidealibrarycom o Fuctioal Equalities ad Some Mea Values Shoshaa Abramovich Departmet of Mathematics, Uiersity

More information

Generalized Fixed Point Theorem. in Three Metric Spaces

Generalized Fixed Point Theorem. in Three Metric Spaces It. Joural of Math. Aalysis, Vol. 4, 00, o. 40, 995-004 Geeralized Fixed Poit Thee i Three Metric Spaces Kristaq Kikia ad Luljeta Kikia Departet of Matheatics ad Coputer Scieces Faculty of Natural Scieces,

More information

Al Lehnen Madison Area Technical College 10/5/2014

Al Lehnen Madison Area Technical College 10/5/2014 The Correlatio of Two Rado Variables Page Preliiary: The Cauchy-Schwarz-Buyakovsky Iequality For ay two sequeces of real ubers { a } ad = { b } =, the followig iequality is always true. Furtherore, equality

More information

16 Riemann Sums and Integrals

16 Riemann Sums and Integrals 16 Riema Sums ad Itegrals Defiitio: A partitio P of a closed iterval [a, b], (b >a)isasetof 1 distict poits x i (a, b) togetherwitha = x 0 ad b = x, together with the covetio that i>j x i >x j. Defiitio:

More information

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version]

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version] Math 4707 Sprig 08 Darij Griberg: idter page Math 4707 Sprig 08 Darij Griberg: idter with solutios [preliiary versio] Cotets 0.. Coutig first-eve tuples......................... 3 0.. Coutig legal paths

More information

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions J. Math. Aal. Appl. 297 2004 186 193 www.elsevier.com/locate/jmaa Some families of geeratig fuctios for the multiple orthogoal polyomials associated with modified Bessel K-fuctios M.A. Özarsla, A. Altı

More information

1 Lecture 2: Sequence, Series and power series (8/14/2012)

1 Lecture 2: Sequence, Series and power series (8/14/2012) Summer Jump-Start Program for Aalysis, 202 Sog-Yig Li Lecture 2: Sequece, Series ad power series (8/4/202). More o sequeces Example.. Let {x } ad {y } be two bouded sequeces. Show lim sup (x + y ) lim

More information

arxiv: v1 [math.st] 12 Dec 2018

arxiv: v1 [math.st] 12 Dec 2018 DIVERGENCE MEASURES ESTIMATION AND ITS ASYMPTOTIC NORMALITY THEORY : DISCRETE CASE arxiv:181.04795v1 [ath.st] 1 Dec 018 Abstract. 1) BA AMADOU DIADIÉ AND 1,,4) LO GANE SAMB 1. Itroductio 1.1. Motivatios.

More information

ON POINTWISE BINOMIAL APPROXIMATION

ON POINTWISE BINOMIAL APPROXIMATION Iteratioal Joural of Pure ad Applied Mathematics Volume 71 No. 1 2011, 57-66 ON POINTWISE BINOMIAL APPROXIMATION BY w-functions K. Teerapabolar 1, P. Wogkasem 2 Departmet of Mathematics Faculty of Sciece

More information

1 Introduction. 1.1 Notation and Terminology

1 Introduction. 1.1 Notation and Terminology 1 Itroductio You have already leared some cocepts of calculus such as limit of a sequece, limit, cotiuity, derivative, ad itegral of a fuctio etc. Real Aalysis studies them more rigorously usig a laguage

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

A GENERALIZED BERNSTEIN APPROXIMATION THEOREM

A GENERALIZED BERNSTEIN APPROXIMATION THEOREM Ø Ñ Å Ø Ñ Ø Ð ÈÙ Ð Ø ÓÒ DOI: 10.2478/v10127-011-0029-x Tatra Mt. Math. Publ. 49 2011, 99 109 A GENERALIZED BERNSTEIN APPROXIMATION THEOREM Miloslav Duchoň ABSTRACT. The preset paper is cocered with soe

More information

Binomial transform of products

Binomial transform of products Jauary 02 207 Bioial trasfor of products Khristo N Boyadzhiev Departet of Matheatics ad Statistics Ohio Norther Uiversity Ada OH 4580 USA -boyadzhiev@ouedu Abstract Give the bioial trasfors { b } ad {

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS MATH48E FOURIER ANALYSIS AND ITS APPLICATIONS 7.. Cesàro summability. 7. Summability methods Arithmetic meas. The followig idea is due to the Italia geometer Eresto Cesàro (859-96). He shows that eve if

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Chapter 2. Asymptotic Notation

Chapter 2. Asymptotic Notation Asyptotic Notatio 3 Chapter Asyptotic Notatio Goal : To siplify the aalysis of ruig tie by gettig rid of details which ay be affected by specific ipleetatio ad hardware. [1] The Big Oh (O-Notatio) : It

More information

APPROXIMATION BY BERNSTEIN-CHLODOWSKY POLYNOMIALS

APPROXIMATION BY BERNSTEIN-CHLODOWSKY POLYNOMIALS Hacettepe Joural of Mathematics ad Statistics Volume 32 (2003), 1 5 APPROXIMATION BY BERNSTEIN-CHLODOWSKY POLYNOMIALS E. İbili Received 27/06/2002 : Accepted 17/03/2003 Abstract The weighted approximatio

More information

ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES. 1. Introduction

ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES. 1. Introduction Joural of Classical Aalysis Volue 3, Nuber 2 208), 33 39 doi:0.753/jca-208-3-09 ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES AHMET KARAKAŞ Abstract. I the preset paper, a geeral theore dealig

More information

Refinements of Jensen s Inequality for Convex Functions on the Co-Ordinates in a Rectangle from the Plane

Refinements of Jensen s Inequality for Convex Functions on the Co-Ordinates in a Rectangle from the Plane Filoat 30:3 (206, 803 84 DOI 0.2298/FIL603803A Published by Faculty of Scieces ad Matheatics, Uiversity of Niš, Serbia Available at: http://www.pf.i.ac.rs/filoat Refieets of Jese s Iequality for Covex

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Perturbation Theory, Zeeman Effect, Stark Effect

Perturbation Theory, Zeeman Effect, Stark Effect Chapter 8 Perturbatio Theory, Zeea Effect, Stark Effect Ufortuately, apart fro a few siple exaples, the Schrödiger equatio is geerally ot exactly solvable ad we therefore have to rely upo approxiative

More information

Domination Number of Square of Cartesian Products of Cycles

Domination Number of Square of Cartesian Products of Cycles Ope Joural of Discrete Matheatics, 01,, 88-94 Published Olie October 01 i SciRes http://wwwscirporg/joural/ojd http://dxdoiorg/10436/ojd014008 Doiatio Nuber of Square of artesia Products of ycles Morteza

More information

Conversely Convergence Theorem of Fabry Gap

Conversely Convergence Theorem of Fabry Gap Sciece Joural of pplied Matheatics ad Statistics 5; 3(4: 77-83 Published olie Jue 3 5 (http://wwwsciecepublishiggroupco/j/sjas doi: 648/jsjas534 ISSN: 376-949 (Prit; ISSN: 376-953 (Olie Coversely Covergece

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probability for mathematicias INDEPENDENCE TAU 2013 28 Cotets 3 Ifiite idepedet sequeces 28 3a Idepedet evets........................ 28 3b Idepedet radom variables.................. 33 3 Ifiite idepedet

More information

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS ARCHIVU ATHEATICU BRNO Tomus 40 2004, 33 40 SOE SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS E. SAVAŞ AND R. SAVAŞ Abstract. I this paper we itroduce a ew cocept of λ-strog covergece with respect to a Orlicz

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1.

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1. Math 7 Sprig 06 PROBLEM SET 5 SOLUTIONS Notatios. Give a real umber x, we will defie sequeces (a k ), (x k ), (p k ), (q k ) as i lecture.. (a) (5 pts) Fid the simple cotiued fractio represetatios of 6

More information

A Study on the Rate of Convergence of Chlodovsky-Durrmeyer Operator and Their Bézier Variant

A Study on the Rate of Convergence of Chlodovsky-Durrmeyer Operator and Their Bézier Variant IOSR Joural of Matheatics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volue 3, Issue Ver. III (Mar. - Apr. 7), PP -8 www.iosrjourals.org A Study o the Rate of Covergece of Chlodovsky-Durreyer Operator ad

More information

Exponential Functions and Taylor Series

Exponential Functions and Taylor Series MATH 4530: Aalysis Oe Expoetial Fuctios ad Taylor Series James K. Peterso Departmet of Biological Scieces ad Departmet of Mathematical Scieces Clemso Uiversity March 29, 2017 MATH 4530: Aalysis Oe Outlie

More information

MDIV. Multiple divisor functions

MDIV. Multiple divisor functions MDIV. Multiple divisor fuctios The fuctios τ k For k, defie τ k ( to be the umber of (ordered factorisatios of ito k factors, i other words, the umber of ordered k-tuples (j, j 2,..., j k with j j 2...

More information

Largest families without an r-fork

Largest families without an r-fork Largest families without a r-for Aalisa De Bois Uiversity of Salero Salero, Italy debois@math.it Gyula O.H. Katoa Réyi Istitute Budapest, Hugary ohatoa@reyi.hu Itroductio Let [] = {,,..., } be a fiite

More information

MATH 31B: MIDTERM 2 REVIEW

MATH 31B: MIDTERM 2 REVIEW MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate x (x ) (x 3).. Partial Fractios Solutio: The umerator has degree less tha the deomiator, so we ca use partial fractios. Write x (x ) (x 3) = A x + A (x ) +

More information

A Note on the Kolmogorov-Feller Weak Law of Large Numbers

A Note on the Kolmogorov-Feller Weak Law of Large Numbers Joural of Mathematical Research with Applicatios Mar., 015, Vol. 35, No., pp. 3 8 DOI:10.3770/j.iss:095-651.015.0.013 Http://jmre.dlut.edu.c A Note o the Kolmogorov-Feller Weak Law of Large Numbers Yachu

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

For a carefully chose system of odes := f ; ; :::; g; ; our results imply i particular, that the Lebesgue costat k (W k; ; )k L (R) satises uiformly f

For a carefully chose system of odes := f ; ; :::; g; ; our results imply i particular, that the Lebesgue costat k (W k; ; )k L (R) satises uiformly f The Lebesgue fuctio ad Lebesgue costat of Lagrage Iterpolatio for Erd}os Weights S. B. Dameli Jauary, 5 Jauary 997 bstract We establish poitwise as well as uiform estimates for Lebesgue fuctios associated

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

On twin primes associated with the Hawkins random sieve

On twin primes associated with the Hawkins random sieve Joural of Nuber Theory 9 006 84 96 wwwelsevierco/locate/jt O twi pries associated with the Hawkis rado sieve HM Bui,JPKeatig School of Matheatics, Uiversity of Bristol, Bristol, BS8 TW, UK Received 3 July

More information

ON BLEIMANN, BUTZER AND HAHN TYPE GENERALIZATION OF BALÁZS OPERATORS

ON BLEIMANN, BUTZER AND HAHN TYPE GENERALIZATION OF BALÁZS OPERATORS STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume XLVII, Number 4, December 2002 ON BLEIMANN, BUTZER AND HAHN TYPE GENERALIZATION OF BALÁZS OPERATORS OGÜN DOĞRU Dedicated to Professor D.D. Stacu o his 75

More information

On Order of a Function of Several Complex Variables Analytic in the Unit Polydisc

On Order of a Function of Several Complex Variables Analytic in the Unit Polydisc ISSN 746-7659, Eglad, UK Joural of Iforatio ad Coutig Sciece Vol 6, No 3, 0, 95-06 O Order of a Fuctio of Several Colex Variables Aalytic i the Uit Polydisc Rata Kuar Dutta + Deartet of Matheatics, Siliguri

More information

Beurling Integers: Part 2

Beurling Integers: Part 2 Beurlig Itegers: Part 2 Isomorphisms Devi Platt July 11, 2015 1 Prime Factorizatio Sequeces I the last article we itroduced the Beurlig geeralized itegers, which ca be represeted as a sequece of real umbers

More information

DISTANCE BETWEEN UNCERTAIN RANDOM VARIABLES

DISTANCE BETWEEN UNCERTAIN RANDOM VARIABLES MATHEMATICAL MODELLING OF ENGINEERING PROBLEMS Vol, No, 4, pp5- http://doiorg/88/ep4 DISTANCE BETWEEN UNCERTAIN RANDOM VARIABLES Yogchao Hou* ad Weicai Peg Departet of Matheatical Scieces, Chaohu Uiversity,

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

Weighted Approximation by Videnskii and Lupas Operators

Weighted Approximation by Videnskii and Lupas Operators Weighted Approximatio by Videsii ad Lupas Operators Aif Barbaros Dime İstabul Uiversity Departmet of Egieerig Sciece April 5, 013 Aif Barbaros Dime İstabul Uiversity Departmet Weightedof Approximatio Egieerig

More information

Math 341 Lecture #31 6.5: Power Series

Math 341 Lecture #31 6.5: Power Series Math 341 Lecture #31 6.5: Power Series We ow tur our attetio to a particular kid of series of fuctios, amely, power series, f(x = a x = a 0 + a 1 x + a 2 x 2 + where a R for all N. I terms of a series

More information

REVIEW OF CALCULUS Herman J. Bierens Pennsylvania State University (January 28, 2004) x 2., or x 1. x j. ' ' n i'1 x i well.,y 2

REVIEW OF CALCULUS Herman J. Bierens Pennsylvania State University (January 28, 2004) x 2., or x 1. x j. ' ' n i'1 x i well.,y 2 REVIEW OF CALCULUS Hera J. Bieres Pesylvaia State Uiversity (Jauary 28, 2004) 1. Suatio Let x 1,x 2,...,x e a sequece of uers. The su of these uers is usually deoted y x 1 % x 2 %...% x ' j x j, or x 1

More information

Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering Mathematical Methods for Physics ad Egieerig Lecture otes Sergei V. Shabaov Departmet of Mathematics, Uiversity of Florida, Gaiesville, FL 326 USA CHAPTER The theory of covergece. Numerical sequeces..

More information

SOME PROPERTIES OF CERTAIN MULTIVALENT ANALYTIC FUNCTIONS USING A DIFFERENTIAL OPERATOR

SOME PROPERTIES OF CERTAIN MULTIVALENT ANALYTIC FUNCTIONS USING A DIFFERENTIAL OPERATOR Joural of the Alied Matheatics Statistics ad Iforatics (JAMSI) 5 (9) No SOME PROPERTIES OF CERTAIN MULTIVALENT ANALYTIC FUNCTIONS USING A DIFFERENTIAL OPERATOR SP GOYAL AND RAKESH KUMAR Abstract Here we

More information

A constructive analysis of convex-valued demand correspondence for weakly uniformly rotund and monotonic preference

A constructive analysis of convex-valued demand correspondence for weakly uniformly rotund and monotonic preference MPRA Muich Persoal RePEc Archive A costructive aalysis of covex-valued demad correspodece for weakly uiformly rotud ad mootoic preferece Yasuhito Taaka ad Atsuhiro Satoh. May 04 Olie at http://mpra.ub.ui-mueche.de/55889/

More information

Common Fixed Points for Multifunctions Satisfying a Polynomial Inequality

Common Fixed Points for Multifunctions Satisfying a Polynomial Inequality BULETINUL Uiversităţii Petrol Gaze di Ploieşti Vol LXII No /00 60-65 Seria Mateatică - Iforatică - Fizică Coo Fixed Poits for Multifuctios Satisfyig a Polyoial Iequality Alexadru Petcu Uiversitatea Petrol-Gaze

More information